文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学难点突破__指数、对数函数

高考数学难点突破__指数、对数函数

高考数学难点突破__指数、对数函数
高考数学难点突破__指数、对数函数

难点9 指数函数、对数函数问题

指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.

●难点磁场

(★★★★★)设f (x )=log 2

x

x

-+11,F (x )=x -21+f (x ).

(1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明;

(2)若f (x )的反函数为f -

1(x ),证明:对任意的自然数n (n ≥3),都有f -

1(n )>

1

+n n ; (3)若F (x )的反函数F -

1(x ),证明:方程F -

1(x )=0有惟一解. ●案例探究

[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.

(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.

命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.

知识依托:(1)证明三点共线的方法:k OC =k OD .

(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题. 技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.

(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以

2

2

8118log log x x x x =

,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=

2log log 818x ===2

log log log ,log 382

82218x x x 3log 8x 2,所以OC 的斜率:k 1=

1

1

8212log 3log x x x x =

, OD 的斜率:k 2=

2

2

8222log 3log x x x x =

,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=

3

1

log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).

[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n

位于函数y =2000(

10

a )x

(0

(1)求点P n 的纵坐标b n 的表达式;

(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;

(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.

命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级 题目.

知识依托:指数函数、对数函数及数列、最值等知识.

错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.

技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.

解:(1)由题意知:a n =n +21

,∴b n =2000(10

a )21

+n .

(2)∵函数y =2000(

10

a )x

(0b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10

a

)-1>0,解得a <-5(1+2)

或a >5(5-1).∴5(5-1)

(3)∵5(5-1)

∴b n =2000(10

7)21

+

n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是

当b n ≥1时,B n

且b n +1<1,由b n =2000(10

7)2

1

+n ≥1得:n ≤20.8.∴n =20.

●锦囊妙计

本难点所涉及的问题以及解决的方法有:

(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.

(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力. ●歼灭难点训练 一、选择题

1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )

A.g (x )=x ,h (x )=lg(10x +10-

x +2)

B.g (x )=

21[lg(10x +1)+x ],h (x )= 21

[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2x

D.g (x )=-2x ,h (x )=lg(10x +1)+2

x

2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )

二、填空题 3.(★★

)

f (x )=???<<--≥)

02( )(log )0( 22x x x x .则f --

1(x -1)=_________.

4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae -nt ,那么桶2中水就是y 2=a -ae -

nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有

8

a . 三、解答题

5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当

点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.

(1)写出函数y =g (x )的解析式;

(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.

6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断2

1[f (x 1)+f (x 2)]与f (

2

2

1x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.

8.(★★★★)设不等式2(log 2

1x )2+9(log 2

1x )+9≤0的解集为M ,求当x ∈M 时函数

f (x )=(lo

g 2

2x )(log 28

x

)的最大、最小值. 参考答案

难点磁场 解:(1)由

x

x

-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则 F (x 2)-F (x 1)=(

1221

21x x ---)+(1

12

22211log 11log x x x x -+--+)

)

1)(1()

1)(1(log )2)(2(21212

2112x x x x x x x x -++-+---=

, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.

(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y

y x x x , ∴f -1

(x )=1

212+-x x ,∵f (x )的值域为R ,∴f --

1(x )的定义域为R .

当n ≥3时,f -1(n )>

1221111

221112121+>?+->+-?+>+-?+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.

(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =2

1是F -1(x )=0的一个根.假设F -

1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21

).这是不可能的,故F -1(x )=0有惟一解.

歼灭难点训练

一、1.解析:由题意:g (x )+h (x )=lg(10x +1) ①

又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-

x +1) ②

由①②得:g (x )=2x ,h (x )=lg(10x +1)-2

x

.

答案:C 2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数. 答案:B

二、3.解析:容易求得f -

-1

(x )=???<-≥)

1( 2)

1( log 2x x x x ,从而:

f -1

(x -1)=?

??<-≥--).2( ,2)

2(),1(log 12x x x x

答案:???<-≥--)

2( ,2)

2(),1(log 12x x x x

4.解析:由题意,5分钟后,y 1=ae -nt

,y 2=a -ae

-nt

,y 1=y 2.∴n =

5

1

l n 2.设再过t 分钟桶1中的水只有

8a ,则y 1=ae -

n (5+t )=8a ,解得t =10. 答案:10

三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.

∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log a

a

x -2

1

,

∴g (x )=log a

a

x -1

. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=a

a -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log a

a

x -1

|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2

-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组???

??≤--≥-<<1)44(log 1)69(log 10a a a a

a 的解.

由log a (9-6a )≥-1解得0<a ≤

12579-,由log a (4-4a )≤1解得0<a ≤54

, ∴所求a 的取值范围是0<a ≤12

57

9-.

6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,

∵x 1,x 2∈(0,+∞),x 1x 2≤(2

21x x +)2

(当且仅当x 1=x 2时取“=”号),

当a >1时,有log a x 1x 2≤log a (2

21x x +)2

,

∴21

log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 2

21x x +, 即21

[f (x 1)+f (x 2)]≤f (2

21x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (2

21x x +)2

,

∴21(log a x 1+log a x 2)≥log a 221x x +,即21

[f (x 1)+f (x 2)]≥f (2

21x x +)(当且仅当x 1=x 2时取“=”号).

7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.

(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2);

(2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.

8.解:∵2(2

1log x )2+9(2

1log x )+9≤0

∴(22

1log x +3)( 2

1log x +3)≤0.

∴-3≤2

1log x ≤-

2

3. 即21log (21)-3≤21log x ≤21log (21)

2

3

-

∴(21)23

-≤x ≤(2

1)-

3,∴22≤x ≤8

即M ={x |x ∈[22,8]}

又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.

∵22≤x ≤8,∴

2

3

≤log 2x ≤3 ∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

高考数学难点突破_难点41__应用问题

难点41 应用性问题 数学应用题是指利用数学知识解决其他领域中的问题.高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求. ●难点磁场 1.(★★★★★)一只小船以10 m/s 的速度由 南向北匀速驶过湖面,在离湖面高20米的桥上, 一辆汽车由西向东以20 m/s 的速度前进(如图), 现在小船在水平P 点以南的40米处,汽车在桥上 以西Q 点30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为 .(不考虑汽车与小船本 身的大小). 2.(★★★★★)小宁中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜6分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开10分钟;(5)煮面条和菜共3分钟.以上各道工序除(4)之外,一次只能进行一道工序,小宁要将面条煮好,最少用分钟. 3.(★★★★★)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足 R (x )=???>≤≤-+-)5( 2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产品x 应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少? ●案例探究 [例1]为处理含有某种杂质的污水,要制造一个底宽为2 米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从 B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水 中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料 60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该 杂质的质量分数最小(A 、B 孔的面积忽略不计)? 命题意图:本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力,属★★★★级题目. 知识依托:重要不等式、导数的应用、建立函数关系式. 错解分析:不能理解题意而导致关系式列不出来,或a 与b 间的等量关系找不到. 技巧与方法:关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决. 解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y = ab k (k >0为比例系数)其中a 、b 满足2a +4b +2ab =60 ① 要求y 的最小值,只须求ab 的最大值. 由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b )

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 48476Λ个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表 示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇 与高一高二不同之处在于,高三复习知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三数学知识点总结1 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_. (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明

高考数学难点突破_难点34__导数的运算法则及基本公式应用

难点34 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-= x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 2222222222 22222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(] ))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+' +--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·21 v -21·2x =f ′(12+x )·211 1 2+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′ =f ′(12+x )·21(x 2+1)21- ·(x 2+1)′

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x是自变量,y 是x 的函数。 (2)图象:

上海高考数学知识点重点详解

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 高考前数学知识点总结 1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.已知集合A 、B ,当A B ?=?时,你是否注意到“极端”情况:A =?或B =?; 4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.- ()若,;2A B A B A A B B ??== (3):空集是任何集合的子集,任何非空集合的真子集。 5. 学会用补集思想解决问题吗?(排除法、间接法) 6.可以判断真假的语句叫做命题。 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。 13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;

高考数学难点突破 难点22 轨迹方程的求法

难点22 轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论. 技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系. 解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有

指数函数对数函数幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

全国百强名校 ”2020-2021学年高三数学重难点训练 (91)

第一讲 等差数列、等比数列 [高考导航] 1.对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解. 2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题. 3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节. 考点一 等差、等比数列的基本运算 1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ; S n =n (a 1+a n )2 =na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式 a n =a 1q n -1(q ≠0); S n =????? na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).

1.(2019·大连模拟)记S n 为等差数列{a n }的前n 项和.若a 4+a 5 =24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 [解析] 由已知条件和等差数列的通项公式与前n 项和公式可列 方程组,得????? 2a 1+7d =24, 6a 1+6×5 2d =48, 即?? ? 2a 1+7d =24,2a 1+5d =16, 解得?? ? a 1=-2,d =4, 故选C . [答案] C 2.(2019·济南一中1月检测)在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148 [解析] 由题意可知, ?? ? a 1+a 2=9,a 1+a 2+a 3=21,即?? ? a 1(1+q )=9,a 1(1+q +q 2)=21, 解得?? ? q =2,a 1=3 或????? q =-23, a 1=27 (舍). ∴a 5+a 6=a 1q 4(1+q )=144.故选A . [答案] A 3.(2019·广东珠海3月联考)等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 9=15,则S 8-S 3=( ) A .30 B .25

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

高考数学:指数函数

指数函数 一、选择题(共17小题;共85分) 1. 已知 a =(?12)?1 ,b =2?12 ,c =(12)?1 2 ,d =2?1,则此四数中最大的是 ( ) A. a B. b C. c D. d 2. 已知 a = √5?1 2 ,函数 f (x )=a x ,若实数 m ,n 满足 f (m )>f (n ) ,则 m ,n 的关系为 ( ) A. m +n <0 B. m +n >0 C. m >n D. m c >b B. a >b >c C. c >a >b D. c >b >a 6. 函数 y =(12) 2x?x 2 的值域为 ( ) A. [1 2,+∞) B. (?∞,1 2] C. (0,1 2] D. (0,2] 7. 若函数 y =a x ?(b +1)(a >0,a ≠1) 的图象在第一、三、四象限,则有 ( ) A. a >1 且 b <1 B. a >1 且 b >0 C. 00 D. 0y 1>y 2 B. y 2>y 1>y 3 C. y 1>y 2>y 3 D. y 1>y 3>y 2 9. 若 x >y >1,0y b B. x a b y 10. 函数 f (x )=a x?1+4(a >0,且 a ≠1)的图象过一个定点,则这个定点坐标是 ( ) A. (5,1) B. (1,5) C. (1,4) D. (4,1) 11. 下列各式比较大小正确的是 ( ) A. 1.72.5>1.73 B. 0.6?1>0.62 C. 0.8?0.1>1.250.2 D. 1.70.3<0.93.1 12. 已知实数 a ,b 满足等式 2017a =2018b ,下列五个关系式:① 00,且 a ≠1)的图象经过点 P (2,1 ),则 f (?1) 等于 ( )

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

高考数学难点突破 难点38 分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N *) 故只要2 3S k –2<c <S k ,(k ∈N *)

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

相关文档 最新文档