文档视界 最新最全的文档下载
当前位置:文档视界 › 视频线的种类和简单介绍

视频线的种类和简单介绍

视频线的种类和简单介绍
视频线的种类和简单介绍

视频线的种类和简单介绍

作者:Tug 日期:2005-12-27

字体大小: 小中大

昨天有朋友问我关于视频线的问题,我想了想还是写篇日志介绍吧。

下面的材料大多来源于网上的技术资料

数字视频接口(DVI/HDMI)介绍

作者: yekai 写作时间:2002年07月

随着高清晰度电视(HDTV)、电脑技术、数字显示技术的发展,数字视频接口(DVI)正在得到各大电器制造商/电脑制造商的认同,有望成为将来数字视听设备的标准接口。那数字视频接口(DVI)到底是何方神圣呢?它比模拟视频接口有什么好处呢?它有那些优点可以使它成为将来的标准数字接口呢?

数字视频接口(DVI)也就是Digital Visual Interface的简称,由Silicon Image发明并推广。最初的目的是用于电脑,实现主机和监视器之间的数字信号传输,现在被应用到高清晰度视频领域。

一、我们先来了解模拟视频接口是怎样发展的。

1、最简单、最原始的视频接口是复合视频信号(CVBS)接口,也就是通常所称的RCA接口。传输的是复合视频信号,传输介面是一根普通的视频线。黄色的为视频信号,白色的为左声道音频信号,红色的为右声道音频信号。如下图:

2、由于复合视频信号是将亮度信号和色度信号采用频谱间置方法复合在一起,导致亮色串扰、清晰度降低等问题。因此,随着摄影机、S-VHS录像机的发展,出现了S端子接口。将亮度信号Y和色度信号C分开传输。确保亮度信号不会受到色度信号的干扰。

3、虽然S端子用来传输现在的视频信号已经很好了,可是真正的AV玩家还是不满足。色度信号是将色差信号调制在色负载波上得到的。为什么不直接传输色差信号呢?于是电器制造商根据各自的情况,发展自己的视频接口。欧洲厂商统一起来,使用SCART接口,传输的是RGB三原色信号。而日本厂商发展D端子,传输的是色差分量信号。现在SCART成了欧洲电器的标准接口,而日本的高档DVD机和电视机都具备D端子。美国人则延续了使用RCA端子的传统,使用3个RCA端子来传输色差分量信号。由于美国在数字视听领域的强大势力,3 RCA色差分量数字在欧洲和日本以外的地区成了DVD播放机的标准输出接口。即使在日本和欧洲,大部分DVD播放机也具备色差分量接口。而我国厂商则在较高档的逐行DVD机装备了VGA输出接口。实际上在DVD机上装备VGA 接口在美国是违反版权保护法的,因为现在在VGA接口上还没有版权保护措施,因此不允许使用VGA接口输出高质量的视频信号。这也就是为什么我们在飞利浦、SONY、松下、先锋等进口机器上看不到VGA接口的原因,非不能也,是不为也。

欧洲的SCART接口:

日本的D端子:

D端子分以下5种,实际的接口和传输线都完全相同,只是传输的信号格式不同而已:

?D1: 525i(普通NTSC 525行隔行信号)

?D2: 525i, 525p(在D1的基础上,增加NTSC 525行逐行信号)

?D3: 525i, 525p, 1125i(在D2的基础上,增加HDTV 1125行隔行信号)

?D4: 525i, 525p, 1125i, 750p(在D3的基础上,增加HDTV 750行逐行信号)

?D5: 525i, 525p, 1125i, 750p, 1125p(在D4的基础上,增加HDTV 1125行逐行信号)

?注:525i也习惯称480i,525p也习惯称480p,1125i也习惯称1080i,750p也习惯称720p。前者讲的是所有的每帧扫描线,后者讲的是每帧

有效图像行数。

美国的3 RCA色差分量:

PC领域的通用接口D-SUB 9端口:也就是我们通常讲的VGA端子。

我们看到,模拟视频接口的发展趋势是传输的信号频率越来越高,都传输的是未经过复合处理的三原信号/色差信号以保证最好的图像质量。

二、数字显示设备和模拟显示设备的区别

前面讲到的SCART/D端子/3 RCA/VGA接口等已经是现在模拟信号传输的极致了,为什么现在又有对数字视频信号接口的需求呢?我的电脑就是用你讲的“模拟视频接口”VGA,我没有觉得有什么不好啊?为什么要使用数字视频接口呢?

数字视频接口是随着数字视频显示设备发展而出现的,要了解数字视频接口就必须先来了解什么是数字显示设备。

模拟显示设备一个“宏观”控制,数字显示设备则是“点对点”精确控制。所以在显示高清晰度图片的时候,模拟信号的边缘就是“宏观”的、“模糊”的,因此往往都需要在信号处理的时候增加边缘过渡改善(DLTI)或在扫描的时候增加扫描速度调制(SVM)来改善图像。而数字显示设备则是先寻址到这个“发光点”,然后“告诉”它发多强的光,发光点和相邻的上、下、左、右4个点之间是“一清而楚”的,各发各的光。同时数字显示设备也由于重量轻、功耗低等优点蓬勃发展起来。

但是如果用模拟信号来传输信号,数字显示设备就很吃亏、很浪费,显示效果反而不如同档次的模拟显示设备。这是因为所有的模拟信号在数字显示设备中进行的第一个处理就是再次数字化而导致图像细节损失,显示的图像比模拟显示设备由于多了一次模数转换处理而毫无优势。

而如果采用数字传输接口则恰恰相反,比如在不久的将来,数字信号记录在高清晰度DVD,经过解码后通过数字视频接口传输至等离子电视机上,等离子电视机直接将收到的信号送到显示模块进行显示。而如果你的显示设备仍然是一台显象管型的电视机,那播放高清晰DVD的播放机就必须把它进行数/模转换得到模拟信号再送到你的这台电视机上。而如果你的显示设备是只有模拟视频接口的PDP,那PDP还要再进行一次模/数转换才能显示。你说这三种中哪一种的图像效果最好呢?

在这里还有一个到底有多大差别、在什么时候才可以看出这种差别的问题?这种差异是基于你的显示设备和你对图像的要求的。

?现有的PAL/NTSC隔行图像在29”以下电视机上表现得很好。

?在29”以上尺寸的电视机上,发展了倍频/逐行技术来提高显示质量。

?在电脑显示器这种近距离观看的显示设备上,我们就需要至少800x600@72HZ以上才会有对大多数人来讲都比较好的图像质量。

?在更大屏幕的显示设备比如投影机和等离子电视机上,我们就需要更好的信号,比如高清晰度电视信号。

在投影机或等离子电视机或近距离观看的大屏幕显示器上,我们才需要采用数字视频接口(DVI)技术来得到最好的图像质量。

也就是讲,在远距离观看的显示设备上,数字视频接口相比模拟视频接口至少需要在42”以上800x600以上清晰度的电视机才逐渐取得优势,在42”以下的显示设备上,数字视频接口并没有太大的意义。

而在近距离观看的显示设备比如电脑显示器上,我个人觉得屏幕尺寸至少要在19”以上才有采用数字视频接口的意义。

我个人觉得,只有在1024x768逐行信号或1920x1080隔行信号在42”以上电视机或19”以上显示器才有必要采用数字视频接口。

三、数字信号接口的发展

很遗憾!数字信号无法直接传输。拿普通的3x8位RGB来说,至少需要24根数据线和相应的地线来屏蔽,不可能拿这么大的一堆线来传输数字信号。因此传输数字信号就需要先编码和压缩。目前比较流行的数字接口有USB,IEEE1394,DVI等。

1、USB现在的应用越来越广泛,鼠标器、键盘、移动闪存卡等,适合低速信号的传输。因此USB只适合用来传输静态图片如数码相机的JPG照片或低质量的动态图像,而不适合传输动态高清晰度图像。

2、IEEE1394也叫i.Link,由于在数码摄影机上广泛应用,因此也叫DV接口。传输的最高数据率是400MBPS。由于速度的限制,在传输视频信号时只能传输

隔行并且经过MPEG压缩的信号。虽然大多数人无法觉察到MPEG压缩带来的图像质量损失,但是当然没有压缩是最好的。IEEE1394也不适合传输高清晰度视频信号。

3、DVI接口,传输速度高达约8GBPS(165MHZ x 24bit x 2),适合传输无压缩、高清晰度视频信号。最高支持QXGA(2048x1536)格式。现在有不少显卡都具有DVI输出,比如华硕的AGP-V7100(一年前的产品了)。DVI是现在等离子显示器的标准输入接口。部分在美国销售的高清晰模拟电视机也具有DVI 接口,只不过名称成了DVI-HDTV,实际上就是标准的DVI接口。在模拟电视机上采用DVI接口的目的是利用数字传输不容易受干扰的特性,但对图像质量的提高并不显著。市面上也有极少的高档逐行DVD播放机具有DVI输出。

4、由于DVI是面向电脑开发的,因此一共具有29只脚,体积也比较大,并且不支持声音的传输,因此并不太适合用在普通的家用电器设备上。于是业界又联合推出了HDMI(DVI-CE)接口。HDMI的最高传输速度是3.95GBPS,支持HDTV信号的无压缩传输,并支持8声道96KHZ或1个声道的192KHZ数字伴音。这样就可以使用一根线完成高清晰度图像和数字伴音的传播。HDMI接口宽2.1厘米,高1.5厘米。HDMI是Hi-Definition Multimedia Interface的简称,在正式推出前也叫DVI-CE(Digital Visual Interface-Consumer Electornics)。推出HDMI标准的日立、松下、飞利浦、Silicon Image、索尼、

汤姆逊(RCA)、东芝希望HDMI会成为将来高清晰度电视信号、蓝光DVD播放机的标准数字信号输入/输出接口。

四、我们来实际看一下DVI的威力吧!

1、这是在一台只有800x600的DLP投影机上观看测试图的情况,注意右边圆圈里一片模糊。什么都看不到。

2、这是使用另一台1364x768 LCD投影机看到的同样测试图。你可以清楚看到圆圈内的测试图,这就是中低档投影机和高档投影机的差别。

3、但是如果中低档投影机使用DVI接口传输图像再来和这种使用传统模拟视频接口的高档投影机相比,差距会不会缩小呢?从这里你就会看到DVI相对模拟视频接口对图像的改善程度。(由于电脑中没有相应的测试图,因此只好拿电脑的桌面来作一个范例)。

这是使用DVI-D接口输入到这台800x600的DLP投影机,画面是电脑的桌面。请原谅数码照相机不够好而且图片经过压缩,但是我可以保证,这比你在任何宣称支持800x600的HDTV-READY机器或者支持VGA输入的倍频电视机上看到的图像好得多得多。

还是看一看局部吧(上图中鼠标右上的那一个图标)!图中的阴影是本来这个图标上就有的。再一次请你原谅数码相机不好,虽然是近距离放大拍摄,效果仍然不好(用过数码相机的朋友就知道,近距离拍摄无法聚焦准确)。

现在国内很多倍频、HDTV-READY电视机都具有VGA接口,但是真的不能近距离细看电脑图像,图像会惨不忍睹的。如果你有一天有机会看到具有DVI接口的数字显示设备的时候,请你再看一下这时的电脑图像,我相信你会惊讶于数字视频接口带来的图像画质进步。

1,S-VIDEO 俗称S端子

超级视频(或分量视频、S-Video、Y/C Video)为一种视频信号传输,它将亮度信号和色度信号分开传输以获得更清晰的图像。亮度信号(Y)携带定义黑白部分的亮度信息,色度信号(C)携带定义色度和饱和度的色彩信息。传统的视频传输方式传统视频和复合视频将这两者(以及同步数据)当作一个信号传递。

电视机实际上设计成分别显示亮度信号和色度信号,组合信号必须分开才能显示。当信号组合发送时,它们在2.1兆赫兹(MHz)以上的频域发生重叠,重叠区域难以完全分离,一个信号在另一信号中残留的部分会导致视频误差。残留在亮度信号中的色度信号将导致亮度互串效应,形成圆点图案,而残留在色度信号中的亮度信号将导致“彩虹”效应,形成“色度互串”图案。S-Video分开发送这两个信号,避免了这个容易出错的过程。

2 复合视频连接线

视频连接线,简称视频线,由视频电缆和连接头两部分组成,其中:视频电缆是特征阻抗为75Ω(欧)的同轴屏蔽电缆,常见的规格按线径分为-3和-5两种,按芯线分有单芯线和多芯线两种,连接头的常见的规格按电缆端连接方式分有压接头和焊接头两种,按设备端连接方式分有BNC(俗称卡头),RCA(俗称莲花头)两种。

复合视频,也叫做基带视频或RCA视频,是全国电视系统委员会(National Television Standards Committee,NTSC)电视信号的传统图像数据传输方法,它以模拟波形来传输数据。复合视频包含色差(色调和饱和度)和亮度(光亮)信息,并将它们同步在消隐脉冲中,用同一信号传输。

在快速扫描的NTSC电视中,甚高频(VHF)或超高频(UHF)载波是复合视频所使用的调整振幅,这使产生的信号大约有6MHz宽。一些闭路电视系统使

用同轴电缆近距离传输复合视频,一些DVD播放器和视频磁带录像机(VCR)通过拾音插座提供复合视频输入和输出,这个插座也叫做RCA连接器。

复合视频中,色差和亮度信息的干涉是不可避免的,特别是在信号微弱的时候。这就是为何远距离的使用VHF或UHF的NTFS电视台用老旧的鞭形天线,“兔子耳朵”,或世外的“空中”经常包含假的或上下摇动的颜色。

S-端子和YUV分量只是一个连接接口(不是品质的判定依据),至于视频品质完全要靠其视频传送数率来决定,并不是S-端子一定是低品质的350线,YUV就是425线,这是一个概念错误。

真正的Y/C(S端子)是五线接头,含义是:二路视频亮度信号,二路视频色度信号,一路公共屏蔽地线:与其配套的亮度、色度分离器。您还可以发现S 端子的接口信号与YUV 分量(三屏蔽接头:Y是一路亮度,U是一路色度,V 是一路色差)实际上是类似的安排,只是信号的分离和组合上多少的区别而已。为什么SONY 的Batecam录放机输出的YUV视频品质比S-端子好?原因是电视台录制时就采用了YUV分量录入,播出时当然采用YUV分量播出,没有损失,而采用S-端子播出,则要将亮度信号一分为二,当然有损失。如果录入时采用S-端子录入,播出时也用S-端子,您会发现S-端子输出的品质要好过YUV

分量输出,因为若用YUV分量输出,则发将二路信号聚合为一路时,也必然产生了损失。S-端子的五路分离信号是历史发展的必然,也是数字视频发展的必然,随着数字视频的越来越多的应用,将来所有的设备都将采用S-端子。数码电视机的像素分辩率都是800*600,而都采用S-端子为高清晰度输入输出。

S-端子有同样的视频传送速率问题,在不用SONY Batecam标准的地方都是用Y/C分量(S-端子),通过S-端子的视频传送速率的变化产生不同的视频品质,用S-端子采用5MB/S的视频传送速率,就是广播级的标准视频,如果采用6MB/S的视频传送速率就是非常完美的视频品质。在全世界的电视台数字频道中,编码器的输出码流都是6MB/S,大多美国电视台都是采用高速率的Y/C(S-端子),数字台则全是Y/C(S-端子),您能说美国的电视视频品质比中国的YUV分量差?

目前可以在一些专业级视频工作站/编辑卡专业级视频设备或高档影碟机等家电上看到有YUV、YcbCr、Y/B-Y/B-Y等标记的接口标识,虽然其标记方法和接头外形各异但都是指的同一种接口色差端口( 也称分量视频接口) 。它通常采用YPbPr 和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。由上述关系可知,我们只需知道Y Cr Cb的值就能够得到G 的值( 即第四个等式不是必要的),所以在视频输出和颜色处理过程中就统一忽略绿色差Cg ,而只保留Y Cr Cb ,这便是色差输出的基本定义。作为S-Video的进阶产品色差输出将S-Video传输的色度信号C分解为色差Cr和Cb,这样就避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,所以色差输出的接口方式是以上各种视频输出接口中最好的一种,目前色差输出仍停留在专业级应用中广泛普及。

随着DVI液晶的兴起以及具备DVI接口显卡产品的普及,昔日针对高端市场的DVI设备也开始成为人们日常购买的配件,而在众多DVI设备当中,DVI液晶

和具备DVI输出的显卡就是当前最常见的DIY配件。在这些常见的DVI产品当中,又以DVI液晶最为得到人们欢心。显示效果鲜明、色彩锐利就是DVI液晶深受好评的有利因素,而高昂的价格也是阻碍它进入平民百姓家的主要原因。

随着液晶制造业不断进步以及成本方面的控制,如今采用DVI接口的液晶早已不是什么天价产品,平民百姓一样可以花不多的价钱购买到名牌DVI液晶产品。既然DVI液晶已进入普及化年代,那么我们“精品导购文章系列”就为大家介绍四款目前市场上最为超值的DVI 17寸液晶,而这些液晶的价格统统不超过2500元。在还没有介绍这四款天王之前,先给大家看看一些与DVI有关的小知识。

DVI常识:DVI全称为Digital Visual Interface。

DVI系统的工作原理:一个完整的DVI显示系统包括一个传送器和一个接收器。传送器是信号的来源,可以内建在显卡芯片中,也可以以附加芯片的形式出现在显卡PCB板上(目前大部分显卡产品都能直接支持DVI输出);而接收器则是显示器上的一块电路,它可以接受数字信号,将其解码并传递到数字显示电路中,通过这两者,显卡发出的信号成为显示器上的图象。

DVI接口的种类:目前的DVI接口分为两种,一种是DVI-D接口,只能接收数字信号,接口上只有3排8列共24个针脚,其中右上角的一个针脚为空。不兼容模拟信号。另一种是DVI-I接口,可同时兼容模拟和数字信号,目前显卡多数采用DVI-I接口,而DVI-D接口仅出现在专业应用领域上。

DVI优点:与传统的VGA接口相比,DVI主要有两大优点,其中第一点是速度快。由于DVI传输的是数字信号,而数字图像信息不需经过任何转换,就会直接被传送到显示设备上,所以DVI将比模拟接口减少了数字→模拟→数字繁琐的转换过程。简单来说,采用DVI接口的液晶能更有效消除拖影现象,并且色彩更纯净,更逼真。至于DVI第二点优点就是画面清晰,色彩锐利。采用DVI接口的液晶无需进行多余的数模转换,所以在显示的过程中避免了信号的损失。简单来说,采用DVI接口的液晶所显示在图像清晰度、细节表现力方面都非常突出

视频线接口类型

查看文章 视频接口大全(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 1.S端子 标准S端子

标准S端子连接线 音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和AV

与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA 端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

视频采集卡接口的分类

视频采集卡接口的分类 视频采集卡常见输入输出接口介绍 现在的高清电视机和高清电视节目已近是人们高清娱乐的主要内容之一了,随着视频清晰度的不断上升,先后诞生了不少视频接口,可以说视频接口是实现高清的基础,不管是早期的还是最新的接口,现在很多视频接口还在继续使用,通过各种信号转换器/视频采集卡,AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,色差转VGA,色差转HDMI等等,图像提升几倍,效果更好。常见的视频采集卡输入输出接口还是很值得我们去了解的。想看到清晰度高质量好的视频,视频信号的采集、传输、处理等视频技术固然很重要,但是数码产品的视频输入输出接口一样值得去考虑。说到各种接口、各种转接头又有谁能如数家珍呢? 通常我们也称之为RCA接口或者复合AV接口,一般复合AV线的输出或输入都采用与音响相同的梅花形RCA端子,用红色和白色分别表示左右声道,视频信号用黄色端子。复合信号传输方便、设备结构简单、成本低。 AV接口(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由三个独立的RCA插头(又叫梅花接口、RCA 接口)组成的,其中的V接口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R 接口连接右声道声音信号,为红色插口。 参考图示:AV接口/复合视频(CVBS)接口/RCA接口 复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但电视机如果不能很好的分离这两种信号,就会出现虚影。音频接口和视频接口成对使用,通常都是白色的音频接口和黄色的视频接口,采用RCA(莲花头)进行连接,使用时只需要将带莲花头的标准AV 线缆与相应接口连接起来即可。 AV接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于AV 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,需要对其进行亮/ 色分离和色度解码才能成像,在先混合,再分离处理过程中必然会造成信号的丢失或失真,色度信号和亮度信号也会有很大的机会相互干扰。由于亮度/色度(Y/C)混合的视频信号处理方式所固有的技术缺陷,AV视频接口的应用就有了极大的限制。 DVI(Digital Visual Interface)接口 说白了,是在AV接口的基础上采用数字信号显示视频信号。DVI(Digital Visual Interface)接口与VGA 都是电脑中最常用的接口,与VGA不同的是,DVI可以传输数字信号,不用再进过数模转换,所以画面质量非常高。 参考图示:DVI(Digital Visual Interface)接口

日本工业标准漆包线

日本工业标准J I S C3202—199 4 漆包线 1、适用范围:本标准的规定适用于电机电器的绕组及配线用的漆包线(以下简称线)。本 标准没规定的事项,仍按照JISC3053(绕组线总则)规定。 备注:本标准引用标准如下: JISC2351漆包线用清漆 JISC3003漆包铜线及漆包铝线的试验方法 JISC3053卷线通则 JISC3102电器用软铜线 种类及型号:线的种类及型号按线的导体、漆膜的种类以及漆膜的厚度来区分。如表1: 3.1铜线0种及1种的铜线用JISC3102(电工用线软铜线)所规定的、或与该标准相当的软铜线,2种及3种的铜线用JISC3103(电机绕组用软铜线)所规定的软铜线。 3.2扁铜线{略}3.3铝线{略} 4、温度指数绝缘漆膜及特性按附件1—8。 5、试验方法试验方法按JISC3003(漆包铜线及漆包铝线试验方法)以及附件1—8所规定 的试验条件进行。 6、检测检测分型式检测和交接检测二类。按5的试验方法对附件1—8中规定的项目进行, 必须符合3以及4的规定。但交换检测,可根据供需双方的协定而省去其中的部分项目。

7、包装及一盘轴线的净重 7.1包装线应紧密整齐地卷绕在与导体直径或导体规格大小相适应的线盘中,或整齐地盘装在适应大小的容器内,并妥善包装,以免线在运输途中碰伤或散乱。 7.2一盘轴线的净重一盘轴线的净重按表2的要求,但供需双方另有协议时,不在此限。 7.3线段数线成轴卷绕时,每1轴线最多绕二个线段,一个线段的重量为每轴净重(表2及供需双方协议规定的重量)的20%以上。 此外,线段的接头处需夹一白纸作为接头标记。 颜色(着色时)以及导体直径表示,扁线用种类及导体规格(厚×宽)或型号及导体规格(厚×宽)表示。 例1:1种缩醛漆包铜线0.85mm 或1PVF0.85 mm 例2:1种缩醛漆包铝线1.6mm 或AL—1PVF1.6mm 例3:缩醛漆包扁铜线2.0×4.0mm 或PVF2.0×4.0mm 例4:0种自粘性聚氨酯漆包铜线0.85mm 或0SBUEW0.85mm 例5:1种聚氨酯漆包铜线(红)0.85mm 或1UEW(红)0.85mm 9、标志在线盘和容器的适当部位,必须标明下列事项。 (1)种类及型号⑸净重 (2)颜色(着色时)⑹线段数(成轴时) (3)导体直径或导体规格(厚×宽)⑺制造厂名或其代号 (4)制造批号⑻制造年月 附件6聚氨酯漆包铜线 1、适用范围本附件的规定适用于聚氨酯漆包铜线。 2、温度指数120℃ 3、绝缘漆膜绝缘漆膜应采用符合JISC2351(漆包线用漆)所规定的聚氨酯漆包线漆或具 有同等品质的聚氨酯漆,均匀地涂于导体表面经烘焙而成。该漆膜对导体无损害作用,无伤痕及污染,着色时为红色或绿色。 4、特性特性按附表6及附表6-1——6-3的要求。 附表6

天线概述

天线的分类和选择+天线材料选择的.txt 天线分为:1.全向天线2.定向天线(我们接触和用的基本是前两种)3.机械天线4.电调天线5.双极化天线。 下面主要介绍坛友们比较关心的定向和全向天线。感兴趣的朋友可以google或者baidu其他相关天线的详细资料。“相关资料提供下载”中提供简单介绍下载。) 天线介绍: 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,(使用大功率网卡的朋友注意了,此类天线最好能离人体3米及以上,辐射对人体的伤害就不用说了吧)也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 2.2.1个人见解:定向分为反射型和引向型定向 反射型:常见的有:双菱(叠双菱)(跟平板差不多。),长城(跟平板差不多)平板(方向角较大,一般用于覆盖,形用于接收角度广容易调试) 栅格(方向尖锐,常用于点对点)。此类天线主要靠反射信号到达振子来工作。 引向型:常见的有:8木(引导信号到主振子,多余的经反射振子,再次到达主振子)叠双菱是两者都有,主振子信号源:是前面引向菱,后面反射板。主要靠反射,所以定义反射型。 全向天线:常见的有9db.8db. 7db.6db.5db 2db 定向天线:叠双菱(N菱),平板,八木,栅格,卫--星锅,长城,开槽等等 注:排名分前后(个人推荐) 天线的选择: 本帖隐藏的内容需要回复才可以浏览 以上天线介绍主要偏重于发射,个人认为接收的原理和发射原理相类似。发射要考虑一个功率问题,因为如果天线做的不好,在功率过大的情况下,该发射出去的功率没有发射出去就很容易反过来(简单说就是驻波大,导致功率反噬)损坏机器。友情提醒一下:使用大功率路由和网卡的朋友,在不确定自制天线技术指标的情况下,尽量将功率调低一点,够用就好。 关于天线的选择,关键还是要看使用环境。如果是6层以下的小区环境,视野不太开阔20-50米之间就有阻挡物的,建议使用全向或者平板天线。个人推荐:9db,8db,7db,叠双菱,14DB平板。 如果是小高层,或者小区边缘环境(视野开阔,信号在远处)。建议使用八木,14db以上平板。此类天线建议在100-800米范围内使用。

漆包线的命名、耐热等级、性能及用途基本认识

漆包线的命名、耐热等级、性能及用途基本认识 一、漆包线的概念 漆包线是在导体的表面涂一种或几种绝缘涂料,经烘焙、冷却后形成一种带绝缘层的电线。 漆包线是电磁线(绕组线)的一个品种,电磁线是用于电磁感应的电线。在物理学中指出,在通电导体的周围会产生磁场,运动导体在磁场中切割磁力线会产生电流,这就是电磁感应现象。 因此漆包线的最终目的是实现电能、磁能和动能三者之间的相互转化(如下图所示)。 ○1机械能→磁场能→电能 ○2电能→磁场能→电能 ○3电能→磁场能→机械能 ○4电能→磁场能 二、漆包线的命名 漆包线的命名由以下部分组成 ○1漆包线代号:Wire----W Qi BaoXian----Q ○2漆膜品种:缩醛:PVF (Polyvinyl Formal)对应的漆包线名称:PVF 聚脂:PE (Polyester) PEW 聚氨脂:PU (Polyurethane) UEW 聚脂亚胺:PEI (Polyester-imide) EIW 聚酰胺酰亚胺: PAI (Polyamide-imide) AIW ○3耐热等级:标上热级代号如”F-155o” ○4漆膜厚度:“0”特厚,“1”厚漆膜,“2”薄漆膜,“3”薄漆膜

○5颜色:红色“R”,绿色“G”蓝色“B”自然色“N” 例如:2UEWF 0.45(R)表示直径0.45mm薄漆膜155级红色聚胺酯漆包线 0DFWF 0.85表示直径为0.85mm厚漆膜200级耐冷媒漆包线。 三、漆包线的耐热等级 漆包线耐热等级为漆包线能长时间(20000h以上)正常工作的环境温度,目前漆包线热级区分如 四、漆包线的性能及用途 漆包线广泛用于工业生产、家用电器等行业中,各种漆包线的主要性能及用途如下:

常用音视频接口的分类及焊接方法

常用音视频接口的分类及焊接方法 常用音视频接口的分类及焊法: 1.卡侬头(XLR):卡侬头接口用于接平衡信号。接法:1脚:屏蔽线;2 脚:信号+;3脚:信号-。 2.大三芯(TRS):大三芯用于平衡信号的传输(功能相当于卡农头)或者 用于不平衡的立体声信号的传输,如耳机。接法:热端:信号+;冷端:信号-;接地端:屏蔽线。 3.大二芯(TS):大二芯用于单声道信号的传输,可以直接通过芯对芯,屏 蔽层对屏蔽层的焊接与RCA、BNC等用于单声道的接头实现实现转换,只能传输费平衡信号。接法:热端:信号+;接地端:屏蔽线。 4.莲花(RCA):莲花接头既可以传输音频信号,又可以传输普通的视屏信 号。接法:热端:信号+;冷端:地线。 5.VGA接口:VGA接口传输计算机等设备的显卡输出的模拟信号,也可以 传输高清视屏信号,计算机内部以数字方式生成的显示图像信息被显卡中的数字/模拟转换器转换为R、G、B三原色信号和行、场同步信号,通过VGA电缆传输到显示设备中。接法:1脚:红线的芯线;2脚:灰线的芯线;3脚:蓝线的芯线;4脚:蓝线;5脚:棕线;6脚:红线的屏蔽线;7脚:灰线的屏蔽线;8脚:蓝线的屏蔽线;9脚:悬空;10脚:外层屏蔽线;11脚:外层屏蔽线黑线;12脚:绿线;13脚:黄线;14脚:白线;15脚:黑线;金属外壳:外层屏蔽线。 6.BNC接口:主要用于同轴电缆的连接。 7.S端子接口:S端子也是非常常见的端子,其全称是Separate Video, 也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S端子实际上是一种五芯接口,由两路视频亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。S端子是日本在A V端子的基础上改进而来的。从硬件结构来说,

天线的基础知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通

视频线的种类和简单介绍

视频线的种类和简单介绍 作者:Tug 日期:2005-12-27 字体大小: 小中大 昨天有朋友问我关于视频线的问题,我想了想还是写篇日志介绍吧。 下面的材料大多来源于网上的技术资料 数字视频接口(DVI/HDMI)介绍 作者: yekai 写作时间:2002年07月 随着高清晰度电视(HDTV)、电脑技术、数字显示技术的发展,数字视频接口(DVI)正在得到各大电器制造商/电脑制造商的认同,有望成为将来数字视听设备的标准接口。那数字视频接口(DVI)到底是何方神圣呢?它比模拟视频接口有什么好处呢?它有那些优点可以使它成为将来的标准数字接口呢? 数字视频接口(DVI)也就是Digital Visual Interface的简称,由Silicon Image发明并推广。最初的目的是用于电脑,实现主机和监视器之间的数字信号传输,现在被应用到高清晰度视频领域。 一、我们先来了解模拟视频接口是怎样发展的。 1、最简单、最原始的视频接口是复合视频信号(CVBS)接口,也就是通常所称的RCA接口。传输的是复合视频信号,传输介面是一根普通的视频线。黄色的为视频信号,白色的为左声道音频信号,红色的为右声道音频信号。如下图:

2、由于复合视频信号是将亮度信号和色度信号采用频谱间置方法复合在一起,导致亮色串扰、清晰度降低等问题。因此,随着摄影机、S-VHS录像机的发展,出现了S端子接口。将亮度信号Y和色度信号C分开传输。确保亮度信号不会受到色度信号的干扰。 3、虽然S端子用来传输现在的视频信号已经很好了,可是真正的AV玩家还是不满足。色度信号是将色差信号调制在色负载波上得到的。为什么不直接传输色差信号呢?于是电器制造商根据各自的情况,发展自己的视频接口。欧洲厂商统一起来,使用SCART接口,传输的是RGB三原色信号。而日本厂商发展D端子,传输的是色差分量信号。现在SCART成了欧洲电器的标准接口,而日本的高档DVD机和电视机都具备D端子。美国人则延续了使用RCA端子的传统,使用3个RCA端子来传输色差分量信号。由于美国在数字视听领域的强大势力,3 RCA色差分量数字在欧洲和日本以外的地区成了DVD播放机的标准输出接口。即使在日本和欧洲,大部分DVD播放机也具备色差分量接口。而我国厂商则在较高档的逐行DVD机装备了VGA输出接口。实际上在DVD机上装备VGA 接口在美国是违反版权保护法的,因为现在在VGA接口上还没有版权保护措施,因此不允许使用VGA接口输出高质量的视频信号。这也就是为什么我们在飞利浦、SONY、松下、先锋等进口机器上看不到VGA接口的原因,非不能也,是不为也。 欧洲的SCART接口:

漆包线的型号类别和特性

漆包线的型号类别和特性 ※聚乙烯甲醛漆包銅線(PVF) ※聚酯漆包銅線(PEW) ※聚胺酯漆包銅線(UEW) ※尼龍外被聚胺酯漆包銅線(UEW+NY) ※尼龍外被聚酯漆包銅線(PEW+NY) ※直焊變性聚亞胺酯漆包銅線(SEIW) ※聚酯亞胺漆包銅線(EIW) ※醯胺亞胺外被變性聚酯漆包銅線(EAIW) ※聚醯胺亞胺酯漆包銅線(AIW) ※尼龍熱熔漆包銅線(NFW) ※絞合漆包銅線(LITZ) ※自融性漆包銅線(R*-SB) UEW 聚胺酯漆包銅線 ℃℃ ●耐溫等級:130 / 155 ●本產品經 UL 認可合格登錄,有耐溫等級130℃的TYPU-130 及耐溫等級155℃的 TY1700-U155 。 ●絕緣說明: UEW其絕緣層-聚胺基甲酸樹脂為Polyisocyanate & Polyol 之組成,在360 ℃~400 ℃具有良好直接焊錫性,廣泛應用於線圈及馬達繞組。

●特 性: (a)具有良好直焊性,繞線加工過程中,可免剝除皮膜之動作,有效提高工作效率。 (b)在高頻下,具有良好"Q"值特性。 (c)具有良好密著性及捲繞性。 (d)對一般含浸凡立水所使用之溶劑及硬化劑, 具有良好耐溶劑特性 , 可填加染料, 便利識別。 ●應用範圍: 高頻線圈及變壓器、繼電器、磁化線圈、螺形線圈、小型馬達、點火線圈。 PEW 聚酯漆包銅線 ●耐溫等級:155 ℃ ●本產品經 UL 認可合格登錄 ●絕緣說明: PEW其絕緣層為 Polyester樹脂,溫度等級達 155℃,具有良好溫度穩定性及絕緣特性。 ●特 性: (a)具有良好之抗Crazing特性、耐磨性、耐化學藥性及溫度穩定特性。 (b)其物理特性如可繞性、耐磨耗及密著性,皆優於PVF線種。EIW 聚酯亞胺漆包銅線

常见天线接头介绍

常见天线接头介绍 自从开始成为HAM,在倒腾车载苗子、手台外接天线、考虑装棒子这些问题中,常常遇到接口和馈线的选型方面的问题,特意整理了下网上淘来的这方面的介绍,供各位友台分享, 希望有点帮助 接头介绍 接头型号说明 现在我们将接头分有公头和母头 公头即是“口 母头即是“巧 那么型号要如何组合呢,首先我们把常用的型号种类列出来: 1、S L16接口;最早用于各种工程和早期的对讲机车载台中,该接口工艺简单,常用于普通 的连线,优点是: 结实耐用通。 2、L16接口;由SL16演变而来,该接口的防水防泄漏功能较好,现用于高端的机器中。 3、B NC接口;BNC接口又名为Q9,此接口拆装简易,现今用于监控、检测仪上等一些经常需要随时更换的设备上面。 4、TNC接口;由xx 260、建伍378等年代的机器演变而来,现新出的机器已经不用了。 5、M OTO接口;是MOTOROLA公司为车载式电台设备研制的,曾流行过一个阶段,后多改为BNC接口,现仅存较老款的机器上才使用。

6、SMA接口;现阶段手持对讲机最常见的接口,已经很普遍 下载( 131.73 KB) 2011-6-15 16:17 下载( 92.44 KB) 2011-6-15 16:17 ★ ★ ★馈线常识★★★ 馈线参数 下载( 8.42 KB) 2011-4-2 11:03 业余操作一般限于小功率(小于100W)和低高频电压(小于1KV)。通常不用考虑馈线的容量。 当使用功率超过100W的短波电台,则应选用较粗的馈线(例如一7),以避免发热。 常见的同轴线有50欧、75欧、100欧三种标称阻抗。业余通讯常用50 欧,虽然它的效率不是最高的。在选定了馈线阻抗(50欧)以后,最关键的是选择馈线的粗细,例如50- 3、50-

漆包线检验

漆包铜圆线检验作业指导书 标题漆包铜圆线检验作业指导书编号页次1/17 制定部门品质部版本次A/0 制定日期2012-06-02 1、目的:正确检测漆包线的品质水平,确保品质合格。 2、范围: 2.1本公司所生产的全部漆包线均适用。 2.2漆包线种类:聚酯类、改性聚酯类、聚酯亚胺类、聚酰胺酰亚胺类、聚酰胺酰亚胺复合聚酯或 聚酯亚胺类 3、检验说明: 3.1检验项目:适用于所有种类漆包线。 表1 检验项目 1 外观7 耐热冲击 2 尺寸8 耐软化性 3 针孔9 附着性 4 伸长率10 柔韧性 5 击穿电压11 回弹角 6 导体电阻12 3.2检验时机与频率 每次首件检验、制程抽检、入库品抽检、库存品抽检,制程抽检2次/班 3.3抽样方案 按GB2828.1—2008的规定进行抽样。从一个单独包装单位上按规定截取一定长度的漆包线为一 个样品。检查水平(IL)和接收质量(AQL)遵循表2规定。 表2 检查水准和接收质量 项目检查水平(IL)接收质量限(AQL) 外观Ⅱ0.65 尺寸S-2 1.5 性能S-2 1.5 3.4试验环境 3.4.1所有试验应在温度为11℃~35℃,相对湿度为30%~70%环境下进行。测量前试样应在上 述条件下预处理足够时间,使试样达到稳定状态。 3.4.2被测试样从包装上取下时,不应承受张力或不必要的弯曲。每次试验前,应保证所取的样 品量是足够的。 3.4.3 如果某一试验项目没有规定使用的导体标称直径,则该试验适用于该产品标准包括的全 部导体标称直径。 4、耐温等级 4.1 QZ-X/130 聚酯漆包线,耐热等级为B级130℃ 4.2 QZ(G)-X/155 改性聚酯漆包线,耐热等级为F级155℃ 4.3 QZY- X/180 聚酯亚胺漆包线,耐热等级为H级180℃ 4.4 Q(ZY/XY) - X/220 聚酰胺酰亚胺复合聚酯或聚酯亚胺, 耐热等级为R级220℃ 5、参考文件 5.1 GB/T4074-2008 5.2 GB/T6109-2008系列规定 修订记录日期修订内容版本/版序核准审核制订 第一次修订REV 第二次修订REV

天线的分类及应用

天线的分类及应用 只要使用到无线电波,就有可能需要用到天线以协助电波的发射与接收;天线依工作频段,由低到高可区分为超长波、长波、中波、短波、超短波和微波,应用层面遍及国防、民生工业,依据不同波长、天线大小长短因此有很大差异,例如使用100MHz 左右的天线,与使用2.4GHz 频段的WLAN。若按其方向可大略区分为全向性(Omni-directional)天线和指向性(directional)天线。 全向性天线的名称说明了电磁场的辐射能量在每个方位都会一致,目前最普遍的全向性天线当属偶极(DIPole)天线,绝大部分的基地台(ACCess Point),都是内建偶极天线,其水平辐射范围是360度的波束,由于水平每个方向的能量都均等,由天线上方往下看形成类似甜甜圈的波束形状,若压缩其垂直辐射范围,传输距离将随着波束的集中而延伸,波束形状则会趋近于薄饼。下图是由天线上方与侧面描绘波束的图形,如果偶极天线的增益越大,表示波束垂直的半功率波束宽度(HPBW)越小,能传输的距离也越大。因为全向性天线可以涵盖所有水平方向,因此通常安装于开阔、开放环境的中央位置;若是应用于户外,全向式天线必须安装在大楼顶端或高处,并且位于讯号涵盖区的中央位置,以便与其他指向性天线装置通讯,构成单点对多点(Point-to-Multipoint)的星状拓朴。 指向性天线只能用于一定的方位,但相对地传输距离会比较远,指向性天线有各种不同的款式与形状,例如:Patch 天线、Panel 天线和八木(Yagi)天线,经常用于无线区域网路中短距离的桥接(Bridge);举例来说跨马路的两栋大楼,或者空间宽广的厂房、仓库都是理想的应用环境。 此外还有专门用于长距离通讯的高方向性天线,有极窄的波束宽度与很高的增益值,也可称为高增益指向性天线;例如:碟形(dish)天线和格状(grid)天线,通常用于点对点的通讯连接,传输距离可以高达25英哩;因为波束非常地窄,天线彼此之间必须很精准的瞄准,而且天线之间的直视(Light of Sight)必须没有任何阻碍物。

漆包线分类

小常识:漆包线规格标明的直径指的是裸铜线的直径,我们用卡尺测出的漆包线直径是外径(包括了漆皮厚度)。 1.聚酯亚胺/聚酰胺酰亚胺复合层漆包线(125元)系目前在国内外使用较为广泛的耐热漆包线,其热级为200,该产品耐热性高,还具有耐冷冻剂,耐严寒,耐辐射等特性,机械强度高,电气性能稳定,耐化学性能和耐冷冻剂性能好,超负荷能力强。广泛应用于冰箱压缩机,空调压缩机,电动工具,防爆电动机及高温,高寒,耐辐射,超负荷等条件下使用的电机,电器。 名称:QZYXY-200高温漆包线耐温等级:200级 耐压:1000V以上颜色:本色 包装:线轴卷绕包装计价单位:1KG 现货规格:

2.聚酯漆包线(108元):热级为130,该产品机械强度高,并具有良好的弹性,耐刮,附着性,电气性能和耐溶剂性能。广泛应用在各种电机,电器,仪表,电讯器材及家电产品。 名称:QZ-2/130 聚酯漆包圆铜线耐温等级:130级 耐压:1000V以上颜色:本色 规格:0.10-2.50mm计价单位:1 公斤现货规格:

QZ-2里面的Q是系列代号,漆的第一个拼音字母。Z是聚酯漆,酯的第一个拼音字母。-1代表薄漆膜,-2代表厚漆膜,-3代表加厚漆膜。

3.聚氨酯漆包线(125元):最大特点是具有直焊性,耐高频性能性好,易着色,耐潮性能好,广泛应于电子家电和精密仪器,电讯,仪表上。 名称:QA-1/155直焊型漆包铜圆线耐温等级:155级 耐压:500V 颜色:红色、本色 包装:线轴卷线包装计价单位:1 公斤 现货规格:

产品特性: 聚氨酯漆包线有一个其他型号的漆包线无法比拟的优越性,就是在360 ℃~400 ℃具有良好的直焊性。懂行的朋友都知道,由于油漆绝缘,漆包线在焊锡的时候需要刮去焊锡部位的油漆,才能保证其的导电性,这个刮漆过程,既增加了成本也增加了时间,而且遇到微细漆包线,一碰就断,刮漆是个技术活了,因此在这个基础上,直焊性漆包线便应运而生。所谓直焊性,就是漆包线在焊锡的时候是不需要刮漆直接焊接的一种性能。他极大的增强了客户绕组线圈时的灵活性,在焊锡的时候是不需要刮漆直接焊接的一种性能。他极大的增强了客户绕组线圈时的灵活性, 用途: 广泛应用于长期工作温度在155℃以下的高频变压器、电感线圈、继电器、电机、电器仪表线圈绕组 QA-1里面的Q是系列代号,漆的第一个拼音字母。A是聚氨酯漆,氨的第一个拼音字母。-1代表薄漆膜,-2代表厚漆膜,-3代表加厚漆膜。

日本工业标准 漆包线

日本工业标准JISC3202—1994 漆包线 1、适用范围:本标准的规定适用于电机电器的绕组及配线用的漆包线(以下简称线)。本 标准没规定的事项,仍按照JISC3053(绕组线总则)规定。 备注:本标准引用标准如下: JISC2351漆包线用清漆 JISC3003漆包铜线及漆包铝线的试验方法 JISC3053卷线通则 JISC3102电器用软铜线 种类及型号:线的种类及型号按线的导体、漆膜的种类以及漆膜的厚度来区分。如表1: 3.1铜线0种及1种的铜线用JISC3102(电工用线软铜线)所规定的、或与该标准相当的软铜线,2种及3种的铜线用JISC3103(电机绕组用软铜线)所规定的软铜线。 3.2扁铜线{略}3.3铝线{略} 4、温度指数绝缘漆膜及特性按附件1—8。 5、试验方法试验方法按JISC3003(漆包铜线及漆包铝线试验方法)以及附件1—8所规定 的试验条件进行。 6、检测检测分型式检测和交接检测二类。按5的试验方法对附件1—8中规定的项目进行, 必须符合3以及4的规定。但交换检测,可根据供需双方的协定而省去其中的部分项目。

7、包装及一盘轴线的净重 7.1包装线应紧密整齐地卷绕在与导体直径或导体规格大小相适应的线盘中,或整齐地盘装在适应大小的容器内,并妥善包装,以免线在运输途中碰伤或散乱。 7.2一盘轴线的净重一盘轴线的净重按表2的要求,但供需双方另有协议时,不在此限。 7.3线段数线成轴卷绕时,每1轴线最多绕二个线段,一个线段的重量为每轴净重(表2及供需双方协议规定的重量)的20%以上。 此外,线段的接头处需夹一白纸作为接头标记。 颜色(着色时)以及导体直径表示,扁线用种类及导体规格(厚×宽)或型号及导体规格(厚×宽)表示。 例1:1种缩醛漆包铜线0.85mm 或1PVF0.85 mm 例2:1种缩醛漆包铝线1.6mm 或AL—1PVF1.6mm 例3:缩醛漆包扁铜线2.0×4.0mm 或PVF2.0×4.0mm 例4:0种自粘性聚氨酯漆包铜线0.85mm 或0SBUEW0.85mm 例5:1种聚氨酯漆包铜线(红)0.85mm 或1UEW(红)0.85mm 9、标志在线盘和容器的适当部位,必须标明下列事项。 (1)种类及型号⑸净重 (2)颜色(着色时)⑹线段数(成轴时) (3)导体直径或导体规格(厚×宽)⑺制造厂名或其代号 (4)制造批号⑻制造年月 附件6聚氨酯漆包铜线 1、适用范围本附件的规定适用于聚氨酯漆包铜线。 2、温度指数120℃ 3、绝缘漆膜绝缘漆膜应采用符合JISC2351(漆包线用漆)所规定的聚氨酯漆包线漆或具有 同等品质的聚氨酯漆,均匀地涂于导体表面经烘焙而成。该漆膜对导体无损害作用,无伤痕及污染,着色时为红色或绿色。 4、特性特性按附表6及附表6-1——6-3的要求。 附表6

漆包线检测

漆包线检测 漆包线是电机、电器、仪表和电讯行业的一个关键材料。漆包线的性能应满足电气产品的设计要求、加工要求和运行要求。漆包线的使用单位要求漆包线的质量能通过一种严肃的制度和科学的手段来保证。 一、几何尺寸 1.裸导线直径的允许公差 裸导线的允许公差是指裸导线直径的实际值与规定值之间的允许偏差。从使用的角度来说,希望公差越小越好,有利于设计时电阻、圈数等方面的计算。但制造时模具的模孔在拉伸过程中要磨损变形,如果公差要求过严,就要经常调换模具,造成工艺操作上和模具供应方面的困难。制订标准时使用单位的实际要求和生产单位的技朮可能性要做到“物尽其用”。2.截面不圆度 指导线同一截面直径最大测量值与最小测量值之差。不圆度不合格会造成漆包线颜色发花(阴阳面)。 3最大外径及最小漆膜厚度 最大外径超差,会使线圈尺寸加大,绕线圈时容纳不下。漆膜过薄,会产生针孔、耐电压、耐刮、耐化学性能、耐老化等性能下降或造成废品。 4.检验工具:千分尺,精度应符合下列规定: 用表头示值误差为1μ的杠杆千分尺。 5.测量时2点相距1米3面,6个测量值的平均值为测量结果。尺寸是否合格皆以平均值与标准比较进行判断。 二、机械性能 漆包线绕制线圈时,在电机线圈的嵌线工艺以及在用电气产品的运行过程中,都有机械力作用于漆包线上,例如绕制时有拉伸力、摩擦力和弯曲力矩;在嵌线工艺中有摩擦力;运转中有因振动而引起的匝间摩擦。如果漆包线的芯线或漆膜达不到要求,则上述这些机械力都会对漆包线带来不同程度的损伤。如导线韧炼不足,使延伸率过小,细线在绕线时可能被拉断;韧炼过度,延伸率过大,容易拉细截面,造成电阻增大。漆膜烘焙过老,漆包线漆膜弹性下降,在绕线时的弯曲力矩作用下,造成漆膜开裂,丧失绝缘性能;如烘焙不够,则嵌线时容易擦伤漆膜,造成电机绕组短路。因此,在模拟使用要求的基础上,建立各项机械性能试验是十分必要的。 1.伸长率试验 伸长率是模拟漆包线绕线工艺而建立的,目的是控制导线对缠绕线圈的适应性,保证作业顺利进行。 漆包线经过拉伸后,其附着力、耐刮性、弹性、热冲击、耐溶剂性都会下降。 影响漆包线伸长率的因素: 铋、硫、铁、铝、锑、氧等元素的介入,将导致铜材脆化。这些杂质元素(氧以氧化亚铜的共晶体形式)分布于晶粒之间的界面上,阻碍了漆包线伸长时内部晶格的滑动趋势,使晶格不易变形而破坏,导致导线在伸长率不大的情况下即被拉断。另外,在压延过程中,铜杆有时带进夹杂、卷边、刮伤、裂缝等缺陷,也是造成伸长率不高的因素。 在漆包过程中,如果涂漆道次和回线次数太多,在导轮直径不够大的情况下,导线两面不断受到拉伸和压缩的交递变形,造成晶格的歪扭,在伸长时,容易拉断。漆包机运转时,导线承受过大的张力将使线材拉细,由于晶格上原子或离子因滑动而产生的位移,形成了残余内部应力,线材脆性提高伸长率下降。特别是放线机构的灵活性和收线张力的大小直接影响伸长率。

漆包线日本工业标准JIS C3202-1994

日本工业标准JIS C 3202—1994 漆包线 1、适用范围:本标准的规定适用于电机电器的绕组及配线用的漆包线(以下简称线)。本 标准没规定的事项,仍按照JIS C 3053(绕组线总则)规定。 备注:本标准引用标准如下: JIS C 2351 漆包线用清漆 JIS C 3003漆包铜线及漆包铝线的试验方法 JIS C 3053卷线通则 JIS C 3102电器用软铜线 种类及型号:线的种类及型号按线的导体、漆膜的种类以及漆膜的厚度来区分。如表1: 3.1铜线0种及1种的铜线用JIS C 3102(电工用线软铜线)所规定的、或与该标准相当的软铜线,2种及3种的铜线用JIS C 3103(电机绕组用软铜线)所规定的软铜线。 3.2扁铜线{略} 3.3铝线{略} 4、温度指数绝缘漆膜及特性按附件1—8。 5、试验方法试验方法按JIS C 3003(漆包铜线及漆包铝线试验方法)以及附件1—8所 规定的试验条件进行。 6、检测检测分型式检测和交接检测二类。按5的试验方法对附件1—8中规定的项目进 行,必须符合3以及4的规定。但交换检测,可根据供需双方的协定而省去其中的部分项目。

7.1包装线应紧密整齐地卷绕在与导体直径或导体规格大小相适应的线盘中,或整齐地盘装在适应大小的容器内,并妥善包装,以免线在运输途中碰伤或散乱。 7.2一盘轴线的净重一盘轴线的净重按表2的要求,但供需双方另有协议时,不在此限。 7.3线段数线成轴卷绕时,每1轴线最多绕二个线段,一个线段的重量为每轴净重(表2及供需双方协议规定的重量)的20%以上。 此外,线段的接头处需夹一白纸作为接头标记。 颜色(着色时)以及导体直径表示,扁线用种类及导体规格(厚×宽)或型号及导体规格(厚×宽)表示。 例1:1种缩醛漆包铜线0.85mm 或1PVF 0.85 mm 例2:1种缩醛漆包铝线 1.6mm 或AL—1PVF 1.6mm 例3:缩醛漆包扁铜线 2.0 ×4.0mm 或PVF 2.0 ×4.0mm 例4:0种自粘性聚氨酯漆包铜线0.85mm 或0SBUEW 0.85mm 例5:1种聚氨酯漆包铜线(红)0.85mm 或1UEW(红)0.85mm 9、标志在线盘和容器的适当部位,必须标明下列事项。 (1)种类及型号⑸净重 (2)颜色(着色时)⑹线段数(成轴时) (3)导体直径或导体规格(厚×宽)⑺制造厂名或其代号 (4)制造批号⑻制造年月 附件6 聚氨酯漆包铜线 1、适用范围本附件的规定适用于聚氨酯漆包铜线。 2、温度指数120℃ 3、绝缘漆膜绝缘漆膜应采用符合JIS C 2351(漆包线用漆)所规定的聚氨酯漆包线漆或 具有同等品质的聚氨酯漆,均匀地涂于导体表面经烘焙而成。该漆膜对导体无损害作用,无伤痕及污染,着色时为红色或绿色。 4、特性特性按附表6及附表6-1——6-3的要求。 附表6

各种视频接口的种类,包含常用的视频接口说明。

视频接口种类 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀、清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在AV接口的基础上将色度信号C和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4 芯(不含音效) 或者扩展的7 芯( 含音效)。带S-Video 接口的视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同AV 接口相比由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且由于使用各自独立的传输通道在很大程度上避免了视频设备信号串扰而产生的图像失真,极大提高了图像的清晰度,但 S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。 (S端子又可以分为三种 1.普通S端子 最下面的5针型D端子是标准的S端子类型,也是通用的一种规格。除了显卡外电视机以及DVD等视频源上都是这种接口。 2.增强型S端子 中间的那个明显比下面5针的接口多了2个针孔,原先许多ATi原厂的Radeon都是采用的这种接口(上图中间的显卡就是一原厂的7500),这种7针接口并飞标准接口,这样就决定了不同厂家的7针接口有可能在多出的2针的定义上有所不同。不过除了多出的2针外,7针接口兼容5针标准接头,我们也能使用5针连线。 虽然多出的2针功能和定义各不相同,但是大家一般都是把这两针作为标准AV视频信号输出,这样就使得这个7针接口即能分离出一路5针标准S端子信号,又能分离出一路标准的AV视频信号来,于是有的配备7针S 端子的显卡还配备一个一转二的转接输出装置,可以分成S端子和AV输出两种模式,从这个角度来说7针接口要优越于5针标准借口。不过,绝大多数情况下S端子明显比AV视频输出效果优秀,且大部分电视机都具备这样的接口,所以从这个角度来说配备S同时又配备AV就显得有些添足之嫌了。 3.VIVO端子 最上面那两个多于7针的接口,我们只有在一些VIVO或者在ATi All-In-Wonder产品上面才能看到,平时很少看到。这种接口除了具备5针标准S端子信号以及TV视频信号以外,通常还包含两路音频信号。不过这种接口通常都不会兼容标准5针S端子,我们需要使用转接盒等设备扩展出S端子才能使用。除了可以为显卡增加电视输出功能外,还可以支持视频采集功能。需要注意的是:并不是所有采用这种接口的显卡都带视频输入功能,也

相关文档