文档视界 最新最全的文档下载
当前位置:文档视界 › 湿空气饱和水蒸气分压力计算公式、饱和水蒸气热力特性

湿空气饱和水蒸气分压力计算公式、饱和水蒸气热力特性

湿空气饱和水蒸气分压力计算公式、饱和水蒸气热力特性
湿空气饱和水蒸气分压力计算公式、饱和水蒸气热力特性

根据1963年第六届国际水蒸气会议的决定,以水物质在三相(纯水的冰、水和汽)平衡共存状态下(t=0.01℃,p=0.6112 kPa )的饱和水作为基准点,规定在三相态时饱和水的内能和熵为零。

2. 湿空气饱和水蒸气分压力[2]

在温度-100~0℃范围内(标准大气压),饱和水蒸气的饱和压力计算公式如下:

式中:C =-5.674 535 9 E+03;C =6.392 524 7 E+00;C =-9.677 843 0 E-03;C =6.221 570 1E-07;C 5 = 2.074 782 5 E-09;C 6 = -9.484 024 0 E-13;C 7 = 4.163 501 9 E+00;T=t+273.15,K 。

在温度0~200℃范围内(标准大气压),饱和水蒸气的饱和压力计算公式如下:

式中:C =-5.800 220 6 E+03;C =1.391 499 3 E+00;C =-4.864 023 9 E-02;C = 4.176 4768 E-05;C =-1.445 209 3 E-8;= 6.545 967 3 E+00。

3. 饱和水蒸气热力特性(-5~35℃)[3]

1 2 3 4 89 101112 C13

饱和蒸汽压力温度对照表

压力(MPa) 温度(℃) 0.001 6.9491 0.002 12.9751 0.002 17.5403 0.003 21.1012 0.003 24.1142 0.004 26.6707 0.004 28.9533 0.005 31.0533 0.005 32.8793 0.006 34.6141 0.006 36.1663 0.007 37.6271 0.007 38.9967 0.008 40.2749 0.008 41.5075 0.009 42.6488 0.009 43.7901 0.010 44.8173 0.010 45.7988 0.011 47.6934 0.012 49.4281 0.013 51.0488 0.014 52.5553 0.015 53.9705 0.016 55.3401 压力(MPa) 温度(℃) 0.017 56.5955 0.018 57.8053 0.019 58.9694 0.020 60.0650 0.021 61.1378 0.022 62.1422 0.023 63.1237 0.024 64.0596 0.025 64.9726 0.026 65.8628 0.027 66.7074 0.028 67.5291 0.029 68.3280 0.030 69.1041 0.032 70.6106 0.034 72.0144 0.036 73.3611 0.038 74.6508 0.040 75.8720 0.045 78.7366 0.050 81.3388 0.055 83.7355 0.060 85.9496 0.065 88.0154 0.070 89.9556 压力(MPa) 温度(℃) 0.075 91.7816 0.080 93.5107 0.085 95.1485 0.090 96.7121 0.095 98.2014 0.100 99.6340 0.110 102.3160 0.120 104.8100 0.130 107.1380 0.140 109.3180 0.150 111.3780 0.160 113.3260 0.170 115.1780 0.180 116.9410 0.190 118.6250 0.200 120.2400 0.210 121.7890 0.220 123.2810 0.230 124.7170 0.240 126.1030 0.250 127.4440 0.260 128.7400 0.270 129.9980 0.280 131.2180 0.290 132.4030 压力(MPa) 温度(℃) 0.300 133.5560 0.310 134.6770 0.320 135.7700 0.330 136.8360 0.340 137.8760 0.350 138.8910 0.360 139.8850 0.370 140.8550 0.380 141.8030 0.390 142.7320 0.400 143.6420 0.410 144.5350 0.420 145.4110 0.430 146.2690 0.440 147.1120 0.450 147.9330 0.460 148.7510 0.470 149.5500 0.480 150.3360 0.490 151.1080 0.500 151.8670 0.520 153.3500 0.540 154.7880 0.560 156.1850 0.580 157.5430 压力(MPa) 温度(℃) 0.600 158.8630 0.620 160.1480 0.640 161.4020 0.660 162.6250 0.680 163.8170 0.700 164.9830 0.720 166.1230 0.740 167.2370 0.760 168.3280 0.780 169.3970 0.800 170.4440 0.820 171.4710 0.840 172.4770 0.860 173.4660 0.880 174.4360 0.900 175.3890 0.920 176.3250 0.940 177.2450 0.960 178.1500 0.980 179.0400 1.000 179.9160 1.050 18 2.0480 1.100 184.1000 1.150 186.0810 1.200 187.9950 压力(MPa) 温度(℃) 1.250 189.8480 1.300 191.6440 1.350 193.3860 1.400 195.0780 1.450 196.7250 1.500 198.3270 1.550 199.8870 1.600 201.4100 1.650 20 2.8950 1.700 204.3460 1.750 205.7640 1.800 207.1510 1.850 208.5080 1.900 209.8380 1.950 211.1400 2.000 212.4170 2.050 21 3.6690 2.100 214.8980 2.150 216.1040 2.200 217.2890 2.250 218.4520 2.300 219.5960 2.350 220.7220 2.400 221.8290 2.450 222.9180 1 / 2

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

饱和蒸汽压力与温度的关系

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)。 饱和蒸汽与过热蒸汽的区别:饱和蒸汽压力与温度有一一对应关系,如已知饱和蒸汽压力为0.5MPa,则温度为158℃,反之,已知饱和蒸汽温度为180℃,则压力必为0.9MPa,所以从压力与温度数据可以判断是否为饱和蒸汽、过热蒸汽。 饱和蒸汽温度1mpa以下160~170度左右 1mpa以上170~195度左右 过热蒸汽在2mpa以上就400度左右. 饱和蒸汽温度压力对照表

压力MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 0.000 99.5 0.180 131.0 0.000 99.5 -0.072 65.0 0.005 101.0 0.185 131.5 -0.002 99.0 -0.074 64.0 0.010 102.0 0.190 132.0 -0.004 98.5 -0.076 63.0 0.015 103.5 0.195 132.5 -0.006 97.5 -0.078 62.0 0.020 104.5 0.200 133.5 -0.008 97.0 -0.08 60.0 0.025 105.5 0.210 134.5 -0.010 96.5 -0.081 59.0 0.030 107.0 0.220 135.5 -0.012 96.0 -0.082 57.5 0.035 108.0 0.230 136.5 -0.014 95.0 -0.083 56.0 0.040 109.0 0.240 137.5 -0.016 94.5 -0.084 55.0 0.045 110.0 0.250 139.0 -0.018 94.0 -0.085 53.5 0.050 111.0 0.260 139.5 -0.020 93.0 -0.086 52.0 0.055 112.0 0.270 140.5 -0.022 92.5 -0.087 50.0 0.060 113.0 0.280 141.5 -0.024 92.0 -0.088 48.5 0.065 114.0 0.290 142.5 -0.026 91.0 -0.089 47.0 0.070 115.0 0.300 143.5 -0.028 90.5 -0.090 45.5 0.075 115.5 0.310 144.5 -0.030 90.0 -0.091 43.5 0.080 116.5 0.320 145.0 -0.032 89.0 -0.092 41.5 0.085 118.0 0.330 146.0 -0.034 88.5 -0.093 39.0 0.090 119.0 0.340 147.0 -0.036 88.0 -0.094 35.5 0.095 119.5 0.350 147.5 -0.038 87.0 -0.095 32.5

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或 S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式: t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(Pa/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 Pa-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有: PnSg≥PgS 或Sg≥Pgs/Pn Sg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s) Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。(l/s) 14、扩散泵抽速计算公式: S=Q/P=(K·n)/(P·t)(升/秒) 式中:S-被试泵的抽气速率(l/s) n-滴管油柱上升格数(格) t-油柱上升n格所需要的时间(秒) P-在泵口附近测得的压强(托)

饱和蒸汽温度压力密度对照表

3 温度密度压力 100 0.6 1.103 101 0.611 1.05 102 0.639 1.088 103 0.66 1.127 104 0.682 1.167 105 0.705 1.208 106 0.728 1.25 107 0.752 1.294 108 0.776 1.339 109 0.801 1.385 110 0.827 1.433 111 0.853 1.482 112 0.88 1.532 113 0.908 1.583 114 0.936 1.636 115 0.965 1.691 116 0.995 1.747 117 1.025 1.804 118 1.057 1.863 119 1.089 1.923 120 1.122 1.985 121 1.155 2.049 122 1.19 2.115

123

1.225 2.182 124 1.261 2.25 125 1.298 2.321 126 1.336 2.393 127 1.375 2.468 128 1.415 2.544 129 1.455 2.622 130 1.497 2.701 131 1.539 2.783 132 1.583 2.867 133 1.627 2.953 134 1.672 3.041 135 1.719 3.131 136 1.766 3.223 137 1.815 3.317 138 1.864 3.414 139 1.915 3.513 140 1.967 3.614 141 2.019 3.717 142 2.073 3.823 143 2.129 3.931 144 2.185 4.042 145 2.242 4.155 146 2.301 4.271 147 2.361 4.398 148 2.422 4.51 149 2.484 4.634 150 2.548 4.76 151 2.613 4.889 152 2.679 5.021 153 2.747 5.155 154 2.816 5.292 155 2.886 5.433 156 2.958 5.577 157 3.032 5.732 158 3.106 5.872 159 3.182 6.025 160 3.26 6.181 161 3.339 6.339 162 3.42 6.502 163 3.502 6.667 164 3.586 6.836 165 3.671 7.008 166 3.758 7.183

饱和蒸汽压力与温度对照表

饱和蒸汽压力与温度对照表 压力KPa 温度℃压力KPa 温度℃压力MPa 温度℃压力MPa 温度℃9.8 101.76 470.7 156.76 3.43 243.03 7.65 292.73 19.6 104.24 490.3 158.07 3.53 244.62 7.75 293.60 29.4 106.56 509.9 159.35 3.63 246.17 7.85 294.47 39.2 108.73 529.6 160.60 3.72 247.68 7.94 295.32 49 110.78 549.2 161.82 3.82 249.17 8.04 296.17 58.8 112.72 568.8 163.01 3.92 250.63 8.14 297.01 68.6 114.57 588.4 164.17 4.02 252.07 8.24 297.85 78.4 116.32 608 165.30 4.12 253.48 8.34 298.67 88.2 118.00 627.6 166.41 4.21 254.86 8.43 299.49 98 119.61 647.2 167.50 4.31 256.22 8.53 300.30 107.8 121.15 666.9 168.56 4.41 257.56 8.63 301.11 117.6 122.64 686.5 169.60 4.51 258.87 8.73 301.90 127.4 124.07 706.1 170.62 4.61 260.16 8.73 302.69 137.2 125.45 725.7 171.63 4.7 261.44 8.92 303.48 147.1 126.78 745.3 172.61 4.8 262.69 9.02 304.26 156.9 128.08 764.9 173.58 4.9 263.92 9.12 305.03 166.7 129.33 784.5 174.53 5.0 265.14 9.22 305.79 176.5 130.54 882.6 179.03 5.09 266.34 9.32 306.55 186.3 131.72 980.7 183.20 5.19 267.52 9.41 307.30 196.1 132.87 1.079MPa 187.08 5.29 268.68 9.51 308.05 205.9 133.99 1.177 190.71 5.39 269.83 9.61 308.79 215.7 135.08 1.27 194.13 5.49 270.96 9.71 309.52 225.6 136.14 1.37 197.36 5.59 272.08 9.81 310.25 235.4 137.17 1.47 200.43 5.69 273.19 10 310.98 245.2 138.18 1.57 203.35 5.79 274.27 10.2 312.41

蒸气压和相对湿度的计算公式

水蒸气压和相对湿度的计算公式 要求水蒸气压和相对湿度时,虽然最好用通风乾湿计,但也可采用不通风乾湿计。由乾湿计计算水 蒸气压和相对湿度的公式为: 1. 从通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e =E’w–0.5(t-t’)P/755 (2)湿球结冰时 e =E’i –0.44(t-t’)P/755 式中, t:乾球读数(oC) t’:湿球读数(oC) E’w:t’(oC)的水饱和蒸气压 E’i:t’(oC)的冰饱和蒸气压 e:所求水蒸气压 P:大气压力 2. 从不通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e=E’ w-0.0008P(t-t’) (2)湿球结冰时 e=E’ i-0.0007P(t-t’) 此处所用符号的意义同上。压力单位都统一用mmHg或mb。 3.求相对湿度: H=e/Ew×100 式中H为所求相对湿度(%),Ew为t(oC)的饱和蒸气压(即使在0oC以下时也不使用Ei)。

水的蒸气压 水和所有其它液体一样,其分子在不断运动着,其中有少数分子因为动能较大,足以冲破表面张力的影响而进入空间,成为蒸气分子,这种现象称为蒸发。液面上的蒸气分子也可能被液面分子吸引或受外界压力抵抗而回入液体中,这种现象称为凝聚。如将液体置于密闭容器内,起初,当空间没有蒸气分子时,蒸发速率比较大,随着液面上蒸气分子逐渐增多,凝聚的速率也随之加快。这样蒸发和凝聚的速率逐渐趋于相等,即在单位时间内,液体变为蒸气的分子数和蒸气变为液体的分子数相等,这时即达到平衡状态,蒸发和凝聚这一对矛盾达到暂时的相对统一。当达到平衡时,蒸发和凝聚这两个过程仍在进行,只是两个相反过程进行的速率相等而已。平衡应理解为运态的平衡,绝不意味着物质运动的停止。 与液态平衡的蒸气称为饱和蒸气。饱和蒸气所产生的压力称为饱和蒸气压。每种液体在一定温度下,其饱和蒸气压是一个常数,温度升高饱和蒸气压也增大。水的饱和蒸气压和温度的关系列于表中。 表水的蒸气压和温度的关系

(完整版)不同温度下空气中饱和水分含量及饱和蒸汽压

不同温度下空气中饱和水分含量及饱和蒸汽压兰州真空设备有限责任公司

《真空设计手册》 粘滞流—分子流下管道流导 2 1 271(d P) 4790(d P) 2 1 316( d P) d :管道直径 m l :管道长度 m P :管道中平均压力 U n.f.20℃= 12.1 d 3 P =( P 1+P 2)/2

《真空设计手册》 符号:U ——流导(L/s) a 和b——椭圆长半轴、短半轴l ——管长(cm) A ——面积(cm2) d ——管道直径(cm)

材料物理性能

GB 5832.2-86 气体中微量水分的测定- 露点法 1 适用范围 本标准适用于氧、氮、氢、氦、氖、氩、氪、氙、二氧化碳等气体中微量水分露点的测定。其测量范围0℃~-70℃ 2 原理 2.1 术语说明 水分露点——在恒定的压力下,气体中的水蒸气达到饱和时的温度。 2.2 方法原理 本法用露点仪进行测定。 使被测气体在恒定压力下,以一定的流量流经露点仪溅定室中的抛光金属镜面。该镜面的温度可人为地降低并可精确地测量。当气体中的水蒸气随着镜面温度的逐渐降低而达到饱和时,镜面上开始出现露,此时所测量到的镜面温度即为露点。(由露点和气体中水分含量的换算式或查表,即可得到气体中微量水分含量。) 3 仪器 3.1 概述 仪器可以用不同的方法设计,主要的不同在于金属镜面的性质、用于冷却镜面的方法、如何控制镜面的温度、测定温度的方法以及检测出露的方法。镜子和它的附件通常安放在气体样品流经的测定室中。 3.2 仪器的一般要求 提供下述装置、满足基本要求的任何露点仪都可以使用。 3.2.1 当仪器温度高于气体中水分露点至少2℃时,可以控制气体进出仪器的流量。 3.2.2 把流动的样品气冷到足够低的温度,使得水蒸气能凝结,冷却的速度可调。 3.2.3 能观察露的出现和准确地测量露点。 3.2.4 气路系统死体积小且气密性好,露点室内气压应接近大气压力。 3.2.5 用标准样衡量仪器是否符合要求,按GB 4471-84 《化工产品试验方法精密度室间试验重复性和再现性的确定》第 4.3 条进行。 3.3 目视和光电露点仪简单的露点仪以手动调节冷量,控制镜面降温速度,用目视法观察露的生成。该法凭经验操作,人为误差较大。采用光电系统确定露生成的光电露点仪有相当高的准确度和精密度;用户按需要和可能进行选择。 3.4 露的观察 目视露点仪用肉眼观察露的出现。光电露点仪是采用装在测定室的光源照射镜面,光源和光电池能以各种方式排列,当镜面未结露时,无散射发生,硅光电池上没有光照,镜面上结露后,入射光在镜面发生散射,一部分光照射到硅光电池上从而产生光生电压,给出出露信号。 3.5 镜面制冷方法 用下述方法来降低和调节镜子温度,其中3.5.1 和3.5.2 所介绍的方法要求操作人员注意观察而不适用于自动装置。对自动装置,使用两种方法制冷: 3.5.3 和 3.5.4 所介绍的液化气体制冷及热电效应制冷。 3.5.1 溶剂蒸发制冷 用一种挥发性液体与镜子背面接触,用通入低压空气或其他压缩气体鼓泡的办法使液体气化而制冷。

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地

冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

各种物质饱和蒸汽压的算法

在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压 的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t —温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用 (2)公式进行计算 lgP=T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表 1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2- 三氯乙烷C2H3Cl3 1,1,2 一三氯乙烯C2HCl3 1,2 一丁二烯C4H6 -60 ~+80 1,3 一丁二烯C4H6 -80 ~+65 2- 甲基丙烯-1 C4H8 2- 甲基丁二烯-1,3 C5H8 -50 ~+95 α - 甲基綦C11H10 α - 萘酚C10H8O β- 甲基萘C11H10 β - 萘酚C10H8O 氨NH3 -83 ~+60 氨基甲酸乙酯C3H7O2N 钡Ba 930~1130 公式(2) 苯C6H6 苯胺C6H7N 苯酚C6H6O 苯甲醇C7H8O 20~113

苯甲醇 C7H8O 113~300 苯甲醚 C7H8O 苯甲酸C7H6O2 60~110 公式(2) 苯甲酸甲酯 C8H8O2 25~100 苯甲酸甲酯 C8H8O2 100~260 苯乙烯 C8H8 铋Bi 1210~1420 公式(2) 蓖C14H10 100~160 公式(2) 蓖 C14H10 223~342 公式(2) 蓖醌C14H3O2 224~286 公式(2) 蓖醌C14H3O2 285~370 公式(2) 丙酸C3H6O2 0~60 丙酸C3H6O2 60~185 丙酮C3H6O 丙烷C3H8 丙烯C3H6 丙烯腈C3H3N -20 ~+140 铂Pt 1425~1765 公式(2) 草酸C2H2O4 55~105 公式(2) 臭氧O3 醋酸甲酯C3H6O2 氮N2 -210 ~-180 碲化氢H2Te -46 ~0 公式(2) 碘I2 碘化钾KI 843~1028 公式(2) 碘化钾KI 1063~1333 公式(2) 碘化钠NaI 1063~1307 公式(2) 碘化氢HI -97 ~-51 公式(2) 碘化氢HI -50 ~-34 公式(2)

饱和蒸汽压力和温度关系实验

实验报告评分 13系07级第二大组实验室力一楼日期2010-03-23 姓名钟伟PB07013076 实验题目:饱和蒸汽压力和温度关系实验 实验目的:通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而建立液体温度达到对应液面压力的饱和温度时,沸腾便会发生的基本概念。通过对实验数据的整理,掌握饱和蒸汽p-t关系图表的编制方法,观察小容积的泡态沸腾现象。 实验原理: 考察水在定压下加热时水的状态的变化过程。随着热量的加入,水的温度不断升高。当温度上升到某温度值t时水开始沸腾。此沸腾温度称为该压力下的饱和温度。同样,此时的压力称为饱和压力。继续加热,水中不断产生水蒸汽,随着加热过程的进行,水蒸汽不断增加,直至全部变为蒸汽,而达到干饱和蒸汽状态。对干饱和蒸汽继续加热,由蒸汽的温度由饱和温度逐渐升高。水在汽化过程中,呈现出五种状态,即未饱和水、饱和水、湿饱和蒸汽、干饱和蒸汽、过热蒸汽。在汽化阶段,处于汽液两相平衡共存的状态,它的特点是定温定压,即一定的压力对应着一定的饱和温度,或一定的温度对应着一定的饱和压力。 实验步骤: 熟悉实验装置的工作原理、性能和使用方法。 1.将调压器指针置于零位,然后接通电源。 2.将电接点压力表的上限压力指针拨到稍高于最高试验压力(如: 0.7MPa)的位置。 3.将调压器输出电压调至170V,待蒸汽压力升至接近于第一个待测定 的压力值时,将电压降至20-50V左右(参考值)。由于热惯性,压

力将会继续上升,待工况稳定(压力和温度基本保持不变)时,记 录下蒸汽的压力和温度。重复上述实验,在0~0.6Pa(表压)范围内, 取5个压力值,顺序分别进行测试。实验点应尽可能分布均匀。 4.实验完毕后,将调压器指针旋回零位,并断开电源。记录实验环境 的温度和大气压力B。 注意事项:本装置允许使用压力为0.8MPa(表压),不可超压操作。 实验处理: 数据记录 绘制p - t 关系曲线,并将实验结果在p - t坐标系中标出如下:

饱和水蒸汽压力与温度密度蒸汽焓汽化热的关系对照表

饱和水蒸汽压力与温度、密度、蒸汽焓、气化热的关系对照表 一.什么是水和水蒸气的焓? 水或水蒸气的焓h,是指在某一压力和温度下的1千克水或1千克水蒸气内部所含有的能量,即水或水蒸气的内能u与压力势能pv之和(h=u+pv)。水或水蒸气的焓,可以认为等于把1千克绝对压力为兆帕温度为0℃的水,加热到该水或水蒸气的压力和温度下所吸收的热量。焓的单位为“焦/千克”。 (1)非饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该非饱和水的压力和温度下所吸收的热量。 (2)饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该饱和水的压力对应的饱和温度时所吸收的热量。饱和温度随压力增大而升高,因此饱和水焓也随压力增大而增大。例如:绝对压力为兆帕时,饱和水焓为 x 103焦/千克;在绝对压力为兆帕时,饱和水焓则为 x 103焦/千克。 (3)饱和水蒸气焓:分为干饱和水蒸气焓和湿饱和水蒸气焓两种。干饱和水蒸气焓等于饱和水焓加水的汽化潜热;湿饱和水蒸气焓等于1千克湿饱和蒸汽中,饱和水的比例乘饱和水焓加干饱和汽的比例乘干饱和汽焓之和。例如:绝对压力为兆帕时,饱和水焓为 x103焦/公斤;汽化潜热为1328 x103焦/公斤。因此,干饱和水蒸气的焓等于: x103+1328x103= x 103焦/千克。又例如:绝对压力为兆帕的湿饱和水蒸气中,饱和水的比例为,(即湿度为20%)干饱和水蒸气比例为(即干度为80%),则此湿饱和水蒸气的焓为 x103 x 十 = x 103焦/千克。 (4)过热水蒸气焓:等于该压力下干饱和水蒸气的焓与过热热之和。例如:绝对压力为兆帕,温度为540℃的过热水蒸气的干饱和水蒸气的焓为 x 103焦/千克,过热热为 x 103焦/千克。则该过热水蒸气的焓为: x 103+ x 103= x 103焦/千克。

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hé zhēng qì yā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水 的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理 性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程 最简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C) (1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃)A B C 1,1,2-三氯乙烷C2H3Cl3\ 6.851891262.570205.170 1,1,2一三氯乙烯C2HCl3\7.028081315.040230.000 1,2一丁二烯C4H6-60~+807.161901121.000251.000

饱和蒸汽压

饱和蒸汽压

饱和蒸气压 编辑 [b ǎo h ézh ēng q ìy ā] 饱和蒸汽压即饱和蒸气压。 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于液态的饱和蒸气压。 蒸汽压指的是在液体(或者固体)的表面存在着该物质的蒸汽,这些蒸汽对液体表面产生的压强就是该液体的蒸汽压。比如,水的表面就有水蒸汽压,当水的蒸汽压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100 摄氏度时水的蒸汽压等于一个大气压。蒸汽压随温度变化而变化,温度越高,蒸汽压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态) 处于平衡状态的蒸汽所产生的压 强叫饱和蒸汽压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方汽相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,汽相压力最终将稳定在一个固定的数值上,这时的汽相压力称为水在该温度下的饱和蒸汽压力。当汽相压力的数值达到饱和蒸汽压力的数值时,液相的水分子仍然不断地气化,汽相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压力时,汽液两相即达到了相平衡。饱和蒸汽压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸汽压越大,表示该物质越容易挥发。 1 定义编辑 饱和蒸气压( saturated vapor pressure ) 例如,在30℃时,水的饱和蒸气压为4132.982Pa, 乙醇为10532.438Pa 。而在100 ℃时,水的饱和蒸气压增大到101324.72Pa, 乙醇为222647.74Pa 。饱和蒸气压是液体的一项重要物理性质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2 计算公式编辑 (1) Clausius-Claperon 方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p 为蒸气压;H(v) 为蒸发潜热;Z(v) 为饱和蒸汽压缩因子与饱和液体压缩因子之差。该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2) Clapeyron 方程: 若上式中H(v)/(R*Z(v)) 为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v)) 。 (3) Antoine 方程:lg p=A-B/(T+C) 式中,A,B,C 为Antoine 常数,可查数据表。Antoine 方程是对Clausius-Clapeyron 方程最简单的改进,在 1.333~199.98kPa 范围内误差小。 3 附录编辑 计算参数 在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压的常数A、 B 、C 。其公式如下 lgP=A-B/(t+C) ( 1) 式中:P —物质的蒸气压,毫米汞柱; t—温度,℃ 公式( 1)适用于大多数化合物;而对于另外一些只需常数 B 与 C 值的物质,则可采用( 2)公式进行计算 lgP=-52.23B/T+C ( 2 )

相关文档
相关文档 最新文档