文档视界 最新最全的文档下载
当前位置:文档视界 › 高等数学作业

高等数学作业

高等数学作业
高等数学作业

第1次作业

1、设函数()x

x x f =画出图形,求函数在0=x 处的左右极限,并说明函数在0=x 处极限

是否存在?

()()()()不存在

=∴-==??

?<->==

→→→-

+x f x f x f x x x x

x f x x x 0

00lim 1

lim 1

lim 0,10,1

2、设()??

?

??-+=111

x x x f 111<=>x x x ,画出图形,并讨论函数在x=1处的极限是否存在?

21lim )(lim 1

1=+=++

→→x x f x x 01lim )(lim 1

1

=-=--→→x x f x x ∴)(lim 1

x f x →不存在

第2次作业 1计算下列极限

(1)1

lim →x =(32x -x+2) =31

lim →x 2x -1

lim →x x+2=4

(2)0

lim

→x 65252322

+--+x x x x = 6

52lim 5

23lim 2

20

+--+→→x x x x x x 65-= ●

x

y ﹣ ﹣ 2 1 0

1

(3)()()()()5

3121lim 21212lim 2322

lim 222

22=++=-++-=----→→→x x x x x x x x x x x x x ()41

lim 1

-→x x

x 不存在 ()5()

()1131

24lim 324lim

202230=++-=++-→→x x x x x x

x x x x x x ()()

211lim 11lim 6222022

0-=-++=+-→→x x x x

x x x ()21

1112lim 11

2lim 72

2

22

=---

=---∞→∞

→x x x x x x x x

()()()()()()

()01

11lim 1lim 121111lim 1111

lim 111093

131311lim 331lim 812221312

222

=+-=-=++--++=??? ?

?---=∞

==+--=+--∞→+∞→→→∞→∞→n

n n n n n

n x x x x e

e e e e x x x x x x x x

x x x x x 不存在不存在

第3次作业

()()()()()()()()()1arcsin lim 72sin sin 2lim sin 2cos 1lim 61sin lim sin lim 50cos sin lim tan lim 43333tan lim 3tan lim 32sin 22sin 2lim sin 2sin lim 22

1222sin

lim 2sin

lim

11020000000000===-=--=-===?==?==?=→→→→→→→→→→→→→x

x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x

x x x x x x x x x x x x x x x πππππ计算极限

()()()2cos sin cos sin 2lim tan 2sin lim 93sin 3lim sin 3lim 820

2000=??==+=+→→→→x

x x x x x

x x x

x

x x

x x x x x x ()111

sin lim

1

sin lim 102

222=??

?

??=∞

→∞→x x x

x x x 2计算极限

()()2

2

21010

)2(1lim )21(lim 1---→→=??

????

-+=-e x x x

x x

x ()

()[]2

2

1020

1lim 1lim )2(---→→=??

?

?

??-+=-e x x x

x x

x 2

2

211lim 1lim )3(e x x x x x x

x =????

??????? ??+=??

? ??+∞

→∞

()()()22cos 12sec 22

cos 1lim cos 1lim 4e

x x x x x

x =??????+=+→→

ππ

()2

12

12201

20

212lim 21lim 5-

→-

→=???

?

??????? ??+??? ??=??

? ?

?

+e

x x x x x x

x 1+ ()e x x x x x x x =??? ??++=???

??+++∞→+

→2122

11221lim 1232lim 6 第4次作业

1、试证:当.1113是同阶无穷小与时,

x x x --→ (

)

是同阶无穷小

与时3332313

1311113111lim 11lim x x x x

x x x x x x x --→∴=+?

??? ??++-=--→→ ()()

较高阶无穷小是比,无穷小?相比,哪一个是教高阶与时,、当232203*********lim 2lim 202x x x x x x x x x x x x x x x x x x x -+∴∞=+-=+-+-→→→

2

~

cos 10122sin lim 2sin 2lim 2cos 1lim .

2~cos 1032

22

0220202

x x x x x x x x x x x x x x x -→∴=?

??

???

?? ??==--→→→→时时,、证明:当 4、求极限

()0cos lim 1=∞

→x

x x ()01cos lim 220=→x

x x 5、用等阶无穷小代换,求极限:

()3

131lim 11lim 103

==-+→→x x x

x x x ()2

2lim 1lim 2020==-→→x x

x e x x x

第5次作业

1、求函数的间断点,并指明类型.

()()()()()是第二类间断点

第一类间断点是可去间断点2lim .12

lim 2111231231

12

1

2

22

2=∴∞

==-=--+-=

+--=+--=→→x y x y x x x x x x x y x x x y x x

()间断点

是第一类间断点的可去时函数没有意义

0212sin

2lim cos 1lim 0cos 1222

0202

=∴==-=-=→→x x x

x x x x

x

y x x

()间断点第一类间断点中的跳跃属于时左右极限不相等∴=====??

???

?????≤>=--++→→→→01

1lim lim 01

sin lim lim ;

0,10,1sin 30

000x y x x y x x x x x y x x x x ()断点

属于第一类中的可去间相等函数没意义但左右极限003

3lim lim 33sin lim lim 0,3sin 0,342

002=∴==+===?

?

?

?

?

?????><+=--++→→→→x x x y x

x y x x x x y x x x x

()()()()()()()

()()()()()()()

()()()()()()()()()5

8542lim ,lim ,21

lim ,2.2,3.3,3-x 22311-x 3231316

3

3.

lim ,lim ,lim 6

3

32320

22223320223-=--?-=

∞==

+∞---∞-∴==-+++=-+-+-=-+--+=

-+--+=-→→→→→→x f x f x f x f x x x x x x x x x x x x x x x x f x f x f x f x x x x x x f x x x x x x 的连续区间是时无意义或当解:的连续区间,并求、求 ()()()()()()()()6

3lim 33639

lim lim .-,33,3933

2332=====--=∞+∞??

?

???????=≠--=→→→A f x f x f x A

f x x x f A x A x x x x f x x x 即连续则时若内连续,取何值时,函数在

问,设函数 4、求下列极限

()()12sin lim 13

4

=→

x x π

()(

)

2

1

1

11lim 1

11

1lim

11lim 20

=++=++-+=-+=→→→x x x x x x x x x

()0sin lim ln sin ln

lim 300==→→x

x

x x

x x ()2

1

2

12

11lim 11lim 4e x x x x x x =??????????? ??+=???

??+∞→∞

→ 第2章 导数与导数的应用

第6次作业

1

、A 存在,依照导数定义观察下列极限,指出()0'x f 下列各题均假定表示什么:

()()()

()

()[]()()

()[]()()()

0'0000000'000

lim lim -lim 1x f x x f x x f x x f x x f x f A x

x f x x f x x x -=?---?-+=?---?-+-==??-→?-→?→? ()()()()()()()()A f x f x f x x f f f A x

x f x x x ==--===→→→00

0lim lim 0,00,lim 2'00'0存在;且其中

()()()()()()()[]()()()()()A

x f h x f h x f h x f h x f h

x f h x f x f h x f A h

h x f h x f h h h h ==---+-+=----+=--+→→→→0'00000000000000

2lim lim lim lim 3 2

、求下列曲线在给定点处的切线及法线方程

()2

31

002

3cos cos 1,2

3,sin 12

3'

π

ππ=

-=∴=====?

?

?

??-==

x y k k y x y x y x 法线方程切线方程不存在法线斜率为切线斜率为

()21934-3322193421,23332332123332121,23b 233

3

2232

3

32sin sin ;

21,23,cos 221213

2'

'-=∴+=??

? ??+=

+=???? ??+

-+-=∴+-=??? ??+-=+=∴=-

=∴-=-=-=??

?

??==

πππππππππx y B B x Y B x k Y x y b x y b x k y k k y x y x y x 代入法线方程代入切线方程法线斜率切线斜率()()

)(ln 1)(ln 11ln ln 1

ln 1

ln 11,,log 321''a x a a y a x a

a y a a k a

a k a a y a x y a x y a a --=--=-∴-==

=

=

=法线方程切线方程法线斜率切线斜率 第7次作业

1

、求下列函数的导数

()3

'

2222465235231--+=+-=+-

=x

x y x x y x

x y ()()()x

x x x y x

x y cos 1sin 2sin 122

'

2++?=+=

()337

3'

2

3

44

232623

4413------=++=++=

x

x x y x x

x x x x y ()()

x x x x y x x y sin cos 27sin cos 42'2-?+?=+=π ()x

x x y x x y 2

'sec tan 3

sin tan 5+=+=π

()22')1(2)1()1(11

16+=+--+=+-=

x x x x y x x y

()x

x x x x x y x x x y sin ln cos ln sin ln sin 7'++== ()()()()2

2

'ln 11ln 1ln 111

ln 1ln 18--+?

--+-=++-=x x x x x x y x x x y 2

、求下列函数在给定点的导数 ()()8

24242_8222sin 21

cos sin :

cos 21sin 14

4

πππ

π

+=+=

-++=+==

=

x x dx

dy x x x x dx dy dx

dy

x x x y ,求()()()()()()

()

()()()()18

12121212121212141211121.

4,1122

'2

212

1

'

'-

=+??

?

????--+??-

=+?

??? ???--+-=+-

=--f x x x x x x f f x

x

x f 求

第8次作业

1

、求下列复合函数的导数

()()

()()()

3

'

3'4

52852524521+=++=+=x x x y x y

()?

?? ?

?

+-=?

?? ??+???? ?

?

+-=??

?

?

?+=45sin 54545sin ;

45cos 2'

'

ππππx x x y x y

()()

2

2

2

3'

23'3633x

x x

xe x e y e y ----=-?== ()()

()1

11111ln 4''-=

-?-=-=x x x y x y ()()

2

2'222'2

sec 2sec tan 5x x x x y x y ?=?== ()()()

()

(

)

2

32

23

2'2232

21

212

1

1

12

1'1

16-

--+-=+-=++-=+=

x x x x x x y x y ()()2

2

22

2

3sin 33cos 2

13

3sin 3cos 21'3cos 7x x x x x xe

x e

x e x e y x

e

y -----

--=?-+??

?

??-== ()()()()

???

? ??+?+=+?+=+=

--

-

212

1'

2

12112

1

2

1

'8x x x x x x

x y x

x y

()()

(

)()

()()

22sin 221cos 1sin 21

sin

92

222

2

+=?++=+=x

x x x x y x

y ()()

()

32cos cos 'sin 101

313'

1

31

31

322

22

2

+===-+-+-+-+-+x e

e e

e y e y x x x x

x x x x

x x

2

、求下列函数的二戒导数

()()

()2

2

2

2

2

2

421221212''22'

x

x x x x x

xe x xe y x e e x e y xe y ++=+=+== ()()

()()

13sin 913cos 313sin 2'''+-=+=+=x y x y x y

第9次作业

1、求下列方程所确定的隐函数y 的导数

dx

dy ()()y x y x y yy xy y x yy xy y x y xy x

103340103340

10340

5321'

''''2

2

++-

==+++=+++=++ ()()

()

y

x y x y

x y x y

x y x y x y

x e x y e y y e y e x y e y e xy y e xy y e xy ++++++++--=

-=--=-+=+='

''''

'12

()1

'1'11'11ln 3'-=

=???

?

??-+

=+=y y y y y y y

y y

x y ()()

()

()()

()

()2

2

2

2

2

1'11

'11'

1'arctan 4y x y y x y y x y x y x y y y x y +=

++=

++++++=

+=

3、用对数求导法求下列函数的导数

()y

x x x y

y y x y y y y x x y y

x

y x y x y y x x y y x x

y

--=-=???? ??-'

+=+==ln ln 'ln 'ln ln ln 'ln ln 1 ()()

()()()x x x x x x x y x x x x x y y x

x

y x y x x x

2tan 2sec 2cot 2tan 22tan ln 2

csc 2tan '22tan 2sec 2cot 2tan ln 212csc '12tan ln 2

cot ln 2tan 222cot 21

22cot 222

cot

+-=+-===

()()()()

()()

()()

55

252

'2'252525

5

22

522525512

25255112ln 251

5ln 512

ln 515ln 5125

ln 51ln 2

5

3+-??

????+--=+--=+--=+--=+-=+-=x x x x x y x x x y y x x x x x x y x x y ()()

()

()

x x

x x

x x

x x

e x x e e x x x y e e x x x y y e x x e x x y e x x y +???

? ?

?+++=+++=+++=+=

+=

1sin 14sin 2cos 21'14sin 2cos 21'11ln 41

sin ln 21ln 21]1sin ln[21

ln 1sin ln 4

第10次作业

1、求下列函数的偏导数

()21

1y

x x z y

y z y

x

xy z y x -=+

=+=

()()

()()()y x z y x x x

y x z y x z y x +=+=?+=+=2222cos cos 22cos sin 2

()()()()()()[]()()()()()[]()()

xy x xy x x

xy xy xy x z xy y xy y y xy xy xy y z xy xy z y x 2sin cos sin cos 2cos 2sin 2cos sin cos 2cos cos sin 32-=?-?+=-=?-+=+= ()()

2

222

22

2

22222222ln 4z y x z w z y x y w z y x x w z y x w z y x ++=++=++=

++=

2

、求下列函数的二阶导数 ()104101

451'''2=+=++=y x y x x y ()()

()()

13sin 913cos 313sin 2'''+-=+=+=x y x y x y

第11次作业

1

、将适当的函数填入下列括号内,使等式成立 ()xdx c x d 3)2

3(12=+ ()wxdx c wx w

d sin )cos 1(2=+-

()dx x C x d +=++11))1(ln(3 ()dx e C e d x x 22)2

1(4--=+-

()dx x

C x d 1)2

(5=

+()dx

x x C x x d )sin (cos )cos (sin 6-=++

()dx x C x d 3cos 1

)3tan 3

1(72=

+ ()dx x

C x d 211)(arcsin 8-=+ 2

、求下列函数的微分 ()xdx

x xdx dy x

x y 2cos 22sin 2sin 1+== ()dx

x x xdx dx xdx dy x x x y )21(ln 2ln ln 22

-+=-+=-=

()dx

x e x e dy x

e y x x x )cos sin (sin 3---+-==

()dx x

x dy x

y ??=

=2

sec 2cot 212

tan ln 42

()()

(

)

dx

x x x x dx x x

x x x dy x x y 1

11121211

522

12

2

2

2

21

2

2

2++-+=

?+?+-+=

+=

-

- ()()xdx x dy x y sin cos sin cos cos 6?== 3

、求下列函数的全微分

高等数学作业下-2 (答案)

第八章 习题答案 8.1 多元函数基本概念 1.解:=),(y x f )225(9 1 22y x xy --。 2.解:).sin sin())(,(),sin sin(sin )],([x x x x f x g y x y x y x g f =?= 3.解:(1)0。(2)a e 。(3)1。(4)0。(利用有界量乘以无穷小量仍为无穷小量。) (5)y x y x y x y x y x 1102222+≤++≤++≤ ,且.0)11(lim =+∞ →∞→y x y x 从而.0lim 22=++∞ →∞→y x y x y x (6)22)21()( 022x x y x xy ≤+≤ ,且0)21(lim 2=+∞→x x ,所以原式0=。 4.解:不存在。因沿不同路径趋近时极限值不同。 5.解:⑴),(y x f 的定义域为0≠+y x 。 )(a 当0≠+y x ,1≠+y x 时),(y x f 的表达式为初等函数,故连续。 )(b 当100=+y x 时,=-++-+=→+→+211 )11ln(11lim ),(lim y x y x y x f y x y x =+→20)1ln(1 lim t t t ),(200y x f =,即),(y x f 在 100=+y x 时也连续。故),(y x f 的间断线为0=+y x 。 ⑵)(a 当02 2 ≠+y x 时),(y x f 的表达式为初等函数,故连续。 )(b 当02 2 =+y x 时,2222001)1(lim ),(lim k k x k kx y x f x kx y x +=+=→=→,显然k 取不同值时得不同极限,即),(lim 0 0y x f y x →→不存在,故),(y x f 在)0,0(点不连续。 ⑶)(a 当022≠+y x 时),(y x f 连续。)(b 当02 2=+y x 时,因y x y x f +≤),(,故 0),(lim 00 =→→y x f y x ,从而)0,0(0),(lim 0 f y x f y x ==→→,即),(y x f 处处连续。 8.2 偏导数与全微分 1.解:(1) )2cos(4),2cos()2sin(2222222y x ye y z y x e y x xe x z x x x +=??+++=??。

高等数学作业上-1 (答案)

第一章函数 极限 连续 §1函数 1. 解:(1) 要使24sin x -有意义,必须.2,042≤≥-x x 即使所以定义域为[-2,2]. (2)当时,且1 3≠≠x x 3 41 2+-x x 有意义;而要使2+x 有意义,必须,2-≥x 故函数 的定义域为:).,3()3,1()1,2[+∞-、、 (3),1010.101110ln 110ln arccos e x e e x e x x ≤≤∴≤≤≤≤-,即有意义,则使要使即 定义域为].10,10 [ e e (4)要使)1(+x tg 有意义,则必有.,2,1,0,2 1 ±±=+≠ +k k x ππ ;即函数定义域为 .,2,1,0,12? ?? ?? ?±±=-+≠∈ k k x R x x ππ且 (5)当有意义,时有意义;又当时x arctg x x x 1 033≠-≤故函数的定义域为: ].3,0()0(、,-∞ (6)x k k x k sin )2,1,0()12(2时当 ±±=+≤≤ππ有意义;有要使216x -有意义, 必须有.44≤≤-x 所以函数的定义域为:].,0[],4[ππ、 -- 2. .2)2 1(,2)21 (,2)0(,1)2(,2)3(2 1-=-====f f f f f 3. 解:3134,34)]([22≤≤-+--+-= x x x x x x g f 有意义;必须因此要使, 即[])(x g f 的定义域为[1,3]。 4.解? ?? ??>-=<=???? ???>-=<=; 0,1,0,0,0, 1,1, 1,1, 0, 1,1)]([x x x e e e x g f x x x ?????????>=<==, 1,1,1,1,1,)]([) (x e x x e e x f g x f 。 5.有意义,时当)(sin 1sin 0x f x ≤≤故其定义域为).2,1,0]()12(,2[ ±±=+k k k ππ。 6.???-<++-≥+=+?? ?<+-≥-=-; 1,52, 1,32)1(;1,52, 1,12)1(2 2 x x x x x x f x x x x x x f

高等数学(同济五版)第五章-定积分-练习题册

42 / 9 第五章 定积分 第一节 定积分的概念与性质 一、填空题: 在 ? +10 3 1dx x 与? +1 41dx x 中值比较大的是 . 二、选择题(单选): 1.积分中值定理 ? -=b a a b f dx x f ))(()(ξ,其中: (A) ξ是[]b a ,上任一点; (B) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D) ξ是[]b a ,的中点. 答:( ) 2.曲线x e y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A) ?-10)(dx ex e x ; (B) ?-e dy y y y 1 )ln (ln ; (C) ? -e x x dx xe e 1 )(; (D) ?-1 )ln (ln dy y y y . 答:( ) 第二节 微积分基本公式 一、填空题: 1.=-? -212 12 11dx x . 2. 0)32(0 2=-? k dx x x )0(>k ,则=k . 二、选择题(单选): 若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则 2 )(lim x dt t f x x ?→ (A)0; (B)1; (C)2; (D)不存在. 答:( ) 三、试解下列各题: 1.设??? ??>≤+=1,2 11 ,1)(32x x x x x f ,求?20 )(dx x f .

43 / 9 2.设?? ???><≤≤=ππ x x x x x f ,0,00,sin 21 )(,求?=x dt t f x 0 )()(?在),(∞+-∞上的表达式. 四、设)(x f 在],[b a 上连续,且0)(>x f ,? ? += x a x b t f dt dt t f x F ) ()()(.证明: (1)2)('≥x F ; (2)方程0)(=x f 在),(b a 内有且仅有一个根. 第三节 定积分的换元法和分部积分法

高等数学同济第七版7版下册习题 全解

数,故 /, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个 I) b\ lh 尤公共内点的W K域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高等数学上册练习题

高数练习题 一、选择题。 4、1 1lim 1 --→x x x ( )。 a 、1-= b 、1= c 、=0 d 、不存在 5、当0→x 时,下列变量中是无穷小量的有( )。 a 、x 1sin b 、x x sin c 、12--x d 、x ln 7、()=--→1 1sin lim 21x x x ( )。 a 、1 b 、2 c 、0 d 、2 1 9、下列等式中成立的是( )。 a 、e n n n =??? ??+∞ →21lim b 、e n n n =? ?? ??++∞→2 11lim c 、e n n n =??? ??+∞→211lim d 、e n n n =?? ? ??+∞ →211lim 10、当0→x 时,x cos 1-与x x sin 相比较( )。 a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量 11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) . (A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x (B) x (C)1 ln(12) 2x + (D) x (x +2) 14、若函数()f x 在某点0x 极限存在,则( ). (A )()f x 在0x 的函数值必存在且等于极限值

(B )()f x 在0x 的函数值必存在,但不一定等于极限值 (C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0 lim ()x x f x →+ 与0 lim ()x x f x →- 存在,则( ). (A )0 lim ()x x f x →存在且00 lim ()()x x f x f x →= (B )0 lim ()x x f x →存在但不一定有00 lim ()()x x f x f x →= (C )0 lim ()x x f x →不一定存在 (D )0 lim ()x x f x →一定不存在 16、下列变量中( )是无穷小量。 0) (x e .A x 1-→ 0) (x x 1 sin .B → )3 (x 9x 3x .C 2→-- )1x (x ln .D → 17、=∞→x x x 2sin lim ( ) 2 18、下列极限计算正确的是( ) e x 11lim .A x 0x =??? ??+→ 1x 1sin x lim .B x =∞→ 1x 1sin x lim .C 0x =→ 1x x sin lim .D x =∞→ 19、下列极限计算正确的是( ) 1x x sin lim .A x =∞→ e x 11lim .B x 0x =??? ??+→ 5126x x 8x lim .C 232x =-+-→ 1x x lim .D 0x =→ A. f(x)在x=0处连续 B. f(x)在x=0处不连续,但有极限 C. f(x)在x=0处无极限 D. f(x)在x=0处连续,但无极限 23、1 lim sin x x x →∞ =( ). (A )∞ (B )不存在 (C )1 (D )0 24、221sin (1) lim (1)(2) x x x x →-=++( ). (A )13 (B )13- (C )0 (D )23 ) ( , 0 x 1 x 2 0 x 1 x ) x ( f . 20、 则下列结论正确的是 设

高等数学作业下-5 (答案)

第十一章 习题答案 1. 1常数项级数的概念及基本性质 1.解:(1) +?+?+ ?+?+ ?6515 414 31321211 (2) -+ -+ -5 14 13 12 11 (3) +++ ++5 4 3 2 5 !54 ! 43 !32 !21!1 (4) +????????+ ??????+ ????+??+ 10 8642975318 64275316 425314 2312 1 2. 解:(1)1 21-= n u n (2)1 2+-= n n u n (3)) 2(6422 n x u n n ??= (4)1 2) 1(1 1 +-=++n a u n n n 3. 解:(1)013 1lim lim ≠==∞→∞ →n n n n u ,∴级数发散(不满足级数收敛的必要条件) 。 (2)原级数可写为 )4 13 12 11(3 1 +++ + 。∵括号内级数为调和级数发散,∴原级数发散。 (3)原级数为公比等于2 3的几何级数,∵ 123>,∴原级数发散。 (4)原级数为发散的调和级数 +++++ 5 14 13 12 11去掉前三项,∴原级数发散。 (5)原级数为公比等于9 8-的几何级数,19 8<- ,∴原级数收敛。 (6)∵级数 ++ + 3 2 2 12 12 1收敛(公比 12 1<的几何级数) ,级数 ++ + 3 2 3 13 13 1收敛 (公比 13 1<的几何级数) ,∴原级数收敛(收敛级数可以逐项相加减)。 4. 解:(1)a a a a a a a a a a S n n n n -= - ++- +- +-=+-+1 21 2125 73 53)()()()( , a a a S n n n n -=-=+∞ →∞ →1)(lim lim 12,∴此级数收敛。 (2)]) 2)(1(1) 1(1 [ 21 ) 2)(1(1 ++- += ++= n n n n n n n u n +?- ?+ ?- ?+ ?- ?= ∴)5 414 31 (21 )4 31321 ( 21)3 212 11 ( 21 n S ])2)(1(1 ) 1(1 [ 21 ++- ++ n n n n =]) 2)(1(1 21[21++-n n , 4 1 ])2)(1(121[21lim =++-= ∞ →n n S n n ,∴此级数收敛。

版更新高等数学作业题参考答案新

东北农业大学网络教育学院 高等数学作业题(2014更新版) 一、单项选择题 1. x y 1 sin =在定义域内是( )。 A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数 2. 24 lim 22--→x x x =( ) A . -6 B. 4 C. 0 D . 2 3. x e x f 2)(=,则 )1(f '=( ) A . 2e B . 2 2e C. e D. 2 4. ?= dx e x ( ) A . 2C e x + B .2 C e x + C .C e x + D .C e x 1+ 5. 若曲线上任一点切线的斜率与切点横坐标成正比,则这条曲线是( ) A.圆 B.抛物线 C.椭圆 D.双曲线 6. 下列函数是初等函数的是( )。 A. 3sin -=x y B.1sin -=x y C. ??? ??=≠--=1,01, 112x x x x y D. ?? ?≥<+=0 ,0 , 1x x x x y 7. x x x sin lim 0→的值为( )。 A.1 B.∞ C.不存在 D.0 8. )12ln(-=x y ,则)1(f '=( ) A . 0 B. 2 C. 1 D. 3

9. 若 ()()x f x F= ',则() ()= ?dx x f d () A. ()x f B. ()dx x f C. ()x F D. ()dx x F 10. 方程 2= -'y y的通解是() A x y sin = B x e y2 4 = C x ce y2 = D x e y= 11. 下列函数是初等函数的是()。 A. 3 sin- =x y B. 1 sin- =x y C. ?? ? ? ? = ≠ - - = 1 , 1 , 1 1 2 x x x x y D. ? ? ? ≥ < + = , , 1 x x x x y 12. x x x 2 sin lim → A. 1 B. 2 C. 0 D. 1 - 13. )1 2 ln(- =x y,则)1( f' =() A . 0 B. 2 C. 1 D. 3 14. 若 ()()x f x F= ',则() ()= ?dx x f d () A. ()x f B. ()dx x f C. ()x F D. ()dx x F 15. 方程 2= -'y y的通解是() A x y sin = B x e y2 4 = C x ce y2 = D x e y= 16. 下列函数是初等函数的是()。 A. 3 sin- =x y B. 1 sin- =x y C. ?? ? ? ? = ≠ - - = 1 , 1 , 1 1 2 x x x x y D. ? ? ? ≥ < + = , , 1 x x x x y 17. 下列函数在指定的变化过程中,()是无穷小量。 A.e 1 x x ,() →∞ B. sin ,() x x x→∞

华东理工大学高等数学(下册)第9章作业答案

第9章(之1) (总第44次) 教学内容:§微分方程基本概念 *1. 微分方程7 359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A ) 解 微分方程的阶数是未知函数导数的最高阶的阶数. *2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) ( (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D ) 解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ; (B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解; (C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了 x C x C y 2sin 12cos 2 ++=,实质上只有一个任意常数; (D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 x x e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线. : 解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由x x e c e c y -+=21, x x e c e c y --='21,可得1,02121=-=+c c c c , 故21,2121-==c c ,这样就得到所求曲线为)(2 1 x x e e y --=,即x y sinh =. *4.证明:函数y e x x =-233321 2 sin 是初值问题??? ????===++==1d d ,00d d d d 0022x x x y y y x y x y 的解.

高等数学习题册参考答案

《高等数学》习题册参考答案 说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错. 第一册参考答案 第一章 §1.1 1.??? ????+≤≤--<≤<≤+=--. ),(2, , , 0 , 211010101T t T T t a v T t v t at v v a v a v v a v v 图形为: 2.B. 3.)]()([)]()([)(2 121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(2 1x f x f x G --=为奇函数. 4.??? ????=<≤-<≤-<≤=.6 ,0, 64 ,)4(, 42 ,)2(, 20 ,)(22 2x x x x x x x x f 5.???.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f 6.无界. 7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同. §1.2 1.(1))1 ,0()0 ,1(?-=D ;(2)} , ,{2 Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.?????>-=<=,0 ,1,0 ,0 , 0 ,1 )]([x x x x g f ???? ???>=<=-. 1 ,,1 ,1 ,1 , )]([1x e x x e x f g 4.(1)]2 ,0[,)1arcsin(2 =-=D x y ; (2)Y ∞ =+=+=0 2 2),( , )(tan log 1k a k k D x y πππ. 5.(1)x x x f f 1 )]([-= ; (2)x x f f 1 )(1][=. 6.+∞<<=-h r V r h h r 2 ,2312 2π. 7.(1)a x =)(?; (2)h x x +=2)(?; (3)h a a h x x ) 1()(-= ?. §1.9 1.1-=e a . 2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类); (2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类) (注意:+∞==∞ +-→- e e x x x 11 lim ,而0lim 11 ==∞--→+ e e x x x );

高等数学(下)课后习题答案

高等数学(下) 习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 s== s== x s== y s==. 5 z 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则

222222 (4)1(7)35(2) z z -++-=++-- 解得14 9 z= 即所求点为M(0,0, 14 9 ). 7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC为等腰直角三角形. 8. 验证:()() ++=++ a b c a b c. 证明:利用三角形法则得证.见图7-1 图7-1 9. 设2,3. u v =-+=-+- a b c a b c试用a , b, c表示23. u v - 解: 232(2)3(3) 224393 5117 u v -=-+--+- =-++-+ =-+ a b c a b c a b c a b c a b c 10. 把△ABC的BC边分成五等份,设分点依次为D 1,D2,D3,D4,再把各分点与A连接, 试以AB=c,BC=a表示向量 1 D A, 2 D A, 3 D A和 4 D A. 解: 11 1 5 D A BA BD =-=-- c a 22 2 5 D A BA BD =-=-- c a 33 3 5 D A BA BD =-=-- c a 44 4 . 5 D A BA BD =-=-- c a 11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M的投影为M',则 1 Pr j cos604 2. 2 u OM OM =?=?= 12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量

高等数学基础作业答案

高等数学基础第一次作业点评1 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,(C )中的两个函数相等. A 、 2 )()(x x f =,x x g =)( B 、 2)(x x f = ,x x g =)( C 、 3 ln )(x x f =,x x g ln 3)(= D 、 1)(+=x x f ,1 1)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称. A 、 坐标原点 B 、 x 轴 C 、 y 轴 D 、 x y = ⒊下列函数中为奇函数就是( B ). A 、 )1ln(2 x y += B 、 x x y cos = C 、 2 x x a a y -+= D 、 )1ln(x y += ⒋下列函数中为基本初等函数就是( C ). A 、 1+=x y B 、 x y -= C 、 2 x y = D 、 ? ??≥<-=0,10 ,1x x y ⒌下列极限存计算不正确的就是( D ). A 、 12lim 2 2 =+∞→x x x B 、 0)1ln(lim 0 =+→x x C 、 0sin lim =∞→x x x D 、 01 sin lim =∞→x x x ⒍当0→x 时,变量( C )就是无穷小量. A 、 x x sin B 、 x 1 C 、 x x 1 sin D 、 2)ln(+x 点评:无穷小量乘以有界变量为无穷小量 ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。 A 、 )()(lim 00 x f x f x x =→ B 、 )(x f 在点0x 的某个邻域内有定义 C 、 )()(lim 00 x f x f x x =+→ D 、 )(lim )(lim 0 x f x f x x x x -+→→= 二、填空题 ⒈函数)1ln(3 9 )(2x x x x f ++--= 的定义域就是 .}33{>-≤x x x 或 ⒉已知函数x x x f +=+2)1(,则=)(x f .x x -2 ⒊=+ ∞→x x x )211(lim .21 e

高等数学练习册

高等数学(下)练习册 专业班级:___________________________________________ 姓名:___________________________________________ 学号:___________________________________________ 西南科技大学城市学院数学教研室编

第七、八章 向量、空间解析几何、多元微分法 一、填空题 1、从点)7,1,2(-A 沿向量k j i a 1298-+=的方向取一段长34||=,则点B (_______). 2、已知两个力)3,2,1(1=,)4,3,2(2--=F ,则合力的大小||F =________,合力的方向为___________________. 3、设向量+=2,b a k B +=,其中1||=,2||=,且⊥,若⊥,则k =_____. 4、已知3+=,3+=,则ABC ?得面积是________. 5、已知平面π过点)21,3(-且过直线1 2354z y x =+=-,则平面π的方程为_____________. 二、选择题 1、方程0242222=++-++z y x z y x 表示的曲面是( ) A 、球面 B 、椭球面 C 、柱面 D 、锥面 2、若直线l :3 7423z y x =-+=-+,平面π:3224=--z y x ,则l 与π( ) A 、平行 B 、垂直 C 、相交而不垂直 D 、l 在平面π内 3、设直线l 为?? ?=+--=+++0 31020 123z y x z y x 平面π为0224=-+-z y x ,则( ) A 、l ∥π B 、l ?π C 、l ⊥π D 、l π但l 与π不垂直 4、已知向量)1,1,2(-=a ,)1,3,1(-=,求,b 所确定的平面方程为( ) A 、02=+-z y x B 、03=-+z y x C 、01632=---z y x D 、a ,b 不共面无法确定平面 5、球面92 22=++z y x 与平面1=+z x 的交线在xoy 面上的投影方程是( ) A 、082222=--+x y x B 、082222=--+z z y C 、92 2 =+y x D 、? ??==--+00 82222z x y x 三、设)4,1,1(=a ,)2,2,1(-=b ,求b 在方向上的投影向量.

华东理工大学高等数学(下册)第11章作业答案

第 11 章(之1)(总第59次) 教材内容:§11.1多元函数 1.解下列各题: **(1). 函数连续区域是 ??????? . 答: **(2). 函数 , 则( ) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A ) **2. 画出下列二元函数的定义域: (1)= u y x -; 解:定义域为:{ } x y y x ≤) ,(,见图示阴影部分: (2))1ln(),(xy y x f +=; 解:{} 1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示). (3)y x y x z +-= . 解:()()? ? ?-≠≥????≠+≥+-?≥+-y x y x y x y x y x y x y x 000.

***3. 求出满足2 2, y x x y y x f -=?? ? ??+的函数()y x f ,. 解:令?? ? ??=+=x y t y x s , ∴?? ???+=+=t st y t s x 11 ∴()() ()t t s t t s s t s f +-=+-=111,22 222, 即 ()()y y x y x f +-=11,2. ***4. 求极限: ()() 2 2 0,0,11lim y x xy y x +-+→. 解:()( )( ) ( )( ) 2 222 2 22 2 112111110y x xy y x y x xy xy y x xy ++++≤ +++= +-+≤ () 01 122 2→+++= xy y x (()()0,0,→y x ) ∴ ()() 011lim 2 2 0,0,=+-+→y x xy y x . **5. 说明极限()()2 22 20,0, lim y x y x y x +-→不存在. 解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同. 首先,0=x 时,极限为()()1lim 22 22220,0,0-=-=+-→=y y y x y x y x x , 其次,0=y 时,极限为()()1lim 22 22220,0,0==+-→=x x y x y x y x y , 故极限()()2 22 20,0,y y lim +-→x x y x 不存在. **6. 设1 12sin ),(-+= xy x y y x f ,试问极限 ),(lim ) 0,0(),(y x f y x →是否存在?为什么? 解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数 1 12sin ),(-+= xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.

高等数学下(B)作业题

《 高等数学B (下) 》练习题 提交作业要求: 1、在规定的时间内,按下列格式要求准确上传作业!(不要上传别的科目作业, 也不要上传其他学期的作业,本次作业题与其他学期作业题有很大变化) 2、必须提交word 文档! (1)不按要求提交,会极大影响作业分数(上学期很多同学直接在网页上答题,结果只能显示文本,无法显示公式,这样得分会受很大影响) (2)若是图片,请将图片大小缩小后插入到一个word 文件中。 (3)图片缩小方式:鼠标指向图片,右键,打开方式,画图,ctrl w ,调整大小和扭曲,依据(百分比),将水平和垂直的原始数值100都改为40,另存为jpg 格式。这样处理后,一个大约3M 的照片会缩小至几百K ,也不影响在word 中的清晰度。 网上上传也快! 3、直接上传单个的word 文件!(不要若干张图片压缩成一个文件) 一、判断题 1. 设函数(,)f x y 在00(,)x y 点的偏导数连续,则(,)f x y 在00(,)x y 点可微. 答:对 2. 设函数(,)f x y 在00(,)x y 点可微,则(,)f x y 在00(,)x y 点的偏导数连续. 答:错 3. 二重积分(,)d D f x y σ??表示以曲面(,)z f x y =为顶,以区域D 为底的曲顶柱体的体积. 答:错 4. (,)0f x y ≥若, 二重积分(,)d D f x y σ??表示以曲面(,)z f x y =为顶,以区域D 为底的曲 顶柱体的体积. 答:对 5. 若积分区域D 关于y 轴对称,则32sin()d 0.D x y σ=?? 答:对 6. 微分方程4()1y y y ''''-=-是四阶微分方程. 答:错 7. 微分方程cos sin sin cos x ydx y xdy =是变量可分离微分方程. 答:对 8. 微分方程cos sin sin cos x ydx y xdy =是一阶线性微分方程. 答:错

吉林大学作业及答案-高数A1作业答案

高等数学作业 AⅠ 吉林大学数学中心 2017年8月

第一次作业 学院 班级 姓名 学号 一、单项选择题 1.下列结论正确的是( A ). (A )x arctan 是单调增加的奇函数且定义域是),(∞+∞- ; (B )x arc cot 是单调减少的奇函数且定义域是),(π0; (C )x arctan 是无界函数; (D )4 -22arccos π =. 2.下列函数中不是奇函数的为( B ). (A )x x x x e e e e --+-;(B )x x cos 3+;(C ))1ln(2 x x ++;(D )x arcsin . 3.函数x x y 3cos 2sin +=的周期为( C ). (A )π; (B )π3 2 ; (C )π2; (D )π6. 4.. ??? ??-??? ??-??? ? ? -∞→22211311211lim n n Λ=( C ) (A )0; (B )1; (C )0. 5; (D )2. 5.已知数列{}n x 是单调增加的.则“数列{}n x 收敛”是“数列{}n x 有上界”的( A )条件 (A )充分必要;(B )必要非充分;(C )充分非必要;(D )即非充分也非必要. 6.设数列{}n a (Λ,2,1,0=>n a n )满足,0lim 1 =+∞→n n n a a 则( D ). (A ){}n a 的敛散性不定; (B )0lim ≠=∞ →c a n n ; (C )n n a ∞ →lim 不存在; (D )0lim =∞ →n n a . 二、填空题

1.=???? ??-+ +-+-∞→n n n n n 2 2241 2 411 41 lim Λ 0. 5 . 2.设? ? ?<+≥+=,0,2, 0,12)(2 x x x x x f 42)(-=x x g . 则)]([x g f = ? ??<+-≥-2,181642, 742x x x x x . 3.函数1 )(+=x x e e x f 的反函数)(1x f -= )1,0(,1ln ∈-x x x . 4.“数列{}n x 2及数列{}12+n x 同时收敛”是“数列{}n x 收敛” 必要 条件. 5. =++--+++∞ →])2()11(1sin [lim 1 n n n n n n n n n 22e + . 三、计算题 1.设6 331 34)11(x x x f ++=+ ,求)(x f . 解:令31 1x t +=,则3 1 1-=t x 代入已知的式子中得, 2)1)1(34)(-+-+=t t f t 即有 22)(t t f ++=t 2.求n n n x 13)|1(lim | +∞ →, 解:(1)当1||>x 时 由于311 33||2)||1(|| x x x n n n <+< 以及 331||||2lim x x n n =∞ → 所以有 313||)|1(lim x x n n n =+∞ →| (2)当1||≤x 时

高等数学下册复习题及答案

一、解答下列各题(本大题共3小题,总计15分) 1、( 本 大 题5分 ) 设L 由y =x 2及y =1所围成的区域D 的正向边界, 求 ?+++L dy y x x dx y x xy )()(2 4233 2、(本小题5分) 设f (x ,y )是连续函数,交换二次积分??2 3 ),(10x x dy y x f dx 的积分次序。 3、(本小题5分) 设()f x 是以2π为周期的函数,当 x ∈-?? ?? ?ππ232, 时, ()f x x =。又设()S x 是()f x 的 以2π为周期的Fourier 级数之和函数。试写出()S x 在 []-ππ,内的表达式。 二、解答下列各题(本大题共7小题,总计42分) 1、(本小题6分) 设z=z(x,y)由方程x 2 +y 2 +z 2 =ln(y z )确定,求z z x y ,。 2、(本小题6分) 设z y xy x =++232 (),求z z x y ,。 3、(本小题6分) 设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。

利用极坐标计算二次积分 5、(本小题6分) 求微分方程''-'+=y y y x e x 22的一个特解。 6、(本小题6分) 求幂级数n n x n )3 2(11 -∑ ∞ =的收敛域。 7、(本小题6分) 求微分方程0)42()2(32=-+++dy y x y x dx y y 的通解。 三、解答下列各题 (本大题共2小题,总计13分) 1、(本小题7分) 求曲面x xy xyz ++=9在点(,,)123处的切平面和法线方程 。 2、(本小题6分) 试求由x 2+y 2+z 2≤4与x 2+y 2≤3z 所确定的立体的体积。 四、解答下列各题 (本大题共2小题,总计13分)

华南理工大学高数(下)习题册答案汇总

第七章 多元函数微分学 作业1 多元函数 1.填空题 (1)已知函数22,y f x y x y x ? ?+=- ???,则(),f x y =()() 222 11x y y -+; (2)49 arcsin 222 2-+++=y x y x z 的定义域是(){} 22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是 (){}(){},,0,1,0,1x y x y x x y x x y x >>+?<<≤+; (4)函数??? ??=≠=0, 0,sin ),(x y x x xy y x f 的连续范围是 全平面 ; (5)函数2222y x z y x +=-在2 2y x =处间断. 2.求下列极限 (1 )00 x y →→; 解:0000 1 6x t t y →→→→===- (2)2 2 () lim (e x y x y x y -+→+∞→+∞ +).

解:3 y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞ →+∞ ??+=+-? ?)) 由于1lim e lim lim 0t t t t t t t t e e -→+∞→+∞→+∞===,2222lim e lim lim lim 0t t t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====, 故22() 2()lim (e lim (e 20x y x y x y x x y y x y x y xe ye -+-+--→+∞ →+∞→+∞ →+∞ ??+=+-=??)) 3.讨论极限2630 0lim y x y x y x +→→是否存在. 解:沿着曲线()()3 ,,0,0y kx x y =→,有3 36626262000 lim lim 1x x y kx x y kx k x y x k x k →→=→==+++因k 而异,从而极限26 30 0lim y x y x y x +→→不存在 4.证明?? ???=+≠++=0,00,2),(222 22 2y x y x y x xy y x f 在点)0,0(分别对于每个自变量x 或y 都连续,但作为二元函数在点)0,0(却不连续. 解:由于(,0)0,(0,)0,f x f y ≡≡ 从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线 ()(),,0,0y kx x y =→,有22 22222000 222lim lim 1x x y kx xy kx k x y x k x k →→=→==+++因k 而异, 从而极限()0 lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.

相关文档
相关文档 最新文档