文档视界 最新最全的文档下载
当前位置:文档视界 › 基因互作条件下9331变式

基因互作条件下9331变式

基因互作条件下9331变式
基因互作条件下9331变式

1、互补作用(9∶7)

两对独立遗传的基因同时处于显性状态时,决定一种性状的表现,其他情况则表现为另一种性状。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于显性基因A与显性基因B间的互补作用,只有9/16 A_B_表现为一种性状,其余的7/16都表现为另一种性状,故性状分离比为9∶7。

例1 香豌豆的花色有紫花和白花两种,显性基因C和P同时存在时开紫花。两个纯合白花品种杂交,F1开紫花;F1自交,F2的性状分离比为紫花:白花=9:7。下列分析不正确的是A.两个白花亲本的基因型为CCpp与ccPP

B.F1测交结果紫花与白花的比例为1:1

C.F2紫花中纯合子的比例为1/9

D.F2中白花的基因型有5种

2、积加作用(9∶6∶1)

两种显性基因同时处于显性状态时表现一种性状;只有一对处于显性状态时表现另一种性状;两对基因均为隐性纯合时表现为第三种性状。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于基因间的积加作用,其中9/16 A_B_表现为一种性状,6/16(A_bb+aaB_)表现为另一种性状,1/16aabb表现为第三种性状,故性状分离比为9∶6∶1。

例2 一种观赏植物,纯合的蓝色品种与纯合的红色品种杂交,F1全为蓝色,F1自交,F2为9蓝:6紫:1红。若将F2中的紫色植株用红色植株授粉,则后代表现型及比例为A.2红:1蓝B.2紫:1红

C.1红:1紫D.3紫:1红

3、显性上位(12∶3∶1)

一种对显性基因的产物抑制另一种显性基因的产物,只有在上位基因不存在时,被遮盖的基因才能表达。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于显性基因A对显性基因B具有显性上位作用,其中12/16(A_B_+A_bb)表现为一种性状,3/16aaB_表现为另一种性状,1/16aabb表现为第三种性状,故性状分离比为12∶3∶1。

例3 在两对等位基因自由组合的情况下,F1自交后代的性状分离比是12:3:1,则F1测交后代的性状分离比是

A.1:3

B.3:1

C.2:1:1

D.1:1

4、隐性上位(9∶3∶4 )

在两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于成对的隐性基因aa对另一对基因具有隐性上位作用,其中9/16 A_B_表现为一种性状,

3/16A_bb表现为另一种性状,4/16(aabb+16aaB_)表现为第三种性状,故性状分离比为9∶3∶4。

例4 2003年10月发射的“神舟五号”在航天搭载实验中,有一批基因型为BbCc的实验鼠,已知B决定黑色毛,b决定褐色毛,C决定毛色存在,c决定毛色不存在(即白色)。则实验鼠繁殖后,子代表现型黑色∶褐色∶白色的理论比值为

A.9:3:4

B.9:4:3

C.3:4:9

D.4:9:3

5、重叠作用(15∶1)

两对独立遗传的基因中,当有显性基因存在时,表现为一种性状;当两对基因都为隐性状态时,表现为另一种性状。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于基因间的重叠作用,其中15/16(A_B_+aaB_+A_bb)表现为一种性状,1/16aabb表现为另一种性状,故性状分离比为15∶1。

例5 在荠菜中三角形的角果是由两对非等位基因T1和T2所决定。其隐性基因t1和t2决定长筒形角果,现用具有不同显性非等位基因的三角形角果杂交,则F2中表现型的类型及比例为

A.3:1

B.13:3

C.1:1

D.15:1

6、抑制作用(13:3)

两对独立基因中的一对显性基因本身不能控制性状的表现,但对另一对基因的显性表现有抑制作用。

子一代(AaBb)自交,子二代中应该为:9/16A_B_,3/16A_bb,3/16aaB_,1/16aabb。由于显性基因A对另一对基因的显性表现具有抑制作用,其中13/16(A_B_+A_bb+aabb)表现为一种性状,3/16aaB_表现为另一种性状,故性状分离比为13∶3。

例6 蚕的黄色茧(Y)对白色茧(y)是显性,抑制黄色出现的基因(I)对黄色出现的基因(i)是显性。现用杂合白色茧(IiYy)蚕相互交配,后代中白色茧对黄色茧的分离比是A.3:1 B.13:3

C.1:1 D.15:1

7、显性基因累加作用(1:4:6:4:1)

人类的皮肤含有黑色素,黑人含量最多,白人含量最少。皮肤中黑色素的多少,由两对独立遗传的基因(A和a,B和b)所控制;显性基因A和B可以使黑色素量增加,两者增加的量相等,并且可以累加。若一纯种黑人与一纯种白人配婚,后代肤色为黑白中间色;如果该后代与同基因型的异性婚配,其子代可能出现的基因型种类和不同表现型的比例为A.3种3:1

B.3种1:2:1

C.9种9:3:3:1

D.9种1:4:6:4:1

高考生物一轮复习自由组合定律中“9331”的变式及其拓展导学案(无答案)新人教版必修

推荐学习K12资料 白色前体物质 黄色中间产物橙色素 F 1自交: ;基因A 基因B F 1测交: ; 白色前体物质 黄色中间产物橙色素 F 1自交:; 基因a 基因B F 1测交: ; 自由组合定律中“9:3:3:1”的变式及其拓展 高考背景: 1、在近几年高考遗传题命题中, “9:3:3:1”变式类型比较常见,是一个不能忽略的应试重点。如: 2008宁夏、2009安徽、2009福建、2010全国、2011山东等。 2、“9:3:3:1”变式类型较多,情境新颖,命题灵活,对能力要求较高,难度较大。学习目标: 1 、针对不同命题情境,分析说出:“9:3:3:1”变式的不同类型及各表现型所包含的基因型;2、通过真题演练体验,归纳总结:“9:3:3:1”变式的一般解题方法。 主要内容: 一、重温规律,巩固基础:看谁写得又快又准! 活动一:请按自由组合定律,在方格内写出F 2的9种基因型及其比例、 F 1测交后代基因型: 二、情境变换,规律不变:两对基因共同控制一种性状条件下“9:3:3:1”变式。 1、以基因控制代谢途径为命题情境: (2008宁夏、2009安徽、2009福建等) 链接:基因与性状并非简单的线性关系,两对(或多对)基因可共同控制一种性状;基因可通过控制酶的合成来控制代谢过程,进而控制生物性状。 资料:报春花的花色有白色、黄色、有的还有橙色,是由两对等位基因(A-a 、B-b )共同控制,两对 等位基因独立遗传。基因对花的色素合成途径的控制情况可能有多种,导致报春花植株花的颜色不同。(注: A 、 B 表示显性基因,分别对 a 、 b 具有显性作用。) 活动二:在途径①的条件下,如果让F 1(AaBb )进行自交,请分析 F 2的表现型及其比例分别是什么? 如果让F 1(AaBb )进行测交,测交后代的表现型及比例又是什么? 途径①: 拓展:途径①情形下,F 2白花个体中纯合子所占比例是多少? ;F 2开白花植株中,自交后代仍 开白花的植株占多少?。 ★交流与分享:你是从哪下手快速分析出来的?如何进一步拓展命题点呢?解决“拓展”问题必须 熟悉什么基础知识? 活动三:既要准,又要快! 模仿途径①的分析方法写出下列途径②③相关的表现型及其比例。 途径②: 途径③: F2:黄圆9 :黄皱 3 :绿圆 3 :绿皱 1 P :×↓ F1: YyRr (黄圆)↓⊕ F2:黄圆9 :黄皱 3 :绿圆 3 :绿皱 1 F1测交:YyRr (黄圆)×yyrr (绿皱)↓ 后代:黄圆1 :黄皱 1 :绿圆 1 :绿皱1 后代:黄圆 1 :黄皱 1 :绿圆 1 :绿皱 1 白色前体物质 黄色锦葵色素F 1自交:; 基因B 基因 A F 1测交: ; 抑制

(完整版)_自由组合定律的应用9331的变式

合肥中科教育高一下学期生物练习 基因的自由组合定律应用之9:3:3:1的变式比命题者:王进传 配套练习 1、某植物的花色有两对等位基因A\a与B\b控制,现有纯合蓝色品种与纯合红色品种杂交,F1都是蓝色,F1自交所得F2为9蓝:6紫:1红。请分析回答: (1)根据题意推断可知花色呈蓝色的条件是_________________________ 。(2)开紫花植株的基因型有种。 (3)F2代中纯种紫花植株与红花植株杂交,后代的表现型及比例为___________ 。 (4)F2代中基因型与亲本基因型不同且是纯合子的个体所占的比例是。 2、用南瓜中结球形果实的两个纯种亲本杂交,结果如下图: P: 球形果实×球形果实 ↓ F1:扁形果实 ↓ F2: 扁形果实球形果实长形果实 9 : 6 : 1 根据这一结果,可以认为南瓜果形是由两对等位基因决定的。请分析: (1)纯种球形南瓜的亲本基因型是和(基因用A和 a,B和b 表示)。 (2)F1扁形南瓜产生的配子种类与比例是_______________________ 。 (3)F2的球形南瓜的基因型有哪几种?_________________________ 。 其中有没有纯合体?,若有,其占同种瓜形的比例为________。 3、燕麦颖色受两对基因控制。现用纯种黄颖与纯种黑颖杂交,F1全为黑颖,F1自交产生的F2中,黑颖:黄颖:白颖=12:3:1。已知黑颖(B)和黄颖(Y)为显性,只要B存在,植株就表现为黑颖。请分析回答: (1)F2中,黄颖占非黑颖总数的比例是。F2的性状分离比说明B(b)与Y(y)存在于染色体上。 (2)F2中,白颖的基因型是,黄颖的基因型有种。 (3)若将F1进行花药离体培养,预计植株中黑颖纯种的比例是。 (4)若将黑颖与黄颖杂交,亲本基因型为时,后代中的白颖比例最大。 4、玉米植株的性别决定受两对基因(B-b,T-t)的支配,这两对基因位于非同源染色体上,玉米植株的性别和基因型的对应关系如下表,请回答下列问题:

基因的自由组合定律题型(详细好用)

基因的自由组合定律 一、两对相对性状的遗传实验分析及相关结论 1.内容:控制不同性状的遗传因子的分离和组合是互补干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。 2.实验分析 P YYRR(黄圆)×yyrr(绿皱) ↓ F1YyRr(黄圆) ?↓ 配子 F2 3.相关结论:F2共有16种组合,9种基因型,4种表现型 (1)表现型(2)基因型 [易错警示](1)F2中亲本类型指实验所用的纯合显性和纯合隐性亲本即黄圆和绿皱,而不是直接产生F2的F1代,重组类型是指F2黄皱、绿圆。 (2)若亲本是黄皱(YYrr)和绿圆(yyRR),则F2中重组类型为绿皱(yyrr)和黄圆(Y_R_),所占比例为1/16+9/16=10/16;亲本类型为黄皱(Y_rr)和绿圆(yyR_),所占比例为3/16+3/16=6/16。 (3)F2表现型9∶3∶3∶1的比值可以变形为9∶7(3+3+1)、15(9+3+3)∶1、12(9+3)∶3∶1、 12(9+3)∶4(3+1)等。 4.对自由组合现象解释的验证 (1)测交试验: P:YyRr ×yyrr 配子:YR :Yr :yR :yr yr 测交后代:YyRr :Yyrr :yyRr :yyrr 1 : 1 : 1 : 1 (2)测交试验证明:F1在形成配子时,不同对的基因是自由组合的。 二、基因的自由组合定律的实质及细胞学基础 1.实质:在进行减数分裂的过程中,同源染色体上的等位基因彼此分离,非同源染色体上的非等位基因自由组合。

2.适用条件 (1)有性生殖的真核生物。 (2)细胞核内染色体上的基因。 (3)两对或两对以上位于非同源染色体上的非等位基因。 3.细胞学基础:基因的自由组合定律发生在减数分裂的第一次分裂后期。 [易错警示](1)配子的随机结合不是基因的自由组 合,基因的自由组合发生在减数第一次分裂过程 中,而不是受精作用时。 (2)自由组合强调的是非同源染色体上的非等位 基因。一条染色体上的多个基因也称为非等位基 因,它们是不能自由组合的。 4.F1杂合子(YyRr)产生配子的情况 三、自由组合定律的解题方法 思路:将自由组合问题转化为若干个分离定律问题 在独立遗传的情况下,有几对基因就可分解为几个分离定律,如AaBb×Aabb可分解为如下两个分离定律:Aa×Aa;Bb×bb (一)配子类型数、配子间结合方式、基因型种类数、表现型种类数

基因的自由组合定律知识讲解

基因的自由组合定律 【学习目标】 1、阐明孟德尔的两对相对性状的杂交实验及自由组合定律。 2、基因自由组合定律的解释和验证。 3、了解基因自由组合定律的应用。 【要点梳理】 要点一:两对相对性状的杂交实验 1.豌豆杂交中自由组合现象 思考: 为什么在F 2代中出现了与亲本不同的表型,且各种性状的分离比为9:3:3:1呢? 2.对性状自由组合现象的解释(假设) (1)两对相对性状分别由两对等位基因控制 (2)F 1产生配子时,等位基因分离,非等位基因自由组合,产生四种数量相等的配子 (3)受精时,4种类型的雌雄配子结合的几率相等 遗传图解: ① F 1: F 2: 1YY (黄) 2Yy (黄) 1yy (绿) 1RR (圆) 2Rr (圆) 1YYRR 2YyRR 2YYRr 4YyRr (黄圆) 1yyRR 2yyRr (绿圆) 1rr (皱) 1YYrr 2Yyrr (黄皱) 1yyrr (绿皱) F 2的性状分离比:黄色圆粒∶黄色皱粒∶绿色圆粒∶绿色皱粒=9∶3∶3∶1。 ②每对相对性状的结果分析 a .性状分离比:黄粒∶绿粒=3∶1;圆粒∶皱粒=3∶1。 b .结论:每对相对性状的遗传符合分离定律;两对相对性状的分离是各自独立的。 ③两对相对性状的随机组合 亲本:YYRR (黄圆)×yyrr (绿皱) Rr × Rr →1RR:2 Rr:1rr × Yy →1YY:2 Yy:1yy

④F2的表现型与基因型的比例关系 双纯合子一纯一杂双杂合子合计黄圆(双显性)1/16YYRR 2/16YYRr、2/16YrRR 4/16YyRr 9/16Y_R_ 黄皱(单显性)1/16YYrr 2/16Yyrr 3/16Y_rr 绿圆(单显性)1/16yyRR 2/16yyRr 3/16yyR_ 绿皱(双隐性)1/16yyrr 1/16yyrr 合计4/16 8/16 4/16 1 F2中4种表现型,9种基因型分别为:YYRR、YYRr、YyRR、YyRr、YYrr、Yyrr、yyRR、yyRr、yyrr (2)有关结论 ①F2共有9种基因型、4种表现型。 ②双显性占9/16,单显性(绿圆、黄皱)各占3/16,双隐性占1/16。 ③纯合子占4/16(1/16YYRR+1/16YYrr+1/16yyRR+1/16yyrr),杂合子占:1 -4/16=12/16。 ④F2中双亲类型(9/16Y_R_+1/16yyrr)占10/16,重组类型占6/16(3/16Y_rr+3/16yyR_)。 思考:按照上述孟德尔的假设条件,所获得的各种性状及其比例是完全符合9:3:3:1的比例的,所以只需证明F1是双杂合体的假设成立,如何设计实验来验证呢? 3.对自由组合现象解释的验证——测交实验 实验方案:杂合体F1与隐性纯合体杂交 实验结果: 方式正交反交

13遗传学 课后练习 复习题 总结 第十三章 数量性状的遗传

第十三章数量性状的遗传 本章习题 1.解释下列名词:广义遗传率、狭义遗传率、近交系数、共祖系数、数量性状基因位点、主效基因、微效基因、修饰基因、表现型值、基因型与环境互作广义遗传率:通常定义为总的遗传方差占表现型方差的比率。 狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。 近交系数:是指个体的某个基因位点上两个等位基因来源于共同祖先某个基因的概率。 共祖系数:个体的近交系数等于双亲的共祖系数。 数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置。 主效基因:对某一性状的表现起主要作用、效应较大的基因。 微效基因:指一性状受制于多个基因,每个基因对表现型的影响较小、效应累加、无显隐性关系、对环境敏感,这些基因称为微效基因。 修饰基因:对性状的表现的效应微小,主要是起增强或减弱主基因对表现型的作用。 表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。 基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。

2.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同? 答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。 对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。 3.叙述表现型方差、基因型方差、基因型×环境互作方差的关系。估计遗传协方差及其分量在遗传育种中有何意义? 答:表现型方差由基因型方差(V G)、基因型×环境互作方差(V e)和环境机误方差()构成,即,其中基因型方差和基因型×环境互作方差是可以遗传的,而纯粹的环境方差是不能遗传的。 由于存在基因连锁或基因的一因多效,生物体的不同数量性状之间常存在不同程度的相互关连。在统计分析方法中常用协方差来度量这种相互关联的变异程度。由于遗传方差可以进一步区分为基因型方差和基因型×环境互作方差等不同的方差分量,故遗传协方差也可进一步区分为基因型协方差和基因型×环境互作协方差等分量。在作物遗传改良过程中,对某一性状进行选择时常会引起另一相关性状的变化,为了取得更好地选择效果, 并使一些重要的性状能够得到同步改

《基因的自由组合定律》教案

第二节遗传的基本规律 二基因的自由组合定律 教学内容分析: 《基因的自由组合定律》讲述的是两对(或两对以上)等位基因控制的两对相对性状的遗传规律,同样是从遗传性状研究出发来揭示遗传的规律。由于基因自由组合定律是在基因分离定律的基础上讲述的,基因的自由组合定律在某种程度上是基因分离定律的应用和拓展,秉承了基因分离定律的研究思想和方法。 由于孟德尔的基因自由组合定律涉及到两对相对性状,解释过程较为繁琐,同时,又与学生学习的难点之一的减数分裂过程密切相关,大大增加了教学难度,因此,在实施本小节内容的教学时,宜采用现代化的教学手段,化静态为动态,化无形为有形,重现试验过程,突破难点,从而调动学生学习的积极性。 教学过程中要给学生创设探究学习的环境,引导学生主动参与到教与学的活动中,学习科学的实验方法、科学的思维过程、科学的态度和为科学献身的精神。 基因自由组合定律在理论上和实践上的应用及解遗传题的技能、技巧是教学的重点和难点,要通过对生活中实际问题的解决,锻炼学生的科学思维,掌握解遗传题的技巧和方法,使学生所学知识加以扩展、深化、综合和提高。 教学对象分析: 学生是在学习了基因分离定律基础上进行拓展,运用基因分离定律的研究思想和方法能进行一些探究活动,通过创设探究学习的环境,引导学生主动参与到教与学的活动能起到较好的教学效果。 教学目标分析: 〔知识性目标〕 1.准确描述孟德尔两对相对性状的遗传实验过程和结果,分析解释、进行验证,阐明自由组合定律的实质。 2.利用基因自由组合定律的知识解答遗传学问题的技能技巧。 〔态度性目标〕 1.通过分析孟德尔获得成功的原因,体验孟德尔对科学研究坚持不懈的态度以及科学探索的精神。发现基因分离定律的过程,养成质疑、求实、创新及勇于实践的科学精神和科学态度。 2.借助于基因自由组合定律的发现过程,确立科学发现的一般程序和科学思想方法,形成乐于探索、勤于思考的习惯,养成探索和创新

9331——例析基因自由组合定律的几种变式

9:3:3:1——例析基因自由组合定律的几种变式 遗传题在高考中占有很大的比重,也是教材中的重点、难点,学生对正常的遗传问题比较熟悉,对数据的运用处理也得心应手。但对于孟德尔比率9:3:3:1 偏离问题的解决略显不足,常常出现差错,对此作一些探讨。 一、显性基因的互补作用导致的变式比 两对独立的非等位基因,当显性基因纯合或杂合状态时共同决定一种性状的出现,单独存在时,两对基因都是隐性时则能表现另一种性状。从而出现9:3:3:1偏离,常见的变式比有9:7等形式。 例1:(2005年石家庄理综)甜豌豆的紫花对白花是一对相对性状,由非同源染色体上的两对基因共同控制,只有当同时存在两个显性基因(A和B)时,花中的紫色素才能合成。下列有关叙述中正确的是() A、白花甜豌豆间杂交,后代不可能出现紫花甜豌豆 B、AaBb的紫花甜豌豆自交,后代中表现型比例为9:3:3:1 C、若杂交后代性分离比为3:5,则亲本基因型只能是AaBb和aaBb D、紫花甜豌豆自交,后代中紫花和白花的比例是3:1或9:7或1:0 跟踪练习1:某豌豆的花色由两对等位基因(A和a,B和b)控制,只有A 和B同时存在时才是红花,已知两白花品种甲、乙杂交,F1都是红花,F1自交所得F2代红花与白花的比例是9:7。试分析回答:

(1)根据题意推断出两亲本白花的基因型:。 (2)从F2代的性状分离比可知A和a;B和b位于对同源染色体。(3)F2代中红花的基因型有种。纯种白花的基因型有种。(4)从F1代开始要得到能稳定遗传的红花品种应连续自交代。 二、显性基因的积加作用导致的变式比 两种显性基因同时存在时产生一种性状,单独存在时则能表现相似的性状,无显性基因时表达出又一种性状来。常见的变式比有9:6:1等形式。例2:某植物的花色有两对等位基因A\a与B\b控制,现有纯合蓝色品种与纯合红色品种杂交,F1都是蓝色,F1自交所得F2为9蓝:6紫:1红。请分析回答: (1)根据题意推断可知花色呈蓝色的条件是:。 (2)开紫花植株的基因型有种。 (3)F2代中纯种紫花植株与红花植株杂交,后代的表现型及比例 为。 (4)F2代中基因型与亲本基因型不同且是纯合子的个体所占的比例是:。

基因的自由组合定律

基因的自由组合定律文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

基因的自由组合定律 考点:1.基因的自由组合定律。2.孟德尔遗传实验的科学方法。 一、两对相对性状的遗传实验 1、两对相对性状的杂交实验——提出问题 其过程为: P 黄圆×绿皱 ↓ F1 黄圆 ↓? F2 9黄圆∶3黄皱∶3绿圆∶1绿皱 2、对自由组合现象的解释和验证——提出假说,演绎推理 理论解释 (1)F1产生配子时,等位基因分离,非同源染色体上的非等位基因可以自由组合,产生数量相等的4种配子 (2)受精时,雌雄配子的结合方式有16种 (3)F2的基因型有9种,比例为4∶2∶2∶2∶2∶1∶1∶1∶1 遗传图解 验证(测交的遗传图解) 3、自由组合定律的实质、时间、范围——得出结论 (1)实质:非同源染色体上的非等位基因自由组合。(如图) (2)时间:减数第一次分裂后期。 (3)范围:有性生殖的生物,真核细胞的核内染色体上的基因。无性生殖和细胞质基因

遗传时不遵循。 4、孟德尔实验方法的启示和遗传规律的再发现 实验方法的启示 孟德尔获得成功的原因:①正确选材(豌豆);②对相对性状遗传的研究,从一对到多对; ③对实验结果进行统计学的分析;④运用假说—演绎法(包括“提出问题→提出假说→演绎推理→实验验证→得出结论”五个基本环节)这一科学方法。 二、要点探究 1.能发生自由组合的图示为A,原因是非等位基因位于非同源染色体上。 2.自由组合定律的细胞学基础:同源染色体彼此分离的同时,非同源染色体自由组合。3.假如F1的基因型如图A所示,总结相关种类和比例 (1)F1(AaBb)产生的配子种类及比例:4种,AB∶Ab∶aB∶ab=1∶1∶1∶1。 (2)F2的基因型有9种。 (3)F2的表现型种类和比例:4种,双显∶一显一隐∶一隐一显∶双隐=9∶3∶3∶1。 (4)F1测交后代的基因型种类和比例:4种,1∶1∶1∶1。 (5)F1测交后代的表现型种类和比例:4种,1∶1∶1∶1。 4.假如图B不发生染色体的交叉互换,总结相关种类和比例 (1)F1(AaCc)产生的配子种类及比例:2种,AC∶ac=1∶1。 (2)F2的基因型有3种。 (3)F2的表现型种类及比例:2种,双显∶双隐=3∶1。 (4)F1测交后代的基因型种类及比例:2种,1∶1。 (5)F1测交后代的表现型种类及比例:2种,1∶1。 5.基因分离定律和自由组合定律关系及相关比例图解 解读(1)在上述比例最能体现基因分离定律和基因自由组合定律实质的分别是F1所产生

(补课)基因互作(答案版)

基因互作 在遗传中,有着典型的规律,如孟德尔的分离定律、自由组合定律等,自交、测交后代的基因型和表现型都有着典型的分离比,这些都是遗传典型性的体现。但在各种内在与外在因素的作用下,这些典型的分离比就会改变而出现“例外”。在近几年高考试题中,遗传学中某些“例外”现象,如:不完全显性、“显(隐)性致死”、“非等位基因相互作用”等等,常常作为能力考查的命题材料。现对基因之间的关系(基因互作)总结如下: 一、等位基因之间的相互作用 1、完全显性(略) 一般做题时如果题中没有特别强调,都认为是完全显性,例如:高茎DD和矮茎dd杂交,F1均为高茎Bb 2、不完全显性(镶嵌显性):具有相对性状的两个亲本杂交,所得的F1表现为双亲的中间类型。 例:紫茉莉花的红色(C)对白色(c)为不完全显性。下列杂交组合中,子代开红花比例最高的是( B ) A. CC×cc B. CC×Cc C. Cc×cc D. Cc×Cc 3、共显性:具有相对性状的两个亲本杂交,所得的F1同时表现出双亲的性状。 有的时候是一个细胞同时表达两个基因,如人类的ABO血型中AB血型,细胞中显性基因A、B同时表达;有的时候某个体不同细胞表达的基因不同,如例2。 例1:人的ABO血型可以遗传,由I A、I B、i三个复等位基因决定。有一对夫妻,丈夫的血型是A型,他的妹妹是B型、父亲是A型、母亲是AB型。妻子的血型是B型,她的弟弟是O型、父母都是B型。这对夫妻生的孩子血型为AB型的可能性( A ) A.1/2 B.1/4 C.1/6 D.1/12 例2:某种猫的毛色由位于X染色体上的基因控制。研究发现纯合黄色雌猫和纯合黑色雄猫交配,繁殖的子代中,雌猫总是表现为黑黄相间的毛色(即一块黑一块黄),但黑黄毛色的分布是随机的。据此你认为下列推断合理的是( C ) A.纯合黑色雌猫和纯合黄色雄猫交配的子代均为黑黄相间的毛色 B.黑黄相间雌猫繁殖的后代雄猫可有全黑、全黄和黑黄相间三种 C.黑黄相间雌猫体细胞中只有一条X染色体上的DNA有转录功能 D.雌猫的黄色毛与黑色毛这对相对性状是由非等位基因控制的 4、条件显性: 例:.(2010?天津理综,16)食指长于无名指为长食指,反之为短食指,该相对性状由常染色体上一对等位基因控制(T S表示短食指基因,T L表示长食指基因)。此等位基因表达受性激素影响,T S在男性为显性,T L在女性为显性。若一对夫妇均为短食指,所生孩子中既有长食指又有短食指,则该夫妇再生一个孩子是长食指的概率为 (A) A.1∕4 B.1∕3 C.1∕2 D.3∕4 5、显(隐)性致死:常表现为一对基因的显性纯合致死或隐性纯合致死。(做题时要注意死亡时间) 例1:若昆虫的基因型tt会在胚胎期死亡。选择基因型为Tt的雌雄个体相互交配得子一代,子一代个体的相同基因型的个体再进行交配,得子二代。子二代发育成熟的个体中基因T的频率是4∕5 。 例2:某种鼠中,皮毛黄色(A)对灰色(a)为显性,短尾(B)对长尾(b)为显性。基因A或b纯合会导致个体在胚胎期死亡。两对基因位于常染色体上,独立遗传。现有一对表现型均为黄色短尾的雌、雄鼠交配,发现子代部分个体在胚胎期致死。则理论上子代中成活个体的表现型及比例为(B) A.均为黄色短尾 B.黄色短尾:灰色短尾=2:1 C.黄色短尾:灰色短尾=3:1

基因互作与环境

第三章基因互作及基因与环境的关系 第一节环境的影响与基因的表型效应 第二节性状的多基因决定和基因的多效性 第三节基因间的作用

第一节环境的影响与基因的表型效应 一、基因型、表型和环境 二、反应规范(reaction norm) 三、表现度(expressivity)和外显率(penetrance) 四、表型模写(Phenocopy)

一、基因型、表型和环境 任何生物的基因型在精卵结合的一瞬间就已决定。但是各种具体性状的表现(表型)却要通过一系列发育过程。在这个过程中环境条件起着重要的作用。 例:玉米正常苗与白化苗的遗传 结论:表型是基因型与环境相互作用的结果。 生物的任何一种性状都是由遗传因素和环境因素共同决定的。

二、反应规范(reaction norm) 同一种基因型在不同的环境条件下可以产生不同的表型。 生物界存在的普遍现象,例:报春花花色,太阳红植株色,人体肤色 反应规范:同一基因型在不同的环境条件 下产生的表型变化范围。

三、表现度和外显率 表现度(expressivity):表示某种基因型在个体表型表 现的程度,即基因在表型上的差异。 例如:人类中成骨不全(osteogenesis imperfecta)是显性遗传疾病,杂合体患者可以同时有多发性骨折,兰色巩膜和耳聋等症状,也可以只有一种或二种临床表现。即该基因的表现度很不一致。(图)

外显率(penetrance):种群的特征,是某一基因在种群中的表型百分比。 例如,黑腹果蝇变型腹基因,在纯型合子时只有15%的个体表现为变型腹。因此这个突变型在群体中的外显率就是15%(图)。

关于基因自由组合定律中9331的几种变式教师用范文

关于基因自由组合定律中9:3:3:1的几种变式 一、常见的变式比有9:7等形式。 例1:(08年宁夏)某植物的花色有两对自由组合的基因决定。显性基因A和B同时存在时,植株开紫花,其他情况开白花。请回答: 开紫花植株的基因型有 4 种,其中基因型是AaBb 的紫花植株自交,子代表现为紫花植株:白花植株=9:7。基因型为 AaBB 和 AABb 紫花植株各自自交,子代表现为紫花植株:白花植株=3:1。基因型为 AABB 紫花植株自交,子代全部表现为紫花植株。 跟踪练习;1:某豌豆的花色由两对等位基因(A和a,B和b)控制,只有A和B同时存在时才是红花,已知两白花品种甲、乙杂交,F1都是红花,F1自交所得F2代红花与白花的比例是9:7。试分析回答: (1)根据题意推断出两亲本白花的基因型: aaBB AAbb 。 (2)从F2代的性状分离比可知A和a;B和b位于两对对同源染色体。 (3)F2代中红花的基因型有 4 种。纯种白花的基因型有 3 种。 二、常见的变式比有9:6:1等形式。 例2:某植物的花色有两对等位基因A\a与B\b控制,现有纯合蓝色品种与纯合红色品种杂交,F1都是蓝色,F1自交所得F2为9蓝:6紫:1红。请分析回答: (1)根据题意推断可知花色呈蓝色的条件是:同时至少具有A 、B 两个基因。 (2)开紫花植株的基因型有 4 种。 (3)F2代中纯种紫花植株与红花植株杂交,后代的表现型及比例为全为紫色 100% 。 (4)F2代中基因型与亲本基因型不同且是纯合子的个体所占的比例是: 1/8 。 跟踪练习2:用南瓜中结球形果实的两个纯种亲本杂交,结果如下图: P: 球形果实×球形果实 F1:扁形果实 F2: 扁形果实球形果实长形果实 9 : 6 : 1 根据这一结果,可以认为南瓜果形是由两对等位基因决定的。请分析: (1) 纯种球形南瓜的亲本基因型是 AAbb 和 aaBB (基因用A和a,B和b表示)。 (2)F1扁形南瓜产生的配子种类与比例是 AB: Ab:aB: ab =1:1:1:1 。 (3)F2的球形南瓜的基因型有哪几种? aaBB aaBb AAbb Aabb 。其中有没有纯合体?有AAbb aaBB 。跟踪练习3:一种观赏植物,纯合的蓝色品种与纯合的鲜红色品种杂交,F1为蓝色,F1自交,F2为9蓝:6紫:1鲜红。若将F2中的紫色植株用鲜红色植株授粉,则后代表现型及其比例是() A 2鲜红:1蓝 B 2紫:1鲜红 C 1鲜红:1紫 D 3紫:1蓝 三、常见的变式比有1:4:6:4:1等形式。 例3.人的眼色是两对等位基因(A、a和B、b,二者独立遗传)共同决定的。在一个体中,两对基因处于不同状态时,人的眼色如下表:

(完整word版)基因的自由组合定律练习题及答案

基因的自由组合定律练习题及答案 一、单项选择题 1.某一杂交组产生了四种后代,其理论比值3∶1∶3∶1,则这种杂交组合为( ) A.Ddtt×ddtt B.DDTt×Ddtt C.Ddtt×DdTt D.DDTt×ddtt 2.后代出现性状分离的亲本杂交组合是( ) A.AaBB×Aabb B.AaBB×AaBb C.AAbb×aaBB D.AaBB×AABB 3.在显性完全的条件,下列各杂交组合中,后代与亲代具有相同表现型的是( ) A.BbSS×BbSs B.BBss×BBss C.BbSs×bbss D.BBss×bbSS 4.基因型为DdTt的个体与DDTt个体杂交,按自由组合规律遗传,子代基因型有( ) A.2种 B.4种 C.6种 D.8种 5.基因型AaBb的个体自交,按自由组合定律,其后代中纯合体的个体占( ) A.3/8 B.1/4 C.5/8 D.1/8 6.下列属于纯合体的是( ) A.AaBBCC B.Aabbcc C.aaBbCc D.AABbcc 7.减数分裂中,等位基因的分离和非等位基因的自由组合发生在( ) A.形成初级精(卵)母细胞过程中 B.减数第一次分裂四分体时期 C.形成次级精(卵)母细胞过程D.形成精细胞或卵细胞过程中 8.基因型为AaBB的父亲和基因型为Aabb的母亲,所生子女的基因型一定不可能是( ) A.AaBB B.AABb C.AaBb D.aaBb 9.下列基因型中,具有相同表现型的是( ) A.AABB和AaBB B.AABb和Aabb C.AaBb和aaBb D.AAbb和aaBb 10.基因型为AaBb的个体,能产生多少种配子( ) A.数目相等的四种配子 B.数目两两相等的四种配子 C.数目相等的两种配子 D.以上三项都有可能 11.将基因型为AaBbCc和AABbCc的向日葵杂交,按基因自由组合规律,后代中基因型为AABBCC的个体比例应为( ) A.1/8 B.1/6 C.1/32 D.1/64 12.黄色圆粒豌豆(YYRR)与绿色皱粒豌豆(yyrr)杂交,如果F 2有256株,从理论上推出其中的纯种应有( ) A.128 B.48 C.16 D.64 13.在完全显性且三对基因各自独立遗传的条件下,ddEeFF与DdEeff杂交,其子代表现型不同于双亲的个体占全部子代的( ) A.5/8 B.3/8 C.3/4 D.1/4 14.在两对相对性状独立遗传的实验中,F 2代能稳定遗传的个体和重组型个体所占比率为( ) A.9/16和1/2 B.1/16和3/16 C.5/8和1/8 D.1/4和3/8 15.基因型为AaBb的水稻自交,其子代的表现型、基因型分别是( ) A.3种、9种 B.3种、16种C.4种、8种 D.4种、9种 16.个体aaBBCc与个体AABbCC杂交,后代个体的表现型有( ) A.8种 B.4种 C.1种 D.16种 17.下列①~⑨的基因型不同,在完全显性的条件下,表现型共有( )

基因的自由组合定律题型总结

基因的自由组合定律题型总结 一、自由组合定律内容 控制不同性状的遗传因子的分离和组合是互补干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合 二、自由组合定律的实质 在减I后期,非等位基因随非同源染色体的自由组合而自由组合 三、答题思路 (1)首先将自由组合定律问题转化为若干个分离定律问题。 在独立遗传的情况下,如果遇到两对或两对以上的相对性状的遗传题时,就可以把它分解为一对一对的相对性状来考虑,有几对基因就可以分解为几个分离定律。 如AaBb×Aabb可分解为如下两个分离定律:Aa×Αa;Bb×bb ⑵用分离定律解决自由组合的不同类型的问题。 自由组合定律以分离定律为基础,因而可以用分离定律的知识解决自由组合定律的问题。 三、题型 (一)配子类型数、配子间结合方式、基因型种类数、表现型种类数1、配子类型的问题 示例 AaBbCc产生的配子种类数 Aa Bb Cc ↓↓↓ 2 × 2 × 2 = 8种 总结:设某个体含有n对等位基因,则产生的配子种类数为2n 2、配子间结合方式问题 示例 AaBbCc与AaBbCC杂交过程中,配子间的结合方式有多少种? 先求AaBbCc、AaBbCC各自产生多少种配子。 AaBbCc→8种配子、AaBbCC→4种配子。 再求两亲本配子间的结合方式。由于两性配子间的结合是随机的,因而AaBbCc与AaBbCC配子之间有8×4=32种结合方式。 3、基因型类型的问题 示例 AaBbCc与AaBBCc杂交,求其后代的基因型数 先分解为三个分离定律: Aa×Aa→后代有3种基因型(1AA∶2Aa∶1aa)

基因的自由组合定律(终审稿)

基因的自由组合定律文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

基因的自由组合定律 考点:1.基因的自由组合定律。2.孟德尔遗传实验的科学方法。 一、两对相对性状的遗传实验 1、两对相对性状的杂交实验——提出问题 其过程为: P 黄圆×绿皱 ↓ F1 黄圆 ↓ F2 9黄圆∶3黄皱∶3绿圆∶1绿皱 2、对自由组合现象的解释和验证——提出假说,演绎推理 理论解释 (1)F1产生配子时,等位基因分离,非同源染色体上的非等位基因可以自由组合,产生数量相等的4种配子 (2)受精时,雌雄配子的结合方式有16种 (3)F2的基因型有9种,比例为4∶2∶2∶2∶2∶1∶1∶1∶1 遗传图解 验证(测交的遗传图解) 3、自由组合定律的实质、时间、范围——得出结论 (1)实质:非同源染色体上的非等位基因自由组合。(如图) (2)时间:减数第一次分裂后期。 (3)范围:有性生殖的生物,真核细胞的核内染色体上的基因。无性生殖和细胞质基因遗传时不遵循。

4、孟德尔实验方法的启示和遗传规律的再发现 实验方法的启示 孟德尔获得成功的原因:①正确选材(豌豆);②对相对性状遗传的研究,从一对到多对; ③对实验结果进行统计学的分析;④运用假说—演绎法(包括“提出问题→提出假说→演绎推理→实验验证→得出结论”五个基本环节)这一科学方法。 二、要点探究 1.能发生自由组合的图示为A,原因是非等位基因位于非同源染色体上。 2.自由组合定律的细胞学基础:同源染色体彼此分离的同时,非同源染色体自由组合。3.假如F1的基因型如图A所示,总结相关种类和比例 (1)F1(AaBb)产生的配子种类及比例:4种,AB∶Ab∶aB∶ab=1∶1∶1∶1。 (2)F2的基因型有9种。 (3)F2的表现型种类和比例:4种,双显∶一显一隐∶一隐一显∶双隐=9∶3∶3∶1。 (4)F1测交后代的基因型种类和比例:4种,1∶1∶1∶1。 (5)F1测交后代的表现型种类和比例:4种,1∶1∶1∶1。 4.假如图B不发生染色体的交叉互换,总结相关种类和比例 (1)F1(AaCc)产生的配子种类及比例:2种,AC∶ac=1∶1。 (2)F2的基因型有3种。 (3)F2的表现型种类及比例:2种,双显∶双隐=3∶1。 (4)F1测交后代的基因型种类及比例:2种,1∶1。 (5)F1测交后代的表现型种类及比例:2种,1∶1。 5.基因分离定律和自由组合定律关系及相关比例图解 解读(1)在上述比例最能体现基因分离定律和基因自由组合定律实质的分别是F1所产生配子的比为1∶1和 1∶1∶1∶1,其他比例的出现都是以此为基础。而它们是由于减数分裂等位基因的分离,非同源染色体上的非等位基因的自由组合的结果。

基因互作和基因的多效性

三、基因互作和基因的多效性 分离和自由组合规律,是从单位性状出发,一个基因控制一个性状,而一个性状似乎是一个独立的遗传单位,这是将复杂的生物遗传现象简单化的一个推论,在研究更多的性状与基因的关系时,发现实际问题并不总是这样简单的。 生物是一个有机整体,任何性状都不是孤立的、单一的,仅受一个基因控制的性状太少了。一个性状往往受到多个基因相互作用的影响,而一个基因有时也会影响多个性状。 基因互作:非等位基因在控制某一性状上所表现各种形式的相互作用,称基因互作。这是英国的贝特生和彭乃特在研究鸡的冠形遗传过程中发现的。 在家鸡的品种中,有各种不同的冠形,见下图: 鸡冠的4种类型: 1.玫瑰冠 2.胡桃冠 3.豌豆冠 4.单冠 温多德鸡种为玫瑰冠,婆罗门鸡种为豌豆冠,来航鸡种为单冠。玫瑰冠与豌豆冠杂交,后代是胡桃冠。 P1 RRpp玫瑰冠×rrPP豌豆冠 配子 Rp rP F1 RrPp胡桃冠 F2

9R_P_胡桃冠:3豌豆冠rrP_:3玫瑰冠R_pp:1单冠rrpp (一)基因互作 基因间的相互作用有各种表现: 1.互补作用(9:7):两种或两种以上的显性基因互相补充而表现另一种性状,称为互补作用。具有互补作用的基因称为互补基因。例如鸡的抱窝性是由两对显性互补基因A 和C共同作用的,aacc基因型是不抱窝的。 P AACC抱窝×aacc不抱窝 ↓ F1AaCc抱窝 ↓ F2 9A_C_抱窝:3A_cc不抱窝:3aaC_不抱窝:1aacc不抱窝 说明抱窝是A和C基因互补作用的结果,在不抱窝的这7/16种,只有aacc这1/16是纯合的,而A_cc和aaC_杂交还可产生抱窝鸡。 2.累加作用(9:6:1):当两种显性基因同时存在时,产生一种性状,单独存在时分别表现出另外两类相似性状。 例如杜洛克猪红毛性状的遗传。此品种的猪有三种毛色:红、棕、白。显性基因A或B 都有产生棕色毛(aaB_,A_bb)的效应,但当这两个显性基因同时存在时,会产生红色毛(A_B_),两个显性基因都不存在时,表现白毛(aabb)。 P A杜洛克猪(AAbb棕色)×B杜洛克猪(aaBB棕色) ↓ F1AaBb红色 ↓ F29红色(A_B_):6棕色(3A_bb+3aaB_):1白色(aabb) 3.重叠作用 (15:1)

有关基因自由组合定律中9331的几种变式

有关基因自由组合定律中9:3:3:1的几种变式遗传题在高考中占有很大的比重,也是教材中的重点、难点,学生对正常的遗传问题比较熟悉,对数据的运用处理也得心应手。但对于孟德尔比率9:3:3:1偏离问题的解决略显不足,常常出现差错,对此做一些探讨。 一、常见的变式比有9:7等形式 例1:(08年宁夏)某植物的花色有两对自由组合的基因决定:显性基因A和B同时存在时植株开紫花,其他情况开白花,请回答。 开紫花植株的基因型有种,其中基因型是的紫花植株自交,子代表现为紫花植株:白花植株=9:7。基因型为和紫花植株各自自交,子代表现为紫花植株:白花植株=3:1。基因型为紫花植株自交,子代全部表现为紫花植株。跟踪练习1:某豌豆的花色由两对等位基因(A和a;B和b)控制,只有A和B同时存在时才是红花,已知两白花品种甲、乙杂交,F1都是红花,F1自交所得F2代红花与白花的比例是9:7,试分析回答: (1)根据题意推断出两亲本白花的基因型: (2)从F2代中红花的基因型有种。纯种白花的基因型有种。 (3)F2代中红花的基因型有种。纯种白花的基因型有种。 二、常见的变式比有9:6:1等形式 例2:某种植物的花色有两对等位基因A\a与B\b控制,现有纯合蓝色品种与纯合红色品种杂交,F1都是蓝色,F1自交所得F2为9蓝:6紫:1红。请分析回答: (1)根据题意推断可知花色呈蓝色的条件是:。 (2)开紫花植株的基因型有:。 (3)F2代中纯种紫花植株与红花植株杂交,后代的表现型及比例为。(4)F2代中基因型与亲本基因型不同且是纯合子的个体所占的比例是:。 跟踪练习2:用南瓜中结球形果实的两个纯种亲本杂交,结果如下图:

基因互作练习

基因互作练习 1.家禽鸡冠的形状由两对基因( A和a,B和b)控制,这两对基因按自由组合定律遗传,与 (1)甲组杂交方式在遗传学上称为:甲组杂交F1代四种表现型比别是.(2 )让乙组后代F1中玫瑰状冠的家禽与另一纯合豌豆状冠的家禽杂交, 杂交后代表现型及比例在理论上是。 (3)让丙组F1中的雌雄个体交配.后代表现为玫瑰状冠的有120只, 那么表现为豌豆状冠的杂合子理论上有只。 (4)基因型为AaBb与Aabb的个体杂交,它们的后代基因型的种类有种, 后代中纯合子比例占。 2.(2008宁夏卷29I)某植物的花色由两对自由组合的基因决定。显性基因A和B同时存在时,植株开紫花,其他情况开白花。请回答: 开紫花植株的基因型有种,其中基因型是的紫花植株自交,子代表现为紫花植株:白花植株=9:7。基因型为和的紫花植株各自自交,子代表现为紫花植株:白花植株=3:1。基因型为的紫花植株自交,子代全部表现为紫花植株。 3.在家蚕的一对常染色体上有控制蚕茧颜色的黄色基因A与白色基因a(A对a显性)。在另一对常染色体上有B、b基因,当基因B存在时会抑制黄色基因A的作用,从而使蚕茧变为白色;而b基因不会抑制黄色基因A的作用。 ①结黄茧蚕的基因型是。 ②基因型为AaBb的两个个体交配,子代出现结白色茧的概率是。 ③现有基因型不同的两个结白茧的蚕杂交,产生了足够多的子代;子代中结白茧的与结 黄茧的比例是3:1。这两个亲本的基因型可能是AABb×AaBb,还可能 是;(正交、反交视作同一种情况)

4.(10新课标)某种自花受粉植物的花色分为白色、红色和紫色。现有4个纯合品种:l个紫色(紫)、1个红色(红)、2个白色(白甲和白乙)。用这4个品种做杂交实验, 结果如下: 实验1:紫×红,Fl表现为紫,F2表现为3紫:1红; 实验2:红×白甲,Fl表现为紫,F2表现为9紫:3红:4白; 实验3:白甲×白乙,Fl表现为白,F2表现为白; 实验4:白乙×紫,Fl表现为紫,F2表现为9紫:3红:4白。 综合上述实验结果,请回答: (1)上述花色遗传所遵循的遗传定律是。 (2)写出实验1(紫×红)的遗传图解(若花色由一对等位基因控制,用A、a表示,若由两对等位基因控制,用A、a和B、b表示,以此类推)。遗传图解为。 (3)为了验证花色遗传的特点,可将实验2(红×白甲)得到的F2植株自交,单株收获F2中紫花植株所结的种子,每株的所有种子单独种植在一起可得到一个株系,观察多个这样的株系,则理论上,在所有株系中有4/9的株系F3花色的表现型及其数量比为 5.(10全国1)33.(12分)现有4个纯合南瓜品种,其中2个品种的果形表现为圆形(圆甲和圆乙),1个表现为扁盘形(扁盘),1个表现为长形(长)。用这4个南瓜品种做了3 个实验,结果如下: 实验1:圆甲×圆乙,F1为扁盘,F2中扁盘:圆:长= 9 :6 :1 实验2:扁盘×长,F1为扁盘,F2中扁盘:圆:长= 9 :6 :1 实验3:用长形品种植株的花粉分别对上述两个杂交组合的F1植株授粉,其后代中扁盘:圆:长均等于1:2 :1。综合上述实验结果,请回答: (1)南瓜果形的遗传受__对等位基因控制,且遵循__定律。 (2)若果形由一对等位基因控制用A、a表示,若由两对等位基因控制用A、a和B、b表示,以此类推,则圆形的基因型应为__,扁盘的基因型应为__,长形的基因型应为___。 (3)为了验证(1)中的结论,可用长形品种植株的花粉对实验1得到的F2植株授粉,单株收获F2中扁盘果实的种子,每株的所有种子单独种植在一起得到一个株系。观察多个这样的株系,则所有株系中,理论上有1/9的株系F3果形均表现为扁盘,有__的株系F3 果形的表现型及数量比为扁盘:圆= 1 :1 ,有__的株系F3果形的表现型及数量比为_________。 6.(上海).小麦的粒色受不连锁的两对基因R1和r1、R2和r2控制。Rl和R2决定红色,r1和r2决定白色,R对r不完全显性,并有累加效应,所以麦粒的颜色随R的增加而逐渐加深。将红粒(R1R1R2R2)与白粒(r1r1r2r2)杂交得F1,F1自交得F2,则F2的表现型有A.4种B.5种C.9种D.10种

相关文档