文档视界 最新最全的文档下载
当前位置:文档视界 › 材料力学第4章扭转变形

材料力学第4章扭转变形

材料力学第四章作业答案

4-1 试作下列各轴的扭矩图。 (a ) (b) 4-4 图示圆截面空心轴,外径D=40mm ,内径d=20mm ,扭矩m kN T ?=1,试计算mm 15=ρ的A 点处的扭矩切应力A τ以及横截面上的最大和最小的扭转切应力。

解:P A I T ρ?= )1(32 44απ-=D I p 又mm 20d = D=40mm 5.0==∴D d α 41244310235500)5.01(32)1040(14.3m I p --?=-???= MPa Pa I T P A 7.63107.6310 23550010151016123 3=?=????==∴--ρτ P W T =max τ 9433431011775)5.01(16 )1040(14.3)1(16--?=-???=-=απD W P a Pa W T P MP 9.84109.8410 11775101693 max =?=??==∴-τ 当2'd =ρ时 MPa Pa I T P 4.42104.4210 23550010101016123 3'min =?=????==--ρτ 4-6 将直径d=2mm ,长l=4m 的钢丝一端嵌紧,另一端扭转一整圈,已知切变模量G=80GPa ,试求此时钢丝内的最大切应力m ax τ。 解:r G ?=τ dx d R r R ?? =∴ R=mm d 12= 3331057.1414.321012101---?=???=??=?=∴l dx d R r R π? MPa Pa r G 6.125106.1251057.11080639=?=???=?=∴-τ (方法二:π?2=, l=4 ,P GI Tl =? ,324d I P π=,r Ip W p = ,l Gd W T P πτ==max )

材料力学扭转实验

§1-2 扭转实验 一、实验目的 1、测定低碳钢的剪切屈服点τs,抗扭强度τb。 2、测定铜棒的抗扭强度τb。 3、比较低碳钢和铜棒在扭转时的变形和破坏特征。 二、设备及试样 1、伺服电机控制扭转试验机(自行改造)。 2、0.02mm游标卡尺。 3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。 4、铜棒铁φ10圆试件一根。 三、实验原理及方法 塑性材料试样安装在伺服电机驱动的扭转试验机上,以6-10o/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。 弹性变形到一定程度试样会出现屈服。扭转曲线 扭矩首次下降前的最大扭矩为上屈服扭矩T su; 屈服段中最小扭矩为下屈服扭矩T sl,通常把下 屈服扭矩对应的应力值作为材料的屈服极限τs, 即:τs=τsl= T sl/W。当试样扭断时,得到最大 扭矩T b,则其抗扭强度为τb= T b/W 式中W为抗扭截面模量,对实心圆截面有 W=πd03/16。 铸铁为脆性材料,无屈服现象,扭矩 -夹头转角图线如左图,故当其扭转试样 破断时,测得最大扭矩T b,则其抗扭强 度为:τb= T b/W 四、实验步骤 1、测量试样原始尺寸分别在标距两端 及中部三个位置上测量的直径,用最小直 径计算抗扭截面模量。 2、安装试样并保持试样轴线与扭转试验机转动中心一致。 3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。 4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。 五、实验数据处理 1、试样直径的测量与测量工具的精度一致。 2、抗扭截面模量取4位有效数字。 3、力学性能指标数值的修约要求同拉伸实验。 六、思考题 1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?

第四章扭转(讲稿)材料力学教案(顾志荣)

第四章扭转 同济大学航空航天与力学学院顾志荣 一、教学目标与教学内容 1、教学目标 (1)掌握扭转的概念; (2)熟练掌握扭转杆件的内力(扭矩)计算和画扭矩图; (3)了解切应力互等定理及其应用,剪切胡克定律与剪切弹性模量; (4) 熟练掌握扭转杆件横截面上的切应力计算方法和扭转强度计算方法; (5) 熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法; (6)了解低碳钢和铸铁的扭转破坏现象并进行分析。 (7)了解矩形截面杆和薄壁杆扭转计算方法。 2、教学内容 (1) 扭转的概念和工程实例; (2) 扭转杆件的内力(扭矩)计算,扭矩图; (3) 切应力互等定理, 剪切胡克定律;

(4) 扭转杆件横截面上的切应力, 扭转强度条件; (5) 扭转杆件变形(扭转角)计算,刚度条件; (6) 圆轴受扭破坏分析; (7) 矩形截面杆的只有扭转; (8) 薄壁杆件的自由扭转。 二、重点和难点 1、重点:教学内容中(1)~(6)。 2、难点:切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别,扭转切应力连接件中切应力的区别。通过讲解,多媒体的动画演示扭转与剪切的变形和破坏情况,以及讲解例题来解决。 三、教学方式 通过工程实例建立扭转概念,利用动画演示和实物演示表示扭转时的变形,采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 6学时 五、实施学时 六、讲课提纲

工程实例: 图4-1 **扭转和扭转变形 1、何谓扭转? 如果杆件受力偶作用,而力偶是作用在垂直于杆件轴线的平面内,则这杆件就承受了扭转。换言之,受扭杆件的受力特点是:所受到的外力是一些力偶矩,作用在垂直于杆轴的平面内。 2、何谓扭转变形? 在外力偶的作用下,杆件的任意两个横截面都绕轴线发生相对转动。杆件的这种变化形式称为扭转变形。换言之,受扭转杆件的变形

浅析材料力学四种基本变形的异同点

浅析材料力学四种基本变形的异同点 公主岭市职业教育中心宋静辉 机械基础高等教育中材料力学的研究范围主要限于杆件,即长度远大于宽度和厚度的构件。作用远杆件上的外力有各种形式,但杆件的基本变形形式只有四种:拉伸或压缩(简称拉压)、剪切、扭转和弯曲。这四种基本变形是材料力学的重点内容,构成了材料力学理论体系中的一个个独立部分,学生学习时后很容易混淆。现分析和总结四种基本变形的异同点,便于学生学习和理解。 一、四种变形的不同点 1.受力特点不同。受拉伸或压缩的构件大多是等截面直杆,其受力特点是:作用在杆端的两外力(或外力的全力)大小相等,方向相反,力的作用线与杆件的轴线重合。工程中的连接件(如铆钉、螺栓等)会发生剪切变形,其受力特点是:作用的构件两侧面上外力的全力大小相等,作用线平行且相距很近;另外,承受剪切作用的连接件在传力的接触面上同时还受挤压力作用。机械中的轴类零件往往产生扭转变形,其受力特点是:在垂直于轴线的平面内,作用着一对大小相等、方向相反的力偶。梁是机器设备和工程结构中最重要的构件,主要发生弯曲变形,其受力特点是:作用在梁上的外边与其轴线垂直.若这些外力只是一对等值反向的力偶时,则称为纯弯曲。 2.变形特点不同。构件在外力作用下发生的几何形状和尺寸变化称为变形。拉压变形的特点是杆件沿轴线方向伸长或缩短;剪切变形的变形特点是介于两作用之间的各截面有沿作用力方向发生相对错动的趋势;扭转变形的变形特点是轴的各截面绕轴线将由直线变成曲线。 3.内力不同。物体内某一部分与另一部分间相互作用的力称为内力。构件在受到外力作用的同时,其内部将产生相应的内力。对于发生拉压变形的杠件,内力遍及整个杆体内部,因为外力的作用线与杆件的轴线重合,故分布内力的合力作用线也必与杆件轴线重合,这种内力称为轴力。轴力或为拉力或为压力。构件受剪切时的内力称为剪刀,剪力分布在剪切面上(受剪件中发生相对错动的截面),其分布比较复杂,在工程实力是一个截面平面内的力偶,其力偶矩称为截面上的扭矩。梁弯曲时,横

材料力学习题册答案-第3章 扭转

第三章扭转 一、是非判断题 1.圆杆受扭时,杆内各点处于纯剪切状态。(×) 2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×) 3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×) 4.圆杆扭转变形实质上是剪切变形。(×) 5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√) 6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×) 7.切应力互等定理仅适用于纯剪切情况。(×) 8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√) 9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√) 10.受扭圆轴的最大切应力只出现在横截面上。(×) 11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√) 12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×)

二、选择题 1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B ) A τ; B ατ; C 零; D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C ) 0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B ) A 1τ=τ2, φ1=φ2 B 1τ=τ2, φ1≠φ2 C 1τ≠τ2, φ1=φ2 D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。 5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3 1 16 p D W πα= - B ()3 2 1 16 p D W πα= - C ()3 3 1 16 p D W πα= - D ()3 4 1 16 p D W πα= - 6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上; ②在横截面上和包含杆件的纵向截面上均无正应力;

材料力学章节重点和难点

材料力学章节重点和难点 第一章绪论 1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。 2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。 3.难点: 第二章杆件的内力 1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。 2.重点:剪力方程和弯矩方程、剪力图和弯矩图。 3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。 第三章杆件的应力与强度计算 1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。 2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。 3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;

第四章杆件的变形简单超静定问题 1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。 2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。 3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。 第五章应力状态分析? 强度理论 1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。 2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。 3.难点:主应力方位确定。 第六章组合变形 1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算; 2.重点: 弯扭组合变形。 3.难点:截面核心的概念 第七章压杆稳定 1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。

材料力学期末复习题库

第一章 一、选择题 1、均匀性假设认为,材料内部各点的是相同的。 A:应力 B:应变 C:位移 D:力学性质 2、各向同性认为,材料沿各个方向具有相同的。 A:力学性质 B:外力 C:变形 D:位移 3、在下列四种材料中,不可以应用各向同性假设。 A:铸钢 B:玻璃 C:松木 D:铸铁 4、根据小变形条件,可以认为: A:构件不变形 B:构件不破坏 C:构件仅发生弹性变形 D:构件的变形远小于原始尺寸 5、外力包括: A:集中力和均布力 B:静载荷和动载荷 C:所有作用在物体外部的力 D:载荷与支反力 6、在下列说法中,正确的是。 A:内力随外力的增大而增大; B:内力与外力无关; C:内力的单位是N或KN; D:内力沿杆轴是不变的; 7、静定杆件的内力与其所在的截面的有关。 A:形状;B:大小;C:材料;D:位置 8、在任意截面的任意点处,正应力σ与切应力τ的夹角α=。 A:α=90O; B:α=45O; C:α=0O;D:α为任意角。 9、图示中的杆件在力偶M的作用下,BC段上。 A:有变形、无位移; B:有位移、无变形; C:既有位移、又有变形;D:既无变形、也无位移; 10、用截面法求内力时,是对建立平衡方程而求解的。 A:截面左段 B:截面右段 C:左段或右段 D:整个杆件 11、构件的强度是指,刚度是指,稳定性是指。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 答案:1、D 2、A 3、C 4、D 5、D 6、A 7、D 8、A 9、B 10、C 11、C、B、A 二、填空 1、在材料力学中,对变形固体作了,,三个基本假设,并且是在,范围内研究的。 答案:均匀、连续、各向同性;线弹性、小变形 2、材料力学课程主要研究内容是:。 答案:构件的强度、刚度、稳定性;

材料力学金属扭转实验报告

材料力学金属扭转实验报告 【实验目的】 1、验证扭转变形公式,测定低碳钢的切变模量G。测定低碳钢和铸铁的剪切强度极限弋握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能; 2、绘制扭矩一扭角图; 3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异; 4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。 【实验仪器】 【实验原理和方法】 1. 测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩M es,低碳钢的扭转屈服应力为 式中:W p二「d3/16为试样在标距内的抗扭截面系数。 在测出屈服扭矩T s后,改用电动快速加载,直到试样被扭断为止。这时测矩盘上的从动 指针所指示的外力偶矩数值即为最大力偶矩M eb,低碳钢的抗扭强度为 对上述两公式的来源说明如下: 低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的M e-'图如图 1-3-2所示。当达到图中A点时,M e与「成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s,如能测得此时相应的外力偶矩M ep,如图1-3-3a所示,则扭转屈服应力为

(3)将扭角测量装置的转动臂的距离调好,转动转动臂,使测量辊压在卡盘上。

4、开始试验:按“扭转角清零”按键,使电脑显示屏上的扭转角显示值为零。按“运行”键,开 始试验。 5、记录数据:试件断裂后,取下试件,观察分析断口形貌和塑性变形能力,填写实验数据和计算 结果。 6、试验结束:试验结束后,清理好机器,以及夹头中的碎屑,关断电源。 、铸铁 1、试件准备:在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值, 再从三个平均值中取最小值作为试件的直径d o在低碳钢试件表面画上一条纵向线和两条圆周线,以便观察扭转变形。 2、试验机准备:按试验机一计算机一打印机的顺序开机,开机后须预热十分钟才可使 用。根据计算机的提示,设定试验方案,试验参数。 3、装夹试件:启动扭转试验机并预热后,将试件一端固定于机器,按"对正"按钮使两夹 头对正后,推动移动支座使试件头部进入钳口间? 4、开始试验:按“扭转角清零”按键,使电脑显示屏上的扭转角显示值为零。按“运行”键,开 始试验。 5、记录数据:试件断裂后,取下试件,观察分析断口形貌和塑性变形能力,填写实验数据和计算 结果。 6试验结束:试验结束后,清理好机器,以及夹头中的碎屑,关断电源。 【实验数据与数据处理】 一.低碳钢扭转 低碳钢直径测量 注:第二次实验修正标距为 3.线性阶段相关数据 当处于线性阶时,有

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

《材料力学》第3章 扭转 习题解

第三章 扭转 习题解 [习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。试作轴的扭图。 解:(1)计算各轮的力偶矩(外力偶矩) N T k e 55 .9= (2) 作扭矩图 [习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。钻杆钻入土层的深度m l 40=。如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。 解:(1)求分布力偶的集度m )(5305.0180 10 549.9549 .9m kN n N M k e ?=?== 设钻杆轴为x 轴,则: 0=∑x M e M ml = )/(0133.040 5305 .0m kN l M m e ===

(2)作钻杆的扭矩图 x x l M mx x T e 0133.0)(-=- =-=。]40,0[∈x 0)0(=T ; )(5305 .0)40(m kN M T e ?-== 扭矩图如图所示。 [习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。若该轴横截面上的最大切应力等于 60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量: )(245445014159.316 1 161333mm d W p =??== π (2)计算扭矩 2max /60mm N W T p == τ )(473.1147264024544/6032m kN mm N mm mm N T ?=?=?= (3)计算所传递的功率 )(473.1549 .9m kN n N M T k e ?=== )(5.18549.9/120473.1kW N k =?= [习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。已知间距为m l 7.2=的两横截面的相对扭转角o 8.1=?,材料的切变模量GPa G 80=。试求: (1)轴内的最大切应力; (2)当轴以min /80r n =的速度旋转时,轴所传递的功率。 解;(1)计算轴内的最大切应力 )(9203877)5.01(10014159.3321 )1(32144444mm D I p =-???=-= απ。 )(184078)5.01(10014159.3161 )1(16134343mm D W p =-???=-=απ 式中,D d /=α。 p GI l T ?= ?, mm mm mm N l GI T p 27009203877/80000180/14159.38.142???= = ? mm N ?=45.8563014

材料力学作业 扭转

第四章 扭转 一、是非题 1 在单元体两个相互垂直的截面上,切应力的大小可以相等,也可以不等。 ( ) 2 扭转切应力公式P I T ρ τρ= 可以适用于任意截面形状的轴。 ( ) 3 受扭转的圆轴,最大切应力只出现在横截面上。 ( ) 4 圆轴扭转时,横截面上既有正应力,又有切应力。 ( ) 5 矩形截面杆扭转时,最大切应力发生于矩形长边的中点。 ( ) 二、选择或填空 1、.图示的圆轴,用截面法求扭矩,无论取哪一段作为研究对象,其同一截面的扭矩大小与符号( )。 a.完全相同 b.正好相反 c .不能确定 2、两根圆轴,材料相同,受力相同,而直径不同,当d 1=2d 2时,则两轴的最大切应力之比 τ1/τ2和单位扭转角21/φφ 分别为 。 A 1/4,1/16 B 1/8,1/16 C 1/8,1/64 D 8,16 3.下列结论中正确的是( )。 A .圆轴扭转时,横截面上有正应力,其大小与截面直径无关 B .圆轴扭转时,截面上有正应力,也有切应力,其大小均与截面直径无关 C .圆轴扭转时,横截面上只有切应力,其大小与到圆心的距离成正比 4.如图所示,圆轴扭转时,下列切应力分布图正确的是( )。 A B C D 5.实心圆轴扭转时,横截面上的最小切应力( )。 A .一定为零 B.一定不为零 C .可能为零,也可能不为零 6.空心圆轴扭转时,横截面上的最小切应力( )。 A.一定为零 B .一定不为零 C .可能为零,也可能不为零

三、计算题 1一传动轴匀速转动,转速n=200r/min,轴上装有五个 轮子。主动轮Ⅱ输入功率为60kW,从动轮Ⅰ、Ⅲ、Ⅳ Ⅴ依次输出18 kW,12kW,22 kW和8 kW。试做轴的 扭矩图。 2、图示圆截面空心轴,外径D=40mm,内径d=20mm,扭矩T=1kN·m。试计算ρ=15mm 的A点处的扭转切应力τA及横截面上的最大和最小扭转切 应力。

材料力学第四章

一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径D =90mm ,壁厚t =2.5mm ,工作时的最大扭矩M n =1.5kN·m ,材料的许用剪应力][τ=60MPa 。求(1)试校核AB 轴的强度;(2)将AB 轴改为实心轴,试在强度相同的条件下,确定轴的直径,并比较实心轴和空心轴的重量。 解 (1)校核AB 轴的强度: 944 .090 5.22902=?-=-= =D t D D d α (a ) (c ) m (d ) (e ) 图19-5 (b )

材料力学考试题库

材料力考试题 姓名学号 一、填空题:(每空1分,共计38分) 1、变形固体的变形可分为:弹性变形和塑性变形。 2、构件安全工作的基本要求是:构件必须具有足够的强度、足够刚度________________ 和 __________ 。 3、杆件变形的基本形式有拉(压)变形、剪切变形、扭转变形_____________________ 和 _____________ 。 4、吊车起吊重物时,钢丝绳的变形是拉伸变形 ;汽车行驶时,传动轴的变形是扭转变形;教 室中大梁的变形是弯曲变形;螺旋千斤顶中的螺杆受压杆受压变形。5、图中(T ―― £曲线上,对应p点的应力为比例极限,符号p__、对应y点的应力称 为屈服极限,符号s_、对应b点的应力称为强化极限符号b _____________ 。 6内力是外力作用引起的,不同的外力引起不同的内力,轴向拉、压变形时的内力称为轴力。剪切变形时的内力称为剪力,扭转变形时内力称为扭矩,弯曲变形时的内力称为弯矩。 7、下图所示各杆件中受拉伸的杆件有AB、BG CD AD ;受力压缩杆件有BE 。 8、胡克定律的两种表达式为l =N L 和二二E ;。E称为材料的弹性模量。它是衡 量材 EA -------------- 料抵抗变形能力的一个指标。E的单位为MPa 1 MPa=_10 _________ Pa 9、衡量材料强度的两个重要指标是屈服极限和强化极限。 10、通常工程材料丧失工作能力的情况是:塑性材料发生屈服现象, 脆性材料发生强化现象。

11、挤压面为平面时,计算挤压面积按实际面积计算;挤压面为半圆柱面的 投影面积计算。 12、在园轴的抬肩或切槽等部位,常增设圆弧过渡结构,以减小应力集中。 13、扭转变形时,各纵向线同时倾斜了相同的角度;各横截面绕轴线转动了不同的角度, 相邻截面产生了转动,并相互错动,发生了剪切变形,所以横截面上有—剪 应力。 14、因半径长度不变,故切应力方向必与半径垂直由于相邻截面的间距不变,即园 轴没有伸长或缩短发生,所以横截面上无正应力。 15、长度为I、直径为d的圆截面压杆,两端铰支,则柔度入为,若压杆属大柔 度杆,材料弹性模量为E,则临界应力C cr为__________________ 。 二、判断题:(每空1分,共计8分) 1、正应力是指垂直于杆件横截面的应力。正应力又可分为正值正应力和负值正 应力。(V) 2、构件的工作应力可以和其极限应力相等。(X ) 3、设计构件时,须在满足安全工作的前提下尽量节省材料的要求。(V ) 4、挤压面的计算面积一定是实际积压的面积。(X ) 5、剪切和挤压总是同时产生,所以剪切面和挤压面是同一个面。(X ) 6外径相同的空心园轴和实心园轴相比,空心园轴的承载能力要大些。(X ) 7、园轴扭转危险截面一定是扭矩和横截面积均达到最大值的截面。(X ) 8、园轴扭转角?的大小仅由轴内扭矩大小决定。(X ) 9、平面弯曲的梁,横截面上的最大正应力,发生在离中性轴最远的上、下边缘点上。 (V ) 10、低碳钢和铸铁试件在拉断前都有“颈缩”现象。(X ) 11、在轴向拉、压杆中,轴力最大的截面一定是危险截面。(X ) 12、圆环形截面轴的抗扭截面系数W=n D3(1 - a 3)/16,式中a二d/D, d为圆轴内径, D为圆轴外径。(X ) 13、平面弯曲的梁,位于横截面中性轴的点,其弯曲正应力C = 0。(V ) 三、单相选择题 1、在下列关于梁转角的说法中,(A )是错误的。

材料力学第6四章扭转

第6章 圆轴的扭转 6.1 扭转的概念 扭转是杆件变形的一种基本形式。在工程实际中以扭转为主要变形的杆件也是比较多的,例如图6-1所示汽车方向盘的操纵杆,两端分别受到驾驶员作用于方向盘上的外力偶和转向器的反力偶的作用;图6-2所示为水轮机与发电机的连接主轴,两端分别受到由水作用于叶片的主动力偶和发电机的反力偶的作用;图6-3所示为机器中的传动轴,它也同样受主动力偶和反力偶的作用,使轴发生扭转变形。 图6—1 图6—2 图6—3 这些实例的共同特点是:在杆件的两端作用两个大小相等、方向相反、且作用平面与杆件轴线垂直的力偶,使杆件的任意两个截面都发生绕杆件轴线的相对转动。这种形式的变形称为扭转变形(见图6-4)。以扭转变形为主的直杆件称为轴。若杆件的截面为圆形的轴称为圆轴。 图6—4 6.2 扭矩和扭矩图 6.2.1 外力偶矩 作用在轴上的外力偶矩,可以通过将外力向轴线简化得到,但是,在多数情况下,则是通过轴所传递的功率和轴的转速求得。它们的关系式为 n P M 9550 (6-1) 其中:M ——外力偶矩(N ·m ); P ——轴所传递的功率(KW ); n ——轴的转速(r /min )。 外力偶的方向可根据下列原则确定:输入的力偶矩若为主动力矩则与轴的转动方向相同;输

入的力偶矩若为被动力矩则与轴的转动方向相反。 6.2.2 扭矩 圆轴在外力偶的作用下,其横截面上将产生连续分布内力。根据截面法,这一分布内力应组成一作用在横截面内的合力偶,从而与作用在垂直于轴线平面内的外力偶相平衡。由分布内力组成的合力偶的力偶矩,称为扭矩,用n M 表示。扭矩的量纲和外力偶矩的量纲相同,均为N·m 或kN·m 。 当作用在轴上的外力偶矩确定之后,应用截面法可以很方便地求得轴上的各横截面内的扭矩。如图6-5(a )所示的杆,在其两端有一对大小相等、转向相反,其矩为M 的外力偶作用。为求杆任一截面m-m 的扭矩,可假想地将杆沿截面m-m 切开分成两段,考察其中任一部分的平衡,例如图6-5(b )中所示的左端。由平衡条件 0)(=∑F M X 可得 M M n = 图6—5 注意,在上面的计算中,我们是以杆的左段位脱离体。如果改以杆的右端为脱离体,则在同一横截面上所求得的扭矩与上面求得的扭矩在数值上完全相同,但转向却恰恰相反。为了使从左段杆和右段杆求得的扭矩不仅有相同的数值而且有相同的正负号,我们对扭矩的 正负号根据杆的变形情况作如下规定:把扭矩当矢量,即用右手的四指表示扭矩的旋转方向,则右手的大拇指所表示的方向即为扭矩的矢量方向。如果扭矩的矢量方向和截面外向法线的方向相同,则扭矩为正扭矩,否则为负扭矩。这种用右手确定扭矩正负号的方法叫做右手螺旋法则。如图6-6所示。 按照这一规定,园轴上同一截面的扭矩(左与右)便具有相同的正负号。应用截面法求扭矩时,一般都采用设正法,即先假设截面上的扭矩为正,若计算所得的符号为负号则说明扭矩转向与假设方向相反。 当一根轴同时受到三个或三个以上外力偶矩作用时,其各 图6-6 扭矩正负号规定 段横断面上的扭矩须分段应用截面法计算。 6.2.3 扭矩图 为了形象地表达扭矩沿杆长的变化情况和找出杆上最大扭矩所在的横截面,我们通常把扭矩随截面位置的变化绘成图形。此图称为扭矩图。绘制扭矩图时,先按照选定的比例尺,以受扭杆横截面沿杆轴线的位置x 为横坐标,以横截面上的扭矩n M 为纵坐标,建立n M —x 直角坐标系。然后将各段截面上的扭矩画在n M —x 坐标系中。绘图时一般规定将正号的

材料力学第三章扭转复习题

第三章 扭转 1.等截面圆轴上装有四个皮带轮,如何安排合理,现有四种答案: (A ) 将C 轮与D 轮对调; (B ) 将B 轮与D 轮对调; (C ) 将B 轮与C 轮对调; (D ) 将B 轮与D 轮对调;然后将B 轮与C 轮对调; 正确答案是 a 。 2.薄壁圆管受扭转时的剪应力公式为 ( ) t R T 2 2/πτ= ,(R 为圆管的平均半径,t 为壁厚)。关于下列叙述, (1) 该剪应力公式可根据平衡关系导出; (2) 该剪应力公式可根据平衡、几何、物理三方面条件导出; (3) 该剪应力公式符合“平面假设”; (4) 该剪应力公式仅适用于R t <<的圆管。 现有四种答案: (A ) (1)、(3)对; (B ) (1)、(4)对; (C ) (2)、(3)对; (D ) 全对; 正确答案是 b 。 3.建立圆轴的扭转应力公式 p p I T /ρτ=时,“平面假设”起到的作用于有 下列四种答案: (A ) “平面假设”给出了横截面上内力与应力的关系?= A dA T τρ; (B ) “平面假设”给出了圆轴扭转时的变形规律; (C ) “平面假设”使物理方程得到简化; (D ) “平面假设”是建立剪应力互等定理的基础。 正确答案是 。 4.满足平衡条件,但剪应力超过比例极限时,有下述四种结论: (A ) (B ) (C ) (D ) 剪应力互等定理: 成立 不成立 不成立 成立 剪切虎克定律 : 成立 不成立 成立 不成立 正确答案是 。 D

5.一内、外直径分别为d 、D 的空心圆轴,其抗扭截面系数有四种答案: (A )()()16/16/3 3 d D W t ππ-=; (B )()()32/32/33 d D W t ππ-=; (C )()[]()4 4 16/d D D W t -=π; (D )()()32/32/4 4 d D W t ππ-=; 正确答案是 c 。 6.一内外径之比为D d /=α的空心圆轴, 当两端受扭转力偶矩时,横截面 的最大剪应为τ,则内圆周处的剪应力有四种答案: (A ) τ ; (B ) ατ; (C ) ( )τα3 1-; (D )( ) τα4 1- 正确答案是 b 。 7.材料不同的两根受扭圆轴,其直径和长度均相同,在扭矩相同的情况下, 它们的最大剪应力之间和扭转角之间的关系有四种答案: (A ) 21ττ=,21φφ=; (B ) 21ττ=,21φφ≠; (C ) 21ττ≠,21φφ=; (D ) 21ττ≠,21φφ≠; 正确答案是 b 。 8.剪切虎克定律可表示为 , 该定律的应用条件是 。 9.分别画出图示三种截面上剪应力沿半径各点处的分布规律。 10.扭转应力、变形公式 P I T /ρτ= 、)/(P A GI Tdx ? = φ 的应用条件 是 。 11.圆截面等到直杆受力偶作用如图(a ),试在图(b )上画出ABCD 截面(直 径面)上沿BC 线的剪应力分布。 A B C D (a) (b) T T 实心圆轴 空心圆轴 薄壁圆筒

材料力学B试题6弯曲变形

弯曲变形 1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2. 外伸梁受载荷如 致形状有下列(A)(B)、(C),(D)答:(B) 3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q x F F x M ) (d d ,d d , d d 2 2S S ===; (B)EI x M x w q x F F x M )(d d ,d d , d d 2 2 S S =-=-=; (C)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -==-=; (D)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -=-==。 答:(B) 4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EI l M EI Fl w B 232 e 3 +=

(↓) 则截面C 处挠度为: (A)2 e 3 322323??? ??+??? ??l EI M l EI F (↓); (B)2 3 3223/323??? ??+??? ??l EI Fl l EI F (↓) ; (C)2 e 3 322)3/(323??? ??++??? ??l EI Fl M l EI F (↓);(D)2 e 3 322)3/(323? ? ? ??-+??? ??l EI Fl M l EI F (↓)。 答:(C) 5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。 答: 6. 7. (a)、(b) 刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。 答:x =0, w 1=0, 1w '=0;x =2a ,w 2=0 =2a , 32 w w '='。 9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。 (a) (b) (c) w ===θw w

材料力学习题组合变形

组合变形 基 本 概 念 题 一、选择题 1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。 A .e = d B .e >d C .e 越小,d 越大 D .e 越大,d 越小 2.三种受压杆件如图所示,设 杆1、杆2和杆3中的最大压应力(绝 对值)分别用1max σ、2max σ、 3max σ表示,则( )。 A .1max σ=2max σ=3max σ B .1max σ>2max σ=3max σ C .2max σ>1max σ=3max σ D .2max σ<1max σ=3max σ 题2图 3.在图示杆件中,最大压应力发生在截面上的( )。 A .A 点 B .B 点 C .C 点 D .D 点 题3图 题4图 4. 铸铁杆件受力如图4所示,危险点的位置是( )。 A .①点 B .②点 C .⑧点 D .④点 5. 图示正方形截面直柱,受纵向力P 的压缩作用。则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。 A .1﹕2 B .2﹕5 C .4﹕7 D .5﹕2 6. 图示矩形截面偏心受压杆件发生的变形为( )。 A .轴向压缩和平面弯曲组合 B .轴向压缩,平面弯曲和扭转组合 C .轴向压缩,斜弯曲和扭转组合 D .轴向压缩和斜弯曲组合 -41-

题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴 y 垂直,那么该梁所发生的变形是( )。 A .平面弯曲 B .扭转和斜弯曲 C .斜弯曲 D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲 题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危 险点位置有四种答案,正确的是( )。 A .截面形心 B .竖边中点A 点 C .横边中点B 点 D .横截面的角点D 点 题8图 题9图 9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭 矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。关于A 点的强度条件是( )。 A .σ≤[σ],τ≤[τ] B .W T M 2122)(+≤[σ] C .W T M 2122)75.0(+≤[σ] D .122)3(τσ+≤[σ] 10. 折杆危险截面上危险点的应力状态是图中的( )。 -42-

材料力学 扭转答案

3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。试作轴的扭矩图。 解:kN kN kN kN 返回 3-2(3-3) 圆轴的直径,转速为。若该轴横截面上的最大切应力等于,试问所传递的功率为多大 解:故 即 又 故 返回

3-3(3-5) 实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。试求: (1)最大切应力及两端截面间的相对扭转角; (2)图示截面上A,B,C三点处切应力的数值及方向; (3)C点处的切应变。 解:= 返回 3-4(3-6) 图示一等直圆杆,已知,,,。试求: (1)最大切应力; (2)截面A相对于截面C的扭转角。 解:(1)由已知得扭矩图(a)

(2) 返回 3-5(3-12) 长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。实心轴直径为d;空心轴外径为D,内径为,且。试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。 解:重量比= 因为 即 故 故 刚度比= = 返回 3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。试确定该轴的直径d。 解:扭矩图如图(a) (1)考虑强度,最大扭矩在BC段,且

(1) (2)考虑变形 (2) 比较式(1)、(2),取 返回 3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。外力偶矩,,。已知:,,。试校核该轴的强度和刚度。 解:扭矩图如图(a) (1)强度 = ,BC段强度基本满足 = 故强度满足。 (2)刚度 BC段:

相关文档