文档视界 最新最全的文档下载
当前位置:文档视界 › 氢能源的制备存储

氢能源的制备存储

氢能源的制备存储
氢能源的制备存储

氢能源的制备与存储

前言:

氢能是一种二次能源,它是通过一定的方法利用其它能源制取的,而不像煤、石油、天然气可以直接开采,今下几乎完全依靠制取得到,如果能回收利用工程废氢,每年大约可以回收到大约1亿立方米,这个数字相当可观。

本文通过介绍氢能源的制备与存储来研究氢能源。

一氢能源的主要制取方法

目前我国97%的氢气是由化石燃料生产的,其余的通过水电解法生产。化石燃料制造氢气要向大气排放大量的温室气体,对环境不利。水电解制造氢气则不产生温室气体,但是生产成本较高。因此水解制氢适合电力资源如水电、风能、地热能、潮汐能以及核能比较丰富的地区。

1 以煤为原料制氢

煤是我国最主要的化石能源,其主要成分是碳,也有很少的碳氢化合物。煤制氢的本质是以碳取代水中的氢,最终生成氢气和二氧化碳。这里,碳起到化学试剂作用并为置换反应提供热。氢几乎全来自于水。

以煤为原料制取含氢气体的方法主要有两种:

一是煤的焦化(或称高温干馏),煤在隔绝空气条件下,在 900~1000℃制取焦碳,副产品为焦炉煤气。焦炉煤气组份中含氢气 55~60%(体积)、甲烷23~27%一氧化碳5~8%等。每吨煤可得煤气 300~350m3,作为城市煤气,亦是制取氢气的原料。

二是煤的气化,使煤在高温常压或加压下,与水蒸汽或氧气(空气)等反应转化成气体产物。气体产物中氢气的含量随不同气化方法而异。煤气化制氢是一种具有我国特点的制氢方法。通常做法是将煤从地下挖出,破碎、分类后放到专门的设备中进行上述反应。其实也可以在地下进行煤制氢,一般在煤矿的地表建成两个井,一个进气,一个出含氢的混合气。在地面上净化,得到可用的氢。煤地下气化方法近数十年已为人们所重视,我国已经在山东、河北一带进行了几个工业化示范,效果很好。地下气化技术具有煤资源利用率高及减少或避免地表环境破坏等优点。

2 天然气制氢

天然气的主要成分是甲烷( CH4),本身就含有氢。和煤制氢相比,用天然气制氢产量高、加工成本较低,排放的温室气体少,因此天然气成为国外制造氢气的主要原料。其中天然气蒸汽转化是较普遍的制造氢气方法。工业上甲烷蒸汽转化过程采用镍做催化剂,操作温度750~920℃,操作压力~。较高的压力可以改善过程效率。反应是吸热的,热量通过燃烧室燃烧甲烷供给。甲烷蒸汽转化制得的合成气,经过高低温变换反应将一氧化碳转化为二氧化碳和额外的氢气。为了防止甲烷蒸汽转化过程析碳,反应进料中需采用过量的水蒸气。最终氢气的收率与采用的技术路线有关。天然气制氢的本质是以甲烷中的碳取代水中的氢,碳起到化学试剂作用并为置换反应提供热。氢大部分来自于水,小部分来自天然气本身。

3 重油部分氧化制造氢气

重油是炼油过程中的残余物,可用来制造氢气。重油部分氧化过程中碳氢化合物与氧气、水蒸气反应生成氢气和二氧化碳。该过程在一定的压力下进行,可以采用催化剂,也可以不采用催化剂,这取决于所选原料与过程。催化部分氧化通常是以甲烷或石脑油为主的低碳烃为原料,而非催化部分氧化则以重油为原料,反应温度在1150~1315℃。重油部分氧化制得的氢主要来自水蒸气。

4 水电解制造氢

水电解制造氢气是成熟的制造氢气的方法,已有80余年生产历史。水电解制得的氢气纯度高,操作简便,但需耗电。水电解制氢的效率一般在 75~ 85%,一般生产1m3氢气和氧气的电耗为4~5kWh。根据热力学原理,电解水制得1m3氢气和氧气的最低电耗要度电。所以有的发明家得到低于此值的结果就不可信了。当然,如果是电解水溶液,得到氢和另一种非氧的产物,其电耗另当别论。水电解制氢的本质是以电能打开水中的氢和氧的结合键,最终生成氢气和氧气。这里的氢全部来自于水。

目前我国水电解主要用石棉布电介质和强碱性水溶液,能耗大、不环保。近年已经成功开发采用固体高分子离子交换膜代替石棉布作为电解质,直接电解纯水的新技术。

水电解制氢所需电能可由各种一次能源提供,其中包括化石燃料、核能或太阳能、水能、风能及海洋能等可再生能源。大型供电系统在低谷时电能也可用于电解水制氢,达到储能的目的。随着可再生能源地位的提高、发电成本的降低,相信水电解制氢会得到更大的发展。

二氢气的储存

研究发现,某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,成为储氢合金。常用的储氢合金有:稀土系(AB5型)、钛系(AB型)、锆系(AB2型)、镁系(A2B型)四大系列。自20世纪70年代起,储氢合金就受到重视。为改善合金的储氢性能和降低成本,科技工作者们合金成分、制备工艺等方面进行不懈的探索。

储氢合金的优点是有较大的储氢容量,单位体积储氢密度是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气,其单位体积储氢密度可高达40~50kg/m3。储氢合金安全性也很好,即使遇枪击也不爆炸。

该方法的缺点是质量储氢密度低,多数储氢金属的质量密度仅为~3%,在车上使用会增加很大的负载。另外,储氢合金易粉化。储氢时金属氢化物的体积膨胀,而解离释氢过程又会发生体积收缩。经多次循环后,储氢金属便破碎粉化,氢化和释氢变得越来越困难。例如具有优良储氢和释氢性能的LaNi5,经10次循环后,其粒度由20目降至400目。如此细微的粉末,在释氢是就可能混杂在氢气中堵塞管路和阀门。储氢合金的低温特性不好,要是储氢合金释放氢,必须向合金供应热量,AB5型合金需加热温度最低,为40~50℃,而镁基合金则需加热到300℃左右。实际应用中还装设热交换设备,进一步增加了储氢装置的体积和重量。同时车上的热源也不稳定,因此储氢合金难以在汽车上应用。

上面三种储氢方法是目前实际应用的主流,特别是高压储氢方法应用最为广泛。但是,都没有达到美国能源部的最低储氢要求。所以,科学家正在积极探索新的储氢方法,例如玻璃微球储氢、无机物储氢、高压及液氢复合技术、储氢合金与高压复合技术以及地下岩洞储氢等等。

五储氢新方法

无机物储氢是有希望近期工业化的储氢方法之一。不少离子型氢化物,如络合金属氢化物NH3BH4、NaBH4等加热可分解放出氢气,其理论质量储氢密度分别高达%和%,引起了科学家的注意。其实,这些可以算是较早的储氢材料,我国在20世界50年代就开始了这类氢化物合成和应用的研究。近年来国内外的研究更注重实用化,主要聚焦在释放氢用催化剂、吸放氢速度控制、氢化物复用等方面。这类储氢系统用于氢燃料汽车的主要问题是系统的动态响应,另外,化合物的高昂价格也是大问题。除上述的氢化物外,我们常见的氨(NH3)也是一种有效的氢载体,经分解和重整后可从中获得大量氢气。

有机物储氢也是一种有希望储氢方法。有机液体化合物储氢剂主要是苯和甲苯,其原理是苯(或甲苯)与氢反应生成环乙烷(或甲基环已烷),此载体在、室温下呈液体状态,其贮存和运输简单易行,通过催化脱氢反应产生氢以供使用,该贮氢技术具有储氢量大(环乙烷和甲基环已烷的理论贮氢量分别为%和%)、能量密度高、储存设备简单等特点,已成为一项有发展前景的储氢技术。

有机液体氢化物作为氢载体的贮氢技术是在20世纪80年代发展起来的。美国布鲁克海文国家实验室(BNL)首先成功的将Lani5等粉末加入到3%左右的十一烷或异辛烷中,制成了可流动的浆状储氢材料。近年来,浙江大学在国家氢能973项目的支持下,系统研究了高温型稀土-镁基储氢合金及其氢化物在浆液中催化液相苯加氢反应的催化活性,对合金相结构、微观结构形貌、表面状态及吸放氢性能的影响及其相关机制,提出了合金表面与有机物中碳原子发生电荷转移的新机制。

但该体系的缺点也很突出,加氢时放热量大、脱氢时能耗高,脱放氢时的温度在1000℃左右,也正是氢循环时的高温限制了它的应用。该系统能否应用的关键性问题是要开发低温高效、长寿命的脱氧催化剂。

碳质储氢材料一直为人们所关注。碳质储氢材料主要是高比表面活性炭、石墨纳米纤维和碳纳米管。特殊加工后的高比表面积活性炭,在2~4MPa和超低温(77K为液氮的温度)下,质量储氢密度可达~%,但低温条件限制了它的广泛应用。

g纳米石墨纤维的实验结果,比现有的各种储氢技术的储氢容量高出1~2个数量级,引起了世人的瞩目。按照她的结果推算,按现有汽车的油箱大小的体积,装上纳米碳储氢,一次储氢足够燃料电池汽车行驶8000公里。此外,1999年7月2日的《科学》杂志介绍了新加坡国立大学的科学家在碳纳米管中嵌入钾离子和锂离子之后,在200~400℃时吸放氢的数据相当高。一时,纳米碳储氢成为炙手可热的题目,世界上许多科学家都参与研究开发纳米碳储氢。经过几年努力,发现纳米碳的储氢容量也就在1%左右,并不像原先期望的那样高。先期的数据严重偏高的原因在于当时对纳米碳储氢机理认识不足,试验设计有错误。目前,还有人研究纳米碳储氢,但总的看来研究处于低潮。

另外还有一些复合储氢方法,如同时使用高压和储氢合金、同时使用高压和液氢等,希望提高储氢容量,改善储氢系统特性。

生态建筑能源利用技术的

文章编号:1009-6825(2012)33-0209-03 生态建筑能源利用技术的探讨★ 收稿日期:2012-09-12★:江苏省科技支撑计划项目(项目编号:BE2010699)作者简介:李琪(1956-),男,硕士生导师,教授;杨卫波(1975-),男,硕士生导师,副教授 李 琪 1 杨卫波2 * (1.扬州大学建筑科学与工程学院,江苏扬州225127;2.扬州大学能源与动力工程学院,江苏扬州225127) 摘 要:在介绍生态建筑有关概念的基础上,重点从能源利用的角度对生态建筑进行了探讨,阐述了生态建筑能源利用技术的设 计原则、能源形式、节能与生态元素、综合能源利用系统的设计原则等内容,以实现建筑的可持续性。关键词:生态建筑,能源利用,可再生能源,节能,评价中图分类号:TU201.5 文献标识码:A 0引言 伴随着社会进步及经济发展所带来的生态平衡的严重破坏,人类在满足自身发展的同时力求寻找到一种人、自然与社会和谐共生的可持续性生存环境。建筑业作为人类对自然资源、生态环境影响最大的活动之一,同样面临着可持续发展的问题,由此而引发的将可持续发展思想融入建筑设计中的生态建筑渐成为社会各界人士共同关心的一个热点。 本文拟从能源利用技术的角度对生态建筑进行探讨,以为其实际应用起到抛砖引玉之功效。 1生态建筑 生态建筑是从生态学的角度来考虑建筑设计,是生态学与建 筑学两大学科相结合的产物。生态建筑就是用生态学原理和方法,以人、建筑、自然和社会协调发展为目标,有节制地利用和改造自然,寻求最适合人类生存与发展的生态建筑环境,将建筑环 境作为一个有机的、具有结构和功能的整体系统来看待[1]。生态建筑设计的最终目标就是要实现资源的有效利用、舒适健康的生 存环境及建筑的可持续性。 2生态建筑与能源 能源是人类赖以生存与发展最重要的物质基础,而建筑能耗 是能源消费构成的重要部分, 占相当大的比重。因此,在能源如此短缺的今天,在能耗占社会总能耗比例如此之大、能源消耗带 来环境污染问题如此严重的建筑领域必须重视建筑节能技术,并大力提倡以绿色、生态及可持续性为标志的生态建筑能源利用技 术,以实现建筑、能源、环境及社会的可持续发展。能源系统设计作为生态建筑研究中的重要组成部分,其能源利用的可持续性既 是生态建筑从理论走向实践的必经之路,也是生态建筑要实现的主要目标之一。 3生态建筑中的能源利用技术3.1 生态建筑能源利用技术的层次性 生态建筑能源利用系统是在综合运用各种能源技术后形成 的一个综合能源技术集成体, 其品质的好坏在很大程度上取决于所选用的各种能源利用技术的层次性。根据复杂难易程度,可以将生态建筑能源利用技术分为以使用简单与常规技术为主的低 技术与采用最新科技与高新技术的高技术两个层次。前者属普及型的生态建筑能源技术,如各种形式的被动太阳能利用技术及地热能直接利用技术等;后者多属研发型能源技术,如以太阳能 作为能源的太阳能热泵、制冷、空调及发电技术与地源热泵等。生态建筑能源利用技术层次性的选择应根据当地的具体情况,综合考虑经济与社会效益来决定,其选择的原则是要寻求经济增长 与生态环境效益的综合平衡。 3.2生态建筑中可利用的能源形式3.2.1太阳能太阳能是目前生态建筑中应用最成熟的一种能源形式, 主要可分为被动式与主动式利用两种形式,其中前者是指不需要辅助动力及能源转换装置直接对太阳能加以利用的方式。后者主要是指需要各种动力或能源转换设备的太阳能利用系统。被动利用技术多属于成熟的低技术,但因其简单、造价低及效果明显而在当今生态建筑领域得到广泛应用。主动利用技术多属高技术形态,需要复杂的技术与设备作为支持,但其对于开发利用不能直接使用的太阳能资源及转换太阳能形式以拓宽其应用领域等方面均具有重大的意义,因此具有很好的发展前景,目前在高技术生态建筑中应用广泛。 3.2.2 地热能 地热能主要是指来自深层地壳内部的可开采的中高温可再 生热能和源自吸收太阳辐射能的温度较低的地表热能。根据是否需辅助耗能设备对能源品位进行提升或转换,地热能在生态建 筑中的应用可分为直接与间接利用两种形式, 前者主要包括利用地温恒温特性的覆土建筑、利用地下风道对室外新风进行降温加 热的地下空调、利用地下水直接进行采暖与降温的地下水空调、利用地下土壤(或岩石)进行(太阳能)季节性储能技术等;后者主要包括利用地表土壤(或水)中能量的各种形式地源热泵及利用地下深层中高温地热水(或蒸汽)的地热发电技术等。直接利用 形式多属于低技术层次, 而间接利用形式中的地源热泵技术是伴随着能源危机而在近期才出现的,属于高技术层次,正处于研究 与推广阶段。 3.2.3 风能 风能是太阳辐射造成地球各部分受热不均匀而引起各地温 差和气压不同导致空气流动而产生的能量。利用风力机械可将风能转换成电能、机械能和热能等。风能利用的主要形式有风力发电、风力提水、风力致热及风帆助航等,其中风力发电是目前应用最广泛、近年来发展最快的新能源和可再生能源利用形式,许多国家都制定了相应的发展规划与激励政策。风能在建筑能源中的应用是有待进一步研究的建筑节能技术。 除了风能发电外,如何将风能转换成热能并用于建筑物采暖与降温等是一项崭新的生态建筑能源利用技术的研究课题,有许多难题有待于解决。 3.2.4生物质能 生物质能是绿色植物通过光合作用将太阳能转化为化学能 · 902·第38卷第33期2012年11月 山西 建筑 SHANXI ARCHITECTURE Vol.38No.33Nov.2012

可再生能源利用技术发展趋势

可再生能源利用技术发展趋势 一、太阳能开发利用 1、太阳能光热利用 ⑴、太阳能热水器依然是太阳能低温热利用的主流,已经进入大规模、商业化的利用阶段<但在技术方面不断创新,在生产技术和工艺上不断改进。 热水器种类主要有: ①金属平板太阳热水器、热管式平板太阳热水器; ②真空管太阳热水器、真空管太阳热管热水器,真空管闷晒太阳热水器; ③太阳能热泵热水器,混合热源热泵热水器; ④四季型太阳热水器,带有辅助热源的四季型太阳热水器。在技术方面主要从热水器结构、材料、生产工艺和隔热方式等进行改进和创新。 ⑵、与建筑结合的太阳能利用技术,为太阳能建筑供热水、采暖、空气调节、制冷以及供电,解决建筑的部分或全部能耗,是今后太阳能利用的主要方向。 ①太阳能集热建筑模块; ②太阳能集热模块与建筑的接口技术; ③太阳能低温长期储热技术与储热介质的研究; ④太阳能热交换技术与热交换设备的研究; ⑤新型太阳能建筑保温技术与保温材料的研究; ⑥太阳能建筑照明和光伏并网技术的研究; ⑦太阳能建筑空调技术与制冷设备的开发。 ⑧太阳能建筑供能系统自动监控、能耗计量和节能管理的开发; ⑨太阳能建筑标准和规范的研究;

⑩太阳能建筑标准构件图集。 ⑶太阳热发电是将太阳辐射能聚集起来加热工质,经热交换器产生过热蒸汽,再由蒸汽驱动汽轮机带动发电机发电,其原理与普通热电站相同,主要区别在于用太阳辐射的热能来替代化石燃料燃烧产生的热能。太阳能热发电是21 世纪最具革命性的技术成果,是实现大规模可再生能源发电、替代常规能源发电最经济的手段之一。太阳能热发电技术经过30 多年的研究、示范,主要关键技术有了突破性的发展。预计到2010 年,我国的太阳能热发电成本可降到0.6元/kWh , 2015年,发电成本降至0.38元/kWh,可逐步替代煤电,实现我国多元化的电力结构。目前,太阳能热发电技术正处在工业化初期,商业化前期阶段。 ①盘式太阳能热发电技术的研究太阳能收集器由盘状抛物面聚焦反射镜及位于焦点的吸收器组 成,其聚光比可达数百到数 千,从而可产生高温。吸收器将所吸收的太阳热能传给热机回路中的工质,由工质驱动热机与发电机组发电。整个系统配有微机控制系统,对反射镜精确跟踪太阳及发电机组进行控制。 ②槽式太阳能热发电技术的研究 槽式太阳能发电系统由太阳场集热系统,热传输系统,蓄热与热交换蒸汽发生器系统以及汽轮发电机系统四部分组成。它由槽式抛物面聚光镜与位于焦点的真空管集热器组成,聚光镜配有自动跟踪系统可跟踪太阳,集热管内有流动的工质(通常为油)吸收辐射能而被加热。被加热的工质经输运管道进入蒸汽发生器,通过热交换产生所需的高温高压蒸汽,再用蒸汽驱动汽轮发电机组发电。 ③塔式太阳热发电技术的研究 塔式太阳热发电系统由定日镜系统、太阳跟踪装置、太阳能收集器(太阳锅炉)、储能系统与储热介质、过热蒸汽发生器和汽轮发电机组组成。在太阳场内设置大量定日镜,它们由跟踪装置控制将太阳辐射聚集到位于塔顶的集热接收器,使在接收器内产生所需的蒸汽或熔化硝酸盐作为传热介 质,以提高接收器的热效率和使贮热系统变得简单和高效;再由蒸汽驱动汽轮 发电机组发电

氢的制取途径

氢的制取途径 1、电解水制氢 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此 只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。 2、矿物燃料制氢 以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建 有工业生产装置。 (1)煤为原料制取氢气 在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及减少对环境 的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。 以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤 在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得阶段成果,具有开发前景,值得重视。 (2)以天然气或轻质油为原料制取氢气 该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应: CH4+H2O→CO+H2 CO+H2O→COZ+HZ CnH2h+2+Nh2O→nCO+(Zh+l)HZ 反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组成中,氢气含量 可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原料。 (3)以重油为原料部分氧化法制取氢气 重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢气体产物。 部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。 3、生物质制氢 生物质资源丰富,是重要的可再生能源。生物质可通过气化和微生物制氢。 (1)生物质气化制氢

氢能源的开发与利用

氢能源的开发和利用 菜大兴 (中南大学化学化工学院湖南长沙410083) 摘要:随着化石燃料等不可再生资源的日益紧缺和环境污染日益加重,人们迫切需要寻找替代能源。氢能作为可持续、清洁的能源而被广泛研究,是未来人类的理想能源之一,对整个世界经济的可持续发展具有重要的战略意义。本文主要述评了氢能制备、氢能储运、氢能利用在国际和国内的最新研究动态,并对氢能未来开发利用前景进行了展望。 关键词:氢能源、氢能制备、储氢技术、氢能利用 0 引言 能源是现代社会人类生活、生产中必不可缺的东西。随着社会经济的发展,人们对能源的需求越来越高。然而在能源开发及利用的研究中,人们发现有的能源与一般传统的矿物能源不同,如太阳能、风能、潮汐熊等再生性能源。氢能作为一种储量丰富、来源广泛、能量密度高、清洁的绿色能源及能源载体,被认为是连接化石能源向可再生能源过渡的主要桥梁[1]。 作为能源,氢能具有无可比拟的潜在开发价值。氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的内燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国内外学者研究的热点[2]。 1 氢能制备方法 1.1 矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。

存储系统主流技术比较分析

存储系统主流技术比较分析 信息技术系统现已进入以数据为中心的时代,随着存储技术的不断发展和完善,企业的技术基础架构正在从以前复杂的以服务器为中心的IT 架构逐渐向以数据存储为中心的方向演变。 我公司目前技术系统已初步建成以SAN 存储(主要为EMC 的 Symmetrix DMX )为核心,NAS (主要为NetAPP 的FAS3170)存储为补充的多层次的存储系统架构。下面将从存储系统架构、磁盘技术、存储管理和云存储等几个方面分析存储技术在我公司技术系统的应用和发展方向。 一、 存储系统架构 存储系统架构的发展由内臵存储进化为独立的外臵存储,再由直连式存储发展为网络式存储,由功能单一的SAN 存储网络发展为统一多功能存储,目前SAN 架构与IP 网络也有逐渐融合的趋势。 发展过程如下图所示: 1.1、 内臵存储与外臵存储 传统的内臵存储是将存储设备(通常是磁盘)与服务器其他硬件直接安装于同一个机箱之内,且该存储设备是为服务器所独占使用。 外臵存储既是将存储设备从服务器中独立出来,根据与服务器物理连接的方式可分为:直连式存储(Direct-Attached Storage ,简称DAS )和网络化存储(Fabric-Attached Storage ,简称FAS );网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage ,简称NAS )和存储区域网络(Storage Area Network ,简称SAN )。 1.2、直连式存储(Direct-Attached Storage ,DAS ) 直连式存储必须依赖服务器主机操作系统进行数据的IO 读写和存储维护管理,所以数据备份和恢复必然占用服务器主机资源(包括CPU 、系统IO 等),直 内臵存储 外臵存储 Direct-Attached Storage 直接式存储(DAS ) Fabric-Attached Storage 网络存储(FAS ) Network-Attached Storage 网络接入存储(NAS ) Storage Area Network 存储区域网络(SAN )

氢能源的合成方法及背景

氢能的开发与利用 谈起氢能源,人们便会想起它的清洁高效无污染,但是目前氢昂贵的制备价格、严苛的存贮条件以及其应用的技术水平却不得不令人望而却步。确实,从全球化角度来看,我们最终将依赖于太阳能、风能、水力能、生物质能、氢能等清洁能源的开发和利用,这是不可避免的趋势,下面我们从几个角度谈谈氢能开发利用的背景以及制备方法。 氢能的开发是应时而生的,随着传统能源的逐渐开发殆尽,世界对能源的需求却呈指数级增长,这是一个迫在眉睫的问题,也直接促进了人们对氢能等清洁能源的关注。据专家预测,地球上储藏的可开发利用的煤和石油等化石能源将分别在130年和90~120年以内耗竭,而天然气按储采比也只能用130年,因此,寻求开发新型能源技术被提上了议事日程。就在此时,氢能以它的低密度、高放热效率、无污染的优良特性吸引了人们的眼球,一门新兴的学研方向也随之而生。 目前制氢技术从整体上说还是挺多的,但大多经济效益或环保效益不高,所以找到低能耗低污染的制氢方法将成为氢能否被广泛应用的瓶颈。较传统的有:从含烃的化石燃料中制氢、电解水制氢等,新型的制氢方法有:生物制氢、太阳能制氢、核电解制氢等。以煤、石油或天然气等化石能源为原料来制取氢气,是过去及现在采用最多的方法,基本反应过程为:C +H2O→CO +H2,自从天然气大规模开采后,传统制氢工业中有96%都是以天然气为原料。而天然气和煤都是宝贵的燃料和化工原料,储量有限,且制氢过程中会对环境造成污染,用

它们来制氢显然摆脱不了人们对常规能源的依赖和对自然环境的破坏。第二种虽然污染很小,但浪费电能太多,因此利用常规能源生产的电能来进行大规模电解水制氢显然也因小失大。生物制氢从整体上说要好一点,但规模难以扩大。其实早在1942年,科学家们就发现了一些藻类的完整细胞可以利用太阳能产生氢气流,7年之后,又有科学家通过实验证明某些具有光合作用的藻类也能产生氢能,此后对微生物制氢的研究可谓突飞猛进,逐渐形成多种制氢方法,如:纯微生物制氢、混合微生物制氢、生物转化制氢、生物质气化等等五花八门的制备方法,总体效果还算差强人意,只可惜规模不大,难以工业化生产。太阳能制氢是近几年才提出的新型方法,具体原理可能是水在高温下可以自然分解这一重大发现,也有可能联合其他方式如先发电再电解或加上催化剂分解水等,理论上看,太阳能将最有可能成为制氢的主力军。而核能源制氢呢,则在目前看来最有发展前景,因为核能利用已有一段时间也积累丰富的经验,将发的电用来制氢也看不出明显的污染浪费现象,所以个人认为在不久的将来我们很有可能会用上安全舒适的氢能源。 总结,虽然节约能源的思想非常重要且必须长期存在,但人类的生存发展将不可避免地依赖于新型能源的开发和利用,因此,氢能作为清洁环保高效绿色等集万千宠爱于一身的新型能源必将在不久的将来大有用武之地。正如毛宗强教授所说,人类进入21世纪,从发展趋势看,未来经济一定是一种节能型经济和清洁型经济。而几乎同时具备以上两个条件的氢能自然也就有它无可估量的未来!

新能源及可再生能

新能源及可再生能源概念股: 太阳能 天威保变(600550) 形成太阳能原材料、电池组件的全产业布局 小天鹅(000418) 大股东参股无锡尚德太阳能电力 岷江水电(600131) 参股西藏华冠科技涉足太阳能产业 生益科技(600183) 控股的东海硅微粉公司是国内最大硅微粉生产企业 维科精华(600152) 成立的宁波维科能源公司专业生产各种动力、太阳能电池 安泰科技(000969) 与德国ODERSUN公司合作薄膜太阳能电池产业' 长城电工(600192) 参股长城绿阳太阳能公司涉足太阳能领域股参网, 乐山电力(600644) 参股四川新光硅业主要生产多晶硅太阳能硅片 华东科技(000727) 国内最大的太阳能真空集热管生产商 春兰股份(600854) 大股东计划投资30亿开发新能源 威远生化(600803) 实际控股股东新奥集团从事太阳能等新能源产品生产 力诺太阳(600885) 太阳能热水器的原材料供应商 西藏药业(600211) 发起股东之一为西藏科光太阳能工程技术公司 新华光(600184) 太阳能特种光玻基板股参网 特变电工(600089) 控股的新疆新能源从事太阳能光伏组件制造 航天机电(600151) 控股的上海太阳能科技电池组件产能迅速提升 南玻A(000012) 05年10月拟首期2亿元建设年产能30兆瓦太阳能光伏电池生产线。 新南洋(600661)(600661) 控股的交大泰阳从事太阳能电池组件生产

杉杉股份(600884) 参股尤利卡太阳能,掌握单晶硅太阳能硅片核心技术 王府井(600859) 全资子公司深圳王府井(600859)联合了中国最大的太阳能专业研究开发机构--北京太阳能研究所成立了北京桑普光电技术公司 风帆股份(600482) 投巨资参与太阳能电池组件生产, 金山股份(600396) 风力发电,风力发电设备安装及技术服务 湘电股份(600416) 控股股东与德国莱茨鼓风机有限公司签订了合资生产离心风机协议,目前风电资产主要在控股股东中 粤电力(000539) 风力发电 特变电工(600089)(600089) 与沈阳工业大学等设立特变电工(600089)沈阳工大风能有限公司 京能热电(600578) 为国华能源第二大股东,间接参与风能建设 东方电机(600875) 风电设备制造 金风科技(002202) 风电设备制造 乙醇汽油 丰原生化(000930) 是安徽省唯一一家燃料乙醇供应单位 华润生化(600893) 控股股东华润集团控股吉林燃料乙醇和黑龙江华润酒精二大定点企业 *ST甘化(000576) 利用甘蔗、玉M(资讯,行情)(资讯,行情)(资讯,行情)等可再生性糖料资源生产燃油精,成为汽油代替品 华资实业(600191) 利用可再生性糖料资源生产燃油精,成为纯车用汽油代替品 荣华实业(600311) 赖氨酸(豆粕(资讯,行情)(资讯,行情)(资讯,行情)的替代品)新增产能最大的企业之一 华冠科技(600371) 在国内率先拥有了玉M深加工多项最新技术的所有权或使用权 氢能 同济科技(600846) 公司与中科院上海有机化学研究所、上海神力科技合资组建中科同力化工材料有限公司开发燃料电池电动车。 中炬高新(600872) 子公司中炬森莱生产动力电池 春兰股份(600854) 春兰集团研发20-100AH系列的大容量动力型高能镍氢电池 力元新材(600478) 主要生产泡沫镍

方向一大规模可再生能源并网消纳

“智能电网技术与装备”重点专项 2017年度项目申报指南建议 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》,以及国务院《能源发展战略行动计划(2014—2020年)》、《中国制造2025》和《关于积极推进“互联网+”行动的指导意见》等提出的任务,国家重点研发计划启动实施“智能电网技术与装备”重点专项。根据本重点专项实施方案的部署,现提出2017年度项目申报指南建议。 本重点专项总体目标是:持续推动智能电网技术创新、支撑能源结构清洁化转型和能源消费革命。从基础研究、重大共性关键技术研究到典型应用示范全链条布局,实现智能电网关键装备国产化。到2020年,实现我国在智能电网技术领域整体处于国际引领地位。 本重点专项按照大规模可再生能源并网消纳、大电网柔性互联、多元用户供需互动用电、多能源互补的分布式供能与微网、智能电网基础支撑技术5个创新链(技术方向),共部署23个重点研究任务。专项实施周期为5年(2016-2020)。 1. 大规模可再生能源并网消纳

1.1可再生能源发电基地直流外送系统的稳定控制技术(基础研究类) 研究内容:针对我国弱同步电网中可再生能源发电基地直流外送系统的稳定运行需求,研究系统的动态特性和稳定控制方法,具体包括:可再生能源发电与直流输电的交互影响机理及其机电/电磁动态分析与仿真技术;可再生能源发电基地动态特性分析方法;多可再生能源发电基地间的相互作用关系及相关电网动态特性分析方法;基于可再生能源发电、直流输电或专用装备的次/超同步振荡分析及抑制方法;计及可再生能源波动、交流系统故障和直流闭锁等因素的可再生能源发电基地稳定控制技术。 考核指标:提出弱同步电网中可再生能源发电基地直流外送系统的稳定控制理论与方法,建立5MW级含风/光发电、直流输电和常规电源的动态模拟平台,验证短路比<2条件下相关抑制方法的有效性。 1.2常规/供热机组调节能力提升与电热综合协调调度技术(应用示范类) 研究内容:面向我国北方地区由于火电机组调节能力不足导致弃风/弃光严重的现状,研究火电机组的调节能力提升技术,并通过机组间协同控制实现电力系统可再生能源消纳能力的有效提升。具体包括:常规/供热工况下火电机组调峰能力提升与最小技术出力降低技术;保障热负荷需求时提高

几种常见网络存储技术的比较(精)

几种常见网络存储技术的比较 一、直接附加存储(DAS 是指将存储设备直接连接服务器上使用。成本低,配置简单,和使用本机硬盘并无太大差别。DAS问题:(1服务器容易成为系统瓶颈;(2服务器发生故障,数据不可访问;(3对于存在多个服务器的系统来说,设备分散,不便管理。(4数据备份操作复杂。 二、网络附加存储(NAS NAS是一种带有瘦服务器的存储设备。NAS设备直接连接到TCP/IP网络上,网络服务器通过TCP/IP网络存取管理数据。由于NAS只需要在一个磁盘阵列柜外增加一套瘦服务器系统,对硬件要求很低,成本不高。NAS 主要问题是:(1由于存储数据通过普通数据网络传输,因此易受流量的影响。(2由于存储数据通过普通数据网络传输,因此容易产生数据泄漏等安全问题;(3存储只能以文件方式访问,而不能像普通文件系统一样直接访问物理数据块,因此会在某些情况下严重影响系统效率,比如大型数据库就不能使用NAS。 NAS(Network Attached Storage:网络附属存储是将分布独立的数据整合为数据中心,以便于访问的技术,也称为“网络存储器”。以数据为中心,将存储设备与服务器彻底分离,集中管理数据,从而释放带宽、提高性能、降低成本。其成本远低于使用服务器存储,而效率却远远高于后者。NAS的存储以文件为单位,一般支持CIFS / HTTP / FTP等方式的访问。 NAS:NAS从结构上讲就是一台精简型的电脑,在架构上不像个人电脑那么复杂,在外观上就像家电产品,只需电源与简单的控制钮,。一般只具有网络接口。也有部分NAS产品需要与SAN产品连接,可能会有FC接口。NAS产品一般用系统软件。一个NAS系统包括处理器,文件服务管理模块和多个硬盘驱动器(用于数据的存储。NAS 可以应用在任何的网络环境当中。主服务器和客户端可以非常方便地

氢能源制造技术

氢能源制造技术 氢能源可以由各种化石燃料制得,如石油、天然气和煤。当前在氢的应用中包括氢化处理和氢化裂解,它们在精炼厂中进行处理,以实现对原油的提炼。在化学工业中,氢可以用来制造各种各样的化合物,如氨和甲醇,以及用在冶金处理中。制氢技术包括天然气的蒸发重整、碳氢化合物部分氧化和煤气化等。不过,这些技术均无助于减少对化石燃料的依赖。 水电解是一种成熟的制氢技术,它效率高,但需要用到大量的电力。不过,通过使用太阳能来产生电解氢所需的电,该问题就可以得到解决。此项技术已经足够成熟,可以用于大规模发电和制氢。其他的制氢方案包括非高峰期的水电、核电制氢、直接热分解制氢、热解制氢、热化学循环制氢和光解制氢等。当中的许多技术正处于不同的开发阶段,少数方法已遭废弃。 1、蒸汽重整制氢 最廉价的大规模制氢方法是通过对化石燃料的蒸汽重整,目前的方法使用镍催化剂。依照以下反应式,甲烷首先与水蒸气发生反应,产生一氧化碳和氧气,一氧化碳穿过催化剂,然后与水蒸气发生反应,产生二氧化碳和氢气。

天然气是最廉价的蒸汽重整制氢原料,但其成本仍要比从原油制造汽油的成本高2~3倍。目前,正在开展了一系列工作来研究解决如何提高蒸汽重整的效率和降低制氢成本。 2、部分氧化制氢 另一种制氢方法是部分氧化。该方法涉及膜与氧的反应,产生氢气和一氧化碳,其转换效率要比蒸汽重整的低,这就是为什么蒸汽重整仍处于商业制氢的主导地位的原因。 3、煤气化制氢 煤气化是最古老的制氢方法之一。在天然气变得可用之前,它用于制造“城镇煤气”。煤加热至气态,然后在催化剂的作用下与蒸汽混合,产生合成气体,对该气体进行处理,以提取氢气和其他化学物质或者燃烧发电。当前煤气化研发关注的主要问题是如何减少污染物,如氮和硫的氧化物、汞和一氧化碳。 4、生物材料制氢 通过高温分解和气化处理,氢可以从许多类型的生物材料制得,如农作物和动物的残害,这些物质可以产生碳含量很高的合成气体。使用生物材料而非化石燃料不会产生任何二氧化碳排放。遗憾的是,生物材料制氢的成本比从化石燃料制氢的成本要高得多。从生物材料制氢的生物学处理过程包括发酵、厌氧消化和代谢处理技术等,但这些都根本无法与传统的制氢技术相匹敌。

智慧树可再生能源与低碳社会答案 网课2018知到可再生能源与低碳社会答案

智慧树知到可再生能源与低碳社会答案 绪论单元测试第一章单元测试第二章单元测试第三章单元测试 名称可再生能源与低碳社会对应章节绪论成绩类型分数制截止时间2018-08-15 23:59 题目数1 总分数100 说明:评语: 提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100

更多答案就在徽信公丛呺【校园柠檬】获取 第四章单元测试 名称可再生能源与低碳社会对应章节第四章成绩类型分数制截止时间2018-08-15 23:59 题目数5 总分数100 说明:评语: 提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 第1部分总题数:5 1 【单选题】(20分) 加快转变经济发展方式的重要着力点是 A. 建设资源节约型、环境友好型社会 B. 建设资源节约型、能源创新型社会 C. 建设科技开发型、能源创新型社会 D. 建设科技开发型、环境友好型社会

查看答案解析 本题总得分:20分 2 【单选题】(20分) 在我国的能源消费结构中,消费比例最大的能源是 A. 天然气 B. 煤炭 C. 石油 D. 水电 正确 查看答案解析 本题总得分:20分 3 【单选题】(20分) 从终端用能角度看,能源消费最大的三个部门是 A. 交通、工业和农业 B. 交通、农业和建筑 C. 工业、交通和建筑 D. 工业、农业和建筑 正确 查看答案解析 本题总得分:20分 4 【多选题】(20分) 《中国应对气候变化国家方案》提出的我国应对气候变化的指导思想是 A. 以保障经济发展为核心 B. 以控制温室气体排放,增强可持续发展能力为目标 C. 坚持节约资源和保护环境的基本国策 D. 全面贯彻落实科学发展观,推动和谐社会建设

新能源技术应用的现状及发展趋势

目录 摘要 (2) 第一章对能源的认识 (3) 1.1能源的定义 (3) 1.2能源的源头 (3) 1.3能源的种类 (4) 第二章新能源的发展趋势 (5) 2.1 多元化 (5) 2.2 清洁化 (5) 2.3 高效化 (5) 2.4 全球化 (6) 2.5 市场化 (6) 第三章启示与建议 (7)

摘要 我们人类生存与发展中最具有决定性意义的要素是三个:物质、能量和信息。组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。 能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子部的能量。 未来对能源的要求有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。未来对能源的需求未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。 除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。 关键字:能源利用可持续发展环境污染

DAS、NAS、SAN存储技术的比较

什么是NAS 网络储存设备(Network Attached Storage,NAS),是一种专门的资料储存技术的名称,它可以直接连接在电脑网络上面,对不同操作系统的使用者提供了集中式资料存取服务。 NAS和传统的档案储存服务或是直接储存设备不同的地方在于NAS设备上面的操作系统和软件只提供了资料储存、资料存取、以及相关的管理功能;此外,NAS设备也提供了不止一种档案传输协定。NAS系统通常有一个以上的硬盘,而且和传统的档案服务器一样,通常会把它们组成RAID来提供服务;有了NAS以后,网络上的其他服务器就可以不必再兼任档案服务器的功能。NAS的型式很多样化,可以是一个大量生产的嵌入式设备,也可以在一般的电脑上执行NAS的软件。 NAS用的是以档案为单位的通讯协定,例如像是NFS(在UNIX系统上很常见)或是SMB(常用在Windows系统)。NAS所用的是以档案为单位的通讯协定,相对之下,储域网络(SAN)用的则是以区块为单位的通讯协定、通常是透过SCSI再转为光纤通道或是iSCSI。 NAS设备用的通常是精简版的操作系统,只提供了最单纯的档案服务和其相关的通讯协定;举例来说,有一个叫FreeNAS的开放源码NAS软件用的就是精简版的FreeBSD,它可以在一般的电脑硬件上执行,而商业化的嵌入式设备用的则是封闭源码的操作系统和通讯协定程式。 简单来说NAS就是一台在网络上提供文档共享服务的的网络存储服务器。 NAS的网络结构 NAS存储使用以太网接口直接接入现有以太网网络实现数据的共享。部署灵活,不会对现有网络结构产生变化。 NAS存储的优缺点 NAS的优点: NAS设备一般支持多计算机平台,用户通过网络支持协议可进入相同的文档,因而NAS 设备无需改造即可用于混合Unix/Windows NT局域网内。 其次,NAS设备的物理位置同样是灵活的。它们可放置在工作组内,靠近数据中心的应用服务器,或者也可放在其他地点,通过物理链路与网络连接起来。无需应用服务器的干预,NAS设备允许用户在网络上存取数据,这样既可减小CPU的开销,也能显著改善网络的性能。 对现有网络环境有很好的适应性。NAS设备对企业网络环境基本上没有什么特别的要求和限制,可以很方便的在现有的网络环境中添加NAS设备。这是因为NAS所支持的那些操作系统和网络协议都是已在网络中得到很好的支持,NAS设备的添加不会引发新的网络支持的问题。

氢能源综述

氢能源的最新研究成果综述---制备、储存以及利用 在法国小说《神秋·岛》中有句话:“我相信,总有一天氢气和氧气会造产生光和热的无尽源泉”。地球上的物质66%是由氢组成的,当石化燃料危机以及由此带来的环境危机越来越成为关系国计民生和人类未来的重要问题的时候,一个全新的“氢能经济”的蓝图正在逐步形成。氢能是一种完全清洁的新能源和可再生能源,它是利用石化燃料、核能和可再生能源等来产生氢气,也可通过燃料电池化学反应直接转换成电能,用于发电及交通运输等,还可用作各种能源的中间载体。氢可作为一种储备的能源,如果利用丰富的过剩电能实现电解水制氢,可以建独立的氢供应站,不必区域联网。因此,氢与可再生一次能源相结合可以满足未来能源的所有需求。 1、氢能源的优越性 氢作为能源有许多优越性。水通过光分解可制得氢,水是取之不尽,用之不竭的原料,又十分低廉,地球的表面有是水,储量很大。氢燃料燃烧后又生成水,是一种燃烧无害、十分清洁的能源。氢在储存、输送上比电力损失小,而且氢燃烧热值高,1kg氢燃烧产生的热量相当于3kg汽油或4.5 kg焦炭的发热量。但是在实际的应用中氢的存储与运输,以及利用太阳能分解水制取氢,一直是制约氢能发展的问题。 2、氢能源的制备与贮存 氢能源的制备 “纯天然的氢能源”目前自然界是没有的。氢能源是一种二次能源。它更像是一种能量的载体,通过某种途径制得,然后再用于另一种途径。氢能源的热值非常高,又不会产生污染(氢气的燃烧产物即为水),因而是理想的二次能源。目前氢能源的制备方法非常多,从传统的电解水制氢,到微生物制氢。课本中已经详细介绍了电解水制氢的方法,因此这里着重介绍生物制氢的方法,以及最近美国科学家最新开发出的用糖来制取氢气的方法。 人们就已经认识到细菌和藻类具有产生分子氢的特性。在生物制氢研究领域,人们以碳水化合物为供氢体,利用纯的光合细菌或厌氧细菌制备氢气,并先后用一些微生物载体或包埋剂,细菌固定化的一系列反应器系统进行了研究。到 20 世纪90年后期,人们直接以厌氧活性污泥作为天然产气微生物,以碳水化合物为供氢体,通过厌氧发酵成功制备出生物氢气,因而使生物制取成本大大降低,并使生物制氢技术在走向实用化方面有了实质性的进展。任南琪等以厌氧活性污泥为菌种来源,以废糖蜜为原料,采用两相厌氧反应器制备出氢气,开创了利用非固定化菌种进行生物制氢的新途径,由于此技术采用的是混合菌种,在运行中方便操作和管理,大大提高了生物制氢技术工业化的可行性,也成为国际上近来生物制氢技术研究的热点。樊耀亭等以牛粪堆肥作为天然混合产氢菌来源,以蔗糖和淀粉为底物,通过厌氧发酵制备了生物氢气。迄今为止,已研究报道的产氢生物类群包括了光合生物(厌氧光合细菌、蓝细菌和绿藻X非光合生物(严格厌氧细菌、兼性厌氧细菌和好氧细菌)和古细菌类群。 最近,科学家利用合成生物学的方法,使用由13种酶组成的混合物,将碳水化合物和水转变成二氧化碳和氢气。实验显示,这一反应在约30℃和1个大气压的条件下即可发生。将二氧化碳抽除后,氢气进入燃料电池产生电力,副产物水可以循环利用。在反应中,氢是主要产物,效率比自然界里厌氧菌分解生物物质产生氢的效率高3倍,每磅氢的成本可能低于1美元。

《能源化学》习题与思考题-精选.pdf

《能源化学》习题与思考题 (可再生能源和新能源部分) 第一章绪论 1.能源是如何分类的?并给出“可再生能源”与“非再生能源”的定义。 2.何为能源当量,中国的1000tce相当于多少toe? 3.能源利用与社会发展、环境保护有什么关系? 第二章太阳能 4. 太阳能具有那些资源特性? 5. 太阳日射分为那几种形式? 6. 太阳能技术包括那几种类型? 7. 举例说明1~2种太阳能技术的工作原理。 8. 氢能有什么优越性? 第三章风能 9. 风是如何产生的,为什么会出现全球风和局部风? 10. 风能具有那些资源特性? 11. 风能的利用有那几种基本形式? 12. 风能的利用对环境有什么影响? 第四章地热能 13.地热能具有那些资源特性? 14.地热能资源分为哪几种形式? 15.地热发电分哪几种工艺类型? 第五章生物质能 16.生物质能资源分为哪几种类型? 17.生物质能如何利用? 第六章海洋能 18.潮汐能产生的原因是什么?它有那些基本形式? 19.波浪能、海洋热能、盐度梯度能有那些可能的利用途径? 第七章水电 20.水电有那些优越性,对环境有什么影响? 21.中国的水电资源有那些特点? 22.世界能源理事会为何特别重视小水电的发展? 第八章核能 23.发展核电有什么优越性? 24.核反应有那些基本类型? 25.核能有那些利用途径? 参考文献: 新的可再生能源·未来发展指南世界能源理事会编北京海洋出版社1998 可持续能源的前景Edward S. Cassedy著清华大学出版社2002 新能源概论吉世印编著贵州科技出版社2001

《能源化学》习题与思考题 (不可再生能源部分) 第一章天然气水合物 1.什么是天然气水合物?写出其分子式。 2.天然气水合物如何分类,说明其基本晶穴结构。 3.天然气水合物具有那些外表特征和物理性质? 4.天然气水合物是如何形成的,形成的物理化学条件有那些? 5.人类准备怎样开发利用天然气? 第二章石油 1.什么是石油?按照1983年第11届世界石油大会提出的定义,说明“石油”与“原油”,“石油”与“天然气”的定义。 2. 石油的加工技术有那些类型? 3. 什么是石油的有机成因学说,其主要依据是什么? 4. 天然气的烃类组成与非烃组成如何? 5. 原油的元素组成大致范围是什么? 6. 原油的馏分组成如何分类,其相应的温度范围是多少? 7. 原油的烃组成有哪几种类型?如何表示? 8. 汽油馏分单体烃组成有那些基本规律? 9. 原油不同馏分的族组成如何分类 10. 原油中有那些杂原子化合物,它们对原油的加工与石油产品的性质有什么影响? 11. 石油产品有那些类型? 12. 汽油一般质量要求是什么? 13. 什么是抗爆性、辛烷值?可以采取哪些措施来提高其辛烷值? 14. 润滑油的基础油是什么成分,采用那些主要添加剂? 15.石油合成产品的主要类型有那些?

存储技术现状

存储技术应用现状调查 摘要在如今的存储市场上,有大量可供选择的技术。而且人们根据这些不同的选项可以作出很多不同的决定。有三个比较全面的存储选项值得你考虑:直连存储(DAS)、网络直连存储(NAS)、和存储区域网络(SAN)。正如你所期望的,每个选项都会满足特定的需要,并且每个选项都会有自己的优点和缺点,在作出决定之前你需要权衡一下利弊。 关键词直连存储;网络直连存储;存储区域网络 1.存储技术的介绍 1.1直连存储 在DAS(Direct Attached Storage)方式中,存储设备是通过电缆直接到服务器的。I/O(输入/输出)请求直接发送到存储设备。对于多个服务器或多台PC的环境,使用DAS方式设备的初始费用可能比较低,可是这种连接方式下,每台PC或服务器单独拥有自己的存储磁盘,容量的再分配困难;对于整个环境下的存储系统管理,工作烦琐而重复,没有集中管理解决方案。所以整体的拥有成本(TCO)较高。 任何曾经接触过服务器的人都会对DAS比较熟悉。DAS是一种将存储介质直接安装在服务器上或者安装在服务器外的存储方式。例如,将存储介质连接到服

务器的外部SCSI通道上也可以认为是一种直连存储方式。 DAS已经存在了很长时间,并且在很多情况下仍然是一种不错的存储选择。由于这种存储方式在磁盘系统和服务器之间具有很快的传输速率,因此,虽然在一些部门中一些新的SAN 设备已经开始取代DAS,但是在要求快速磁盘访问的情况下,DAS仍然是一种理想的选择。更进一步地,在DAS环境中,运转大多数的应用程序都不会存在问题,所以你没有必要担心应用程序问题,从而可以将注意力集中于其他可能会导致问题的领域。然而,DAS并不是总是具有美好的一面。首要的一个问题是IT经理必须要经常面对所谓的"空间问题"问题,这些问题需要考虑以下常见的方面:对于一个新的服务器,我需要多少存储空间?如果物资不充沛但需要增加空间时我应该如何做?目前市场上的一些选项可以帮助你减轻与这些问题相关的存储负担,但是不管怎样,你也需要对这种存储方式进行一次较好的评估,否则的话,你对存储所做的扩展将只是一个没有预测的表面上的需要。另外,你还需要管理几乎所有基于服务器的DAS系统,这意味着你需要在适当的位置上有一个监控服务器上每个物理单元的磁盘使用率工具。大多数的IT经理都不希望其磁盘空间在工作日的中间出现不够用的情况。在很多情况下,DAS是一种理想的选择:如果你的存储系统中需要快速访问,但是公司目前还不能接受最新的SAN技术的价格时或者SAN技术在你的公司中还不是一种必要的技术时,这是一种理想的选择。对于那些对成本非常敏感的客户来说,在很长一段时间内,DAS将仍然是一种比较便宜的存储机制。当然,这是在只考虑硬件物理介质成本的情况下才有这种结论。如果与其他的技术进行一个全面的比较--考虑到管理开销和存储效率等方面的因素的话,你就会发现,DAS将不再占有绝对的优势。对于那些非常小的不再需要其他存储介质的环境来说,这也是一种理想的选择。 1.2网络直连存储 NAS(Network Attached Storage)是一种将分布、独立的数据整合为大型、集中化管理的数据中心,以便于对不同主机和应用服务器进行访问的技术。它是一种专用数据存储服务器。它以数据为中心,将存储设备与服务器彻底分离,集中管理数据,从而释放带宽、提高性能、降低总拥有成本、保护投资。其成本远远低于使用服务器存储,而效率却远远高于后者。

相关文档
相关文档 最新文档