文档视界 最新最全的文档下载
当前位置:文档视界 › 蛋白质-运输功能

蛋白质-运输功能

蛋白质-运输功能

通道蛋白是一类横跨质膜,能使适宜大小的分子及带电荷的分子通过简单的自由扩散运动, 从质膜的一侧转运到另一侧。通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道。通道蛋白的运输作用具有选择性,所以在细胞膜中有各种不同的通道蛋白。通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。

血红蛋白是高等生物体内负责运载氧的一种蛋白质(缩写为HB或HGB)。是使血液呈红色的蛋白。血红蛋白由四条链组成,两条α链和两条β链,每一条链有一个包含一个铁原子的环状血红素。氧气结合在铁原子上,被血液运输。血红蛋白的特性是:在氧含量高的地方,容易与氧结合;在氧含量低的地方,又容易与氧分离。血红蛋白的这一特性,使红细胞具有运输氧的功能。

转运蛋白是膜蛋白的一大类,介导生物膜内外的化学物质以及信号交换。脂质双分子层在细胞或细胞器周围形成了一道疏水屏障,将其与周围环境隔绝起来。尽管有一些小分子可以直接渗透通过膜,但是大部分的亲水性化合物,如糖,氨基酸,离子,药物等等,都需要特异的转运蛋白的帮助来通过疏水屏障。

锚蛋白属于联结蛋白家族,广泛存在于各种组织细胞中。锚蛋白连接整合膜蛋白到细胞骨架蛋白网络,在多种细胞功能活动中起关键作用,参与细胞内蛋白转运。对锚蛋白功能的研究将有助于阐明与其异常相关疾病的发病机制,为基因诊断和治疗提供理论基础。

水孔蛋白的其中一种AQP1,是由四个相同的亚基构成,每个亚基的相对分子质量为28kDa,每个亚基有六个跨膜结构域,在跨膜结构域2与3、5与6之间有一个环状结构,是水通过的通道。每个单体蛋白的中空部分都形成具有高度选择性的通道,只允许水分子跨膜运输而不允许带电质子或其他离子通过,在功能上都可以作为一个独立的运输水通道。

细胞内蛋白质的合成与运输_论文

细胞内蛋白质的合成与运输 摘要:蛋白质是一切生命的物质基础,这不仅是因为蛋白质是构成机体组织器官的基本成分,更重要的是蛋白质本身不断地进行合成与分解。这种合成、分解的对立统一过程,推动生命活动,调节机体正常生理功能,保证机体的生长、发育、繁殖、遗传及修补损伤的组织。根据现代的生物学观点,蛋白质和核酸是生命的主要物质基础。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式,研究前景 前言:国家重大科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项目分别是蛋白质研究,量子调控研究,纳米研究,发育与生殖研究。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程

遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸或其他信息,这种三联体形势称为密码子(codon)。如图,通常的开放式阅读框架区包含500个以上的密码子。 遗传密码的特点 一方向性:密码子及组成密码子的各碱基在mRNA序列中的排列具有方向性(direction),翻译时的阅读方向只能是5ˊ→3ˊ。 二连续性:mRNA序列上的各个密码子及密码子的各碱基是连续排列的,密码子及密码子的各个碱基之间没有间隔,每个碱基只读一次,不重叠阅读。 三简并性:一种氨基酸可具有两个或两个以上的密码子为其编码。遗传密码表中显示,每个氨基酸都有2,3,4或6个密码子为其编码(除甲硫氨酸只有一个外),但每种密码子只对应一个氨基酸,或对应终止信息。 四通用性:生物界的所有生物,几乎都通用这一套密码子表 五摆动性:tRNA的最后一位,和mRNA的对应不完全,导致了简并性 氨基酸活化 在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA合,带到mRNA 相应的位置上,这个过程靠tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA 相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用A TP供能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(图1)。原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。氨基酰tRNA合成酶是如何选择正确的氨基酸和tRNA 呢?按照一般原理,酶和底物的正确结合是由二者相嵌的几何形状所决定的,只有适合的氨基酸和适合的tRNA进入合成酶的相应位点,才能合成正确的氨酰基tRNA。现在已经知道合成酶与L形tRNA的内侧面结合,结合点包括接近臂,DHU臂和反密码子臂(图2)。氨基酰-tRNA合成酶与tRNA的相互作用,可见氨酸接受柄、乍看起来,反密码子似乎应该与氨基酸的正确负载有关,对于某些tRNA也确实如此,然而对于大多数tRNA来说,情况并非如此,人们早就知道,当某些tRNA上的反密码子突变后,但它们所携带的氨工酸却没有改变。1988年,候稚明和Schimmel的实验证明丙氨酸tRNA酸分子的氨基酸臂上G3:U70这两个碱基发生突变时则影响到丙氨酰tRNA合成酶的正确识别,说明G3:U70是丙氨酸tRNA分子决定其本质的主要因素。tRNA分子上决定其携带氨基酸的区域叫做副密码子。一种氨基酰tRNA合成酶可以识别以一组同功tRNA,这说明它们具有共同特征。例如三种丙氨酸tRNA

分泌蛋白的合成和运输学案

分泌蛋白的合成和运输学案

————————————————————————————————作者:————————————————————————————————日期:

宜川中学高一生物第18课时陕西省课 分泌蛋白的合成和运输 编者:朱巧荣审核人:编制时间:2011.11.17 学生完成所需时间1课时班级姓名第小组【学习目标】 1、对所学细胞器进行分类并能说出细胞器的功能。 2、能写出、说出分泌蛋白合成和运输过程。 3、课堂上认真思考、积极讨论、激情展示,大胆质疑,感悟细胞器间的分工与合 作,增强小组内的合作与交流。 【学习重点】分泌蛋白的合成和运输过程 【学习难点】分泌蛋白合成和运输过程中有关的细胞器的作用和有关结构的变化 【学习内容】细胞器分类——细胞器功能——分泌蛋白的合成和运输 【学法指导】通过阅读学案的导读,解决学习过程中可能遇到的疑惑;通过在纠错本上书写细胞器种类及分类,通过提问或书写熟悉细胞器的功能;通过课件展示、小组讨论、学生展示、质疑,加深对分泌蛋白形成过程的理解;通过课堂测试来巩固本节所学知识。 【目标解读】 通过课前默写细胞器的分类和功能及课前小测试,来完成目标1;通过对分泌蛋白的形成过程的探究,来完成目标2、3。 【学案导读】(温馨提示) 1、细胞中的核糖体有的游离在细胞质基质中,有的附着在内质网上。细胞中合成的 蛋白质,分为两类,一类是附着在内质网上的核糖体,其合成的蛋白质,要送到细胞外发挥作用,即分泌蛋白(如抗体、消化酶、某些激素等);一类是细胞质中的核糖体合成的蛋白质,在细胞内发挥作用(如线粒体蛋白和叶绿体蛋白)。 2、科学家用同位素标记法来研究分泌蛋白的合成过程。同位素标记法:科学家通过 追踪示踪元素标记的化合物,可以弄清化学反应的详细过程。这种科学研究方法叫做同位素标记法。同位素标记法也叫同位素示踪法。 3、同位素:具有相同质子数,而中子数不同的同一种元素不同原子.例如氢有三种 同位素, H氕、D氘(又叫重氢)、 T氚(又叫超重氢);碳有多种同位素,例如12C、13C、14C(有放射性)等。 4、生物膜:细胞中的细胞膜、核膜和细胞器膜的统称。 目标1对所学细胞器进行分类并能说出细胞器的功能 一、课前练一练(试试你的身手,你最行) 1、根据所学的细胞器知识,按要求回答问题:(B级)

(推荐)蛋白质合成分选定位

细胞中蛋白质合成分选、定位的机制 一.蛋白质合成 定义:在核糖体的作用下,mRNA携带的遗传信息翻译成蛋白质。 蛋白质合成(多肽链合成)的基本过程: 1.氨基酸激活。a.将氨基酸的羧基激活成易于形成肽键的形式。b.每一个新氨基酸与 mRNA编码信息之间建立联系。从而使氨基酸与特定tRNA结合。 2.起始。 mRNA+核糖体小亚基+起始氨酰基-tRNA +核糖体大亚单位=起始 复合物 3.肽链延长。 tRNA与mRNA对应的密码子配对携带有一个氨基酸的 tRNA被安放到核糖体上此氨基酸和前一个氨基酸共价键合,肽链延长。该阶段的核心是形成肽键,将单个氨基酸连接成多肽链。 4.合成终止,肽链释放。 mRNA上的终止密码子即是终止信号,当携带新生肽链的 核糖体抵达终止密码子,多肽链合成终止,核糖体大小亚基分离,多肽链从核糖体上释放出来。 5.折叠和翻译后加工。包括多肽链的折叠剪接、化学修饰、空间组装。 二.蛋白质分选定位 定义:蛋白质从起始合成部位转运到其发挥功能发挥部位的过程。绝大多数蛋白质都是由核基因编码,或在游离核糖体上合成,或在糙面内质网膜结合核糖体上合成。但是蛋白质发挥结构或功能作用的部位几乎遍布细胞的各个区间或组分,所以需要不同的机制以确保蛋白质分选,转运至细胞的特定部位。 1.核基因编码的蛋白质的分选途径: ①.后翻译转运途径 在细胞质基质游离核糖体上完成多肽链合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质的可溶性驻留蛋白和骨架蛋白。 ②.共翻译转运途径 蛋白质合成在游离核糖体上起始之后,由信号肽及其与之结合的SRP引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网腔或定位在ER膜上,经转运膜泡运至高尔基加工包装再分选至溶酶体、细胞质膜或分泌到细胞外,内质网与高尔基体本身的蛋白质分选也是通过这一途径完成的。 指导分泌性蛋白质在糙面内质网上合成的决定因素是蛋白质N端的信号肽、信号识别颗粒SRP、内质网膜上信号识别颗粒的受体等因子协助完成的。 蛋白质合成暂停

细胞蛋白分选机制整理

题目:1.用自己的语言复述课堂列出的四组关于信号肽的实验,分析其产物为何有所不同;根据这些实验结果构建的信号肽学说要点有哪些? 2.请整理线粒体、质体、内膜系统、膜泡系统、细胞核等章节有关蛋白分选内容,详细描述细胞内蛋白分选机制。 1. 共四组实验,在第一组(对照组)中加入含编码信号序列的mRNA,第二组中加入含编码信号序列的mRNA和SRP,第三组中加入含编码信号序列的mRNA和SRP,DP,第四组中加入含编码信号序列的mRNA和SRP,DP,微粒体。 实验结果:第一组产生含信号肽的完整多肽,第二组合成70~100氨基酸残基后,肽链停止延伸,第三组产生含信号肽的完整多肽,第四组信号肽切除,多肽链进入微粒体中。 产物不同的原因: 组2:SRP 有Alu和S 两个结构域,它们同RNA 相互连接。其中Alu结构域由SRP9 和SRP14 组成,结合到7S RNA的5'端和3'端序列。SRP 能识别并结合在游离核糖体上新合成蛋白质的信号肽。当它与信号肽结合后,多肽合成就暂时中止,所以会只形成70~100氨基酸残基。 组3:DP与SRP结合后,解除了SRP 对核糖体肽链合成的抑制,新生链继续合成延长。 组3:微粒体中含有内质网和核糖体,加入之后,多肽链会进入其中被加工,信号肽则被信号肽酶水解。

信号肽学说要点: 分泌蛋白先在游离核糖体上开始合成-----当其N端的信号肽延伸出核糖体后,被胞质中的SRP识别并结合-----rER膜上的SR识别并结合SRP----信号肽的疏水核心与膜结合-----新形成的多肽链进入内质网----信号肽被信号肽酶水解-------新生肽链通过蛋白转运子进入内质网腔中--------核糖体移到mRNA的终止密码子,蛋白质合成结束,核糖体重新处于游离状态。 2. 线粒体: 线粒体中有1000 多种蛋白质,它本身的DNA 及核糖体只能合成其中少数蛋白质,其余的线粒体蛋白质都是由核DNA编码的,在胞质游离核糖体上合成后运输到线粒体中 由线粒体的核糖体合成的蛋白,以共翻译运输(co-translational transport)的方式插入到线粒体内膜, 在细胞质核糖体上合成的蛋白,以翻译后运输(post-translational transport)的方式转运到线粒体中。 (1)在胞质核糖体上合成的蛋白质,大都以前体形式存在。多由N端的一段导肽和成熟形式的蛋白质组成。(2)蛋白质通过膜时,在外膜上有专一性不很强的受体参与作用。(3)蛋白质通过膜需要水解ATP和利用质子动势的能量过程。(4)导肽引导蛋白质前体,在受体及转运子的作用下,通过内、外膜的接触点,运输到线粒体的基质中。(5)导肽对所牵引的蛋白质无特异性。(6)蛋白质运送时需要一些分子伴侣使蛋白进行折叠状态与解折叠状态的转变。(7)前体蛋白运入线粒体后,需要蛋白酶切除导肽,再折叠成成熟蛋白。 线粒体膜上存在前体蛋白转运子,外膜上的TOM、SAM,内膜上TIM23、TIM22、

高中蛋白质的合成与运输教学设计教案

高中蛋白质的合成与运输教学设计教案 Last revised by LE LE in 2021

教学设计 第二单元第一章第二节 蛋白质的合成与运输 无棣二中吴新三 一、教学目标: 1.简述蛋白质的合成和加工过程。 2.描述核糖体的形态结构和成分。 3.简述蛋白质分选。 4.能够利用同位素示踪法的现象和结果进行推理与推断。 5.激起同学们运用科学方法探索微观世界的兴趣及培养合作交流、独立思考等良好的个性品质。 二、教学重点和难点 1.教学重点:蛋白质的合成、分选与运输。 2.教学难点:蛋白质的合成、分选。 三、教学方法 合作讨论+讲授 五、教学过程 导入新课: 上一节我们学习了氨基酸的结构通式(你能写出来吗),同学们可以以自身形态模仿氨基酸结构,以左右上肢分别代表氨基酸的氨基和羧基,下肢代表氢原子,躯干代表碳原子。让学生认识到:每个人的躯干和四肢是差不多的,人和人的特征不同,关键在于头部的不同,头部就代表R基。 两个氨基酸的脱水缩合形成二肽的过程还记得吗你还记得哪个细胞器是蛋白质的装配机器吗核糖体与脱水缩合反应之间到底有什么关系呢 一、蛋白质的合成 1.核糖体的结构 核糖体含40%的蛋白质、60%的RNA,蛋白按照一定的顺序与RNA结合,组成两个核糖体亚单体,其中RNA是骨架结构,有些蛋白质不直接与RNA结合,

而是结合在其它蛋白质组分上。核糖体中的蛋白质,rRNA以及其他一些辅助因子在一起提供了翻译过程所需的全部酶活性,这些酶活性只有在核糖体整体结构存在的情况下才具备。 2.蛋白质的合成 〖问题1〗 通过下面的探究活动,思考蛋白质初合成和初合成后进一步修饰加工的场所在哪里并尝试写出分泌蛋白质的形成过程。 【探究活动】豚鼠胰腺蛋白的分泌 科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3 min后,被标记的氨基酸出现在附着有核糖体的内质网中,17 min后,出现在高尔基体中,117 min后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。〖教学提示〗 这种方法叫做同位素标记法,常用于细胞学的研究,用来对分子的位置进行跟踪。 让学生注意观察蛋白质的运输路线:这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的。(展示幻灯片) 在核糖体上合成的分泌蛋白,为什么要经过内质网和高尔基体,而不是直接运输到细胞膜呢进一步的研究表明,在核糖体上翻译 出的“蛋白质”,进入内质网腔后,还要经过一些加 工,如折叠、组装、加上一些糖基团等,才能成为比较 成熟的蛋白质。然后,由内质网腔膨大、出芽形成具膜

细胞内蛋白质的分选和运输

细胞内蛋白质的分选和运输 蛋白质在细胞质基质中合成后,按其氨基酸序列中分选信号(sorting signal)的有无以 及分选信号的性质被选择性地送到细胞的不同部位,这一过程称为蛋白质分选(protein sorting)和蛋白质靶向运输(protein targeting)。另外,细胞外的蛋白质经胞吞作用进入 细胞内部,也经历分选和靶向运输过程。细胞中每一种蛋白质只有到达正确的位置才能行使 其功能,如 RNA和DNA聚合酶必须送到细胞核中才能参与核酸的合成;酸性水解酶必须送 到溶酶体才能进行大分子的降解作用。因此,细胞内蛋白质的分选和运输对于维持细胞的结 构与功能、完成各种细胞生命活动都是非常重要的。 细胞内蛋白质的分选信号以及运输途径和方式 号肽通常引导蛋白质从细胞质基质进入内质网、线粒体和细胞核,同时也引导蛋白质从 细胞核送回到细胞质基质以及从高尔基体送回到内质网;信号斑则引导一些其他分选过程, 如在内质网合成的溶酶体酶蛋白上存在一种信号斑,在高尔基体的CGN中可被N-乙酰氨基 葡萄糖磷酸转移酶所识别,从而使溶酶体酶蛋白上形成新的分选信号M-6-P,进一步在TGN 中被M-6-P受体识别,并分选进入运输小泡最终送到溶酶体(详见第十章)。 每一种信号序列引导蛋白质到达细胞内一个特定的目的地(表10-1)。要运送到内质网 的蛋白质,在其N-末端有一段信号肽,其中间部分有5-10个疏水氨基酸。带有这种信号肽 的蛋白质,都会被运送到内质网,并进一步被运送到高尔基体,其中一部分蛋白质在C-末 端还带有一个由4个氨基酸组成的信号肽,它们在高尔基体的CGN部位被识别并被送回内质 网,是内质网驻留蛋白质;要运送到线粒体的蛋白质,在其N-末端带有一种信号肽,其信 号序列中带阳电荷的氨基酸和疏水氨基酸呈交替排列;要运送到过氧化物酶体的蛋白质,在 其C-末端有一种由三个特征性氨基酸组成的信号肽;要运送到细胞核的蛋白质,其信号肽 中有一串带阳电荷的氨基酸,这一信号序列可位于蛋白质的任何部位。 表10-1 几种典型的信号序列 (引自Alberts等,2002) ________________________________________________________________________ 信号序列的功能信号序列 _________________________________________________________________________ 输入到细胞核 -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val- 从细胞核输出 -Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-Asp-Ile- N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys- 输入到线粒体+H 3 Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu-Leu- 输入到过氧化物酶体 -Ser-Lys-Leu-COO- N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-Ile- 输入到内质网+H 3 Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys-Cys- Glu-Val-Phe-Gln- 回输到内质网 -Lys-Asp-Glu-Leu-COO- _________________________________________________________________________ 一、细胞内蛋白质运输的途径

高中生物《蛋白质的合成与运输》学案3 中图版必修1

高中生物《蛋白质的合成与运输》学案3 中图 版必修1 学习目标:1描述核糖体的形态结构和成分2 简述蛋白质的合成和加工过程3 能够利用同位素示踪法的现象和结果进行推理和判断4简述蛋白质分选、运输5 学会用实验资料探究结论的方法二 自学与探究:1 蛋白质的合成阅读课本P36蛋白质的合成第一自然段,结合所学知识完成以下有关核糖体的问题:①蛋白质的合成场所________________ ,核糖体的形态 ___________________,核糖体在细胞中的分布 ________________________________________________,核糖体的成分 _________________________________________________________,核糖体的结构 _________________________________________________________。②蛋白质的合成是 ________________________________________ 并进行________ 的复杂过程,是由 _____________________________________________ 完成的。探究活动:根据豚鼠胰腺蛋白的分泌过程,分析讨论以下问题:①

分泌蛋白的合成和分泌依次经过哪些结构?②各部分结构在这个过程中有什么作用?(阅读课本P37第二第二自然段,弄清蛋白质的分选和运输的概念①蛋白质的分选:蛋白质合成后, ____________________________________________决定他们的去向和最终定位。此外,_____________________________________也影响了蛋白质的去向。②蛋白质的运输:通过连续的 __________________运送蛋白质到达________________的过程。蛋白质只有被准确的运输到相应的部位才能执行特定的功能。读图2-1-11,完成以下问题内质网上的核糖体合成的蛋白质通过一定的机制进入到_________________ 中,经过初步的修饰加工后被运送到_____________________,再经其进一步加工修饰成为____________________________________。最后由 _______________________通过 __________________________________将不同的蛋白质分开,各自以________________的形式运送到相应的部位。如 __________________________________________________。游离的核糖体合成的蛋白质则主要通过各自的 _______________________被运送到不同的__________________如_________________________________________________。三内容小结:四 反馈练习1 核糖体是蛋白质的合成场所,通常核糖体不分布于 ( )A 原核细胞中 B 真核细胞中 C叶绿体中 D高尔基体中2

细胞内蛋白质的合成与运输 论文

细胞内蛋白质的合成与运输 摘要:蛋白质生物的合成亦称为翻译(Translation),即把mRNA分子中碱基排列顺序转变为多肽链中的氨基酸排列顺序过程。不同的组织细胞具有不同的生理功能,是因为它们表达不同的基因,产生具有特殊功能的蛋白质,参与蛋白质生物合成的成份至少有200种,其主要由mRNA、tRNA、核糖核蛋白体以及有关的酶和蛋白质因子共同组成。原核生物与真核生物的蛋白质合成过程中有很多的区别,真核生物此过程更复杂,原核生物蛋白质合成的过程可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。细胞内蛋白质有多种运输途径,一般可分为三种类型:翻译后转运的蛋白质运输途径;共翻译转运的蛋白质运输途径;蛋白质的胞吞途径。主要三种运输方式:门控运输、穿膜运输和小泡运输。 关键字:多肽链、蛋白质、翻译、核糖体、运输途径、运输方式 前言:随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控,翻译水平调控,翻译后水平调控。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 一、蛋白质生物合成过程 合成过程可分为起始、延长、终止三个阶段,蛋白质合成在核蛋白体上进行称为核蛋白体循环(广义)。肽链的合成是从N端到C端。 1.翻译起始(原核生物) 生成由起始氨基酰-tRNA、mRNA和核蛋白体组成的70S起始复合物,原核生物的起始因子(IF)有三种。其过程在原核生物和真核大同小异。(1)核蛋白体大、小亚基分离。(2)mRNA 结合小亚基mRNA起始密码上游为S-D序列,可与小亚基16S rRNA 3'端互补。紧接S-D 序列的短核苷酸序列可被小亚基蛋白识别结合,两方面作用促使mRNA在小亚基上定位。 (3)fmet-tRNAifmet结合于mRNA-小亚基复合体的AUG上,形成30S起始复合体。(4)大亚基加入30S起始复合体,形成70S起始复合体。 真核生物翻译起始的特点是:真核生物核蛋白体为80S(60S + 40S)。10种起始因子(eIF),生成起始复合物步骤IF eIF 亚基分离起始tRNA就位mRNA就位大亚基结合IF-3、IF-1IF-2、IF-1核酸-核酸、核酸-蛋白质之间的辨认结合各种IF脱落,GTP水解eIF-3、eIF-3A、eIF-4CeIF-2、eIF2B、eIF- 3、eIF-4CeIF-4、eIF-4A、eIF-4B、eIF-4E 、eIF-4F 。(1)真核起始甲硫氨酸不需甲酰化。(2)真核mRNA没有S-D序列,但5'端帽子结构与其在核蛋白体就位相关。帽结合蛋白(CBP)可与mRNA帽子结合,促进mRNA与小亚基结合。 2.肽链的延长 延长阶段为不断循环进行的过程,也称核蛋白体循环。分为进位、成肽和转位三个步骤。真核及原核生物的延长,主要是延长因子体系的不同。EFTuEFTsEFG 协助氨基酰-tRNA进入A位,结合GTP从EFTu中置换GDP转位酶,促助肽酰-tRNA由A位进至P位,协助

片段教学讲稿:分泌蛋白的合成和运输

一、复习 通过上一节课的学习,我们知道细胞内部就像一个繁忙的工厂,在细胞质中有许多忙碌不停的“车间”,也就是细胞器。各种细胞器的形态、结构不同,在功能上也各有分工。 现在我们来复习下各种细胞器的功能。第一个,线粒体。它是细胞进行有氧呼吸的主要场所,是细胞的?“动力车间”。细胞生命活动所需的能量,大约95%来自线粒体。溶酶体是?“消化车间”,内部含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。液泡主要存在于植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。核糖体有的附着在内质网上,有的游离分布在细胞质中,是“生产蛋白质的机器”。高尔基体主要是对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”。中心体存在于动物和某些低等植物的细胞中,由两个互相垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关。内质网是由膜连接而成的网状结构,是细胞内蛋白质合成和加工,以及脂质合成的“车间”。叶绿体是绿色植物进行光合作用的场所,是植物细胞的“养料制造车间”和“能量转换站”。 二、导入 细胞内有许多条“生产线”,单是一种简单的细胞就可以推出许多的“产品”,例如蛋白质,糖蛋白,脂类等等。而每一条“生产线”都需要若干细胞器的相互配合。正如ppt所呈现的,蛋白质的合成、加工等与核糖体、内质网和高尔基体等细胞器有关,那这些细胞器之间是如何进行协调配合,才能生产出蛋白质这一产品呢?这节课我们就以分泌蛋白为例,来学习细胞器之间的协调配合。(板书) 三、新课

(一)概念介绍 在学习分泌蛋白的合成和运输之前,我们先要了解几个相关概念。 1.分泌蛋白。(顾名思义,在细胞内合成后,分泌到细胞外起作用的蛋白质叫做分泌蛋白,如消化酶、抗体和部分激素。比如唾液淀粉酶、胃蛋白酶、胰蛋白酶,胰岛素、生长激素等。) 2.同位素标记法。放射性同位素会释放出具有穿透力的射线,科学家们可以用相应的探测仪器探测到这些射线,进而追踪到放射性同位素的位置。(用放射性同位素标记的化合物,化学性质不会改变。根据同位素标记的化合物的放射性,科学家可以对有关物质的运行和化学变化进行追踪。)这种方法就叫做同位素标记法。 在课本48页的资料分析中,科学家将用放射性同位素氘3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中。结果如图4-2豚鼠胰腺腺泡细胞分泌蛋白形成过程图解。我们将探测到射线的位置用红点来表示,红点位置的移动,代表着被标记的亮氨酸的位置移动。科学家们通过追踪氘3H标记的亮氨酸的位置变化,就可以弄清分泌蛋白的合成和运输过程。

分泌蛋白的合成和运输 学案

分泌蛋白的合成和运输 编者:朱巧荣审核人:编制时间:2011.11.17 学生完成所需时间1课时班级姓名第小组【学习目标】 1、对所学细胞器进行分类并能说出细胞器的功能。 2、能写出、说出分泌蛋白合成和运输过程。 3、课堂上认真思考、积极讨论、激情展示,大胆质疑,感悟细胞器间的分工与合 作,增强小组内的合作与交流。 【学习重点】分泌蛋白的合成和运输过程 【学习难点】分泌蛋白合成和运输过程中有关的细胞器的作用和有关结构的变化【学习内容】细胞器分类——细胞器功能——分泌蛋白的合成和运输 【学法指导】通过阅读学案的导读,解决学习过程中可能遇到的疑惑;通过在纠错本上书写细胞器种类及分类,通过提问或书写熟悉细胞器的功能;通过课件展示、小组讨论、学生展示、质疑,加深对分泌蛋白形成过程的理解;通过课堂测试来巩固本节所学知识。 【目标解读】 通过课前默写细胞器的分类和功能及课前小测试,来完成目标1;通过对分泌蛋白的形成过程的探究,来完成目标2、3。 【学案导读】(温馨提示) 1、细胞中的核糖体有的游离在细胞质基质中,有的附着在内质网上。细胞中合成的 蛋白质,分为两类,一类是附着在内质网上的核糖体,其合成的蛋白质,要送到细胞外发挥作用,即分泌蛋白(如抗体、消化酶、某些激素等);一类是细胞质中的核糖体合成的蛋白质,在细胞内发挥作用(如线粒体蛋白和叶绿体蛋白)。 2、科学家用同位素标记法来研究分泌蛋白的合成过程。同位素标记法:科学家通过 追踪示踪元素标记的化合物,可以弄清化学反应的详细过程。这种科学研究方法叫做同位素标记法。同位素标记法也叫同位素示踪法。 3、同位素:具有相同质子数,而中子数不同的同一种元素不同原子.例如氢有三种 同位素, H氕、D氘(又叫重氢)、 T氚(又叫超重氢);碳有多种同位素,例如12C、13C、14C(有放射性)等。 4、生物膜:细胞中的细胞膜、核膜和细胞器膜的统称。 目标1对所学细胞器进行分类并能说出细胞器的功能 一、课前练一练(试试你的身手,你最行) 1、根据所学的细胞器知识,按要求回答问题:(B级) 有双层膜结构的细胞器是:

蛋白质的合成与运输

学案设计 第二单元第一章第二节 蛋白质的合成与运输 潍坊滨海中学梁芳 【学习目标】 一、知识目标 1.简单描述蛋白质的合成和加工过程。 2.描述核糖体的形态结构和成分。 3.简单描述蛋白质的分选、运输过程。 二、能力目标 通过探究活动,学会利用同位素示踪法的现象和结果进行推理和判断,学会用实验资料探究结论的方法,培养分析资料、判断推理、归纳结论的能力。 三、情感目标 1.在探究活动中培养合作探究的精神。 2.通过蛋白质合成和运输过程的学习,认同细胞的整体性的观点。 【学习重点】 1.蛋白质的合成、加工、运输过程。 2.在探究活动中培养分析资料、判断推理、归纳结论的能力。 【学习难点】 通过蛋白质合成和运输过程的学习,认同细胞的整体性的观点。 【学习过程】 一、蛋白质的合成 (一)课前预习: 1.是蛋白质的合成场所,其由和共同组成。 2.原核细胞和真核细胞的核糖体结构基本相同,都由和组成。 3.不进行蛋白质合成时,核糖体的大、小亚基是的;在蛋白质合成过程中,大、小亚基是。 4.核糖体合成的蛋白质只能作为蛋白质的,要成为成熟而有功能的蛋白质,还必须经过必要的。、和都

能对新生肽链进行加工。 5.蛋白质的加工主要是指为新生肽链添加上、或并对其和等。 (二)合作探究 请结合教材中探究活动“豚鼠胰腺蛋白的分泌”,同学们分组讨论,解决以下问题:1.放射性的出现说明什么?由此,你想一想,这种方法还可以用于哪些方面的研究? 2.分泌蛋白的合成和分泌依次经过哪些结构?用箭头连接起来。 3.内质网和高尔基体在这个过程中有什么作用? 4.蛋白质加工的场所有哪些?加工有哪几种形式?加工的意义是什么? 二、蛋白质的分选和运输 (一)课前预习: 1.蛋白质合成后,一般在其氨基酸序列中含有,它们的去向和最终定位。 2.核糖体在细胞中的不同,有的结合在上,有的存在于中,这也蛋白质的去向。 3.通过连续的运送蛋白质到达其最终目的地的过程称为蛋白质的运输。 (二)合作学习

蛋白质分选

四川师范大学生命科学学院 学科:细胞生物学 题目:蛋白质分选 班级:09级3班 姓名:王强 学号:2009090344

综述:蛋白质的分选 哺乳动物细胞含有上万种蛋白质,除线粒体和植物细胞叶绿体能合成少量蛋白外,绝大多数的蛋白质或者在细胞基质游离的核糖体上合成,或在糙面内质网膜结合核糖体上合成。由于蛋白质发挥结构或功能作用的部位几乎遍布细胞的各种膜区和组分,因此必然存在不同的机制进行蛋白质的分选,将蛋白质转运到细胞特定的部位发挥其功能。只有当蛋白质各就各位并组装成结构和功能复合体,才能参与细胞的各种生命活动。这一过程称为蛋白质的定向转运或称为蛋白质的分选。蛋白质的分选是一个涉及多种信号调控的复杂而重要的细胞生物学问题。 信号假说是1975年,G.Blobel和D.Sabatini等根据实验依据提出的,即分泌蛋白N端序列作为信号肽,指导分泌蛋白到内质网上合成,然后在信号肽的指导下蛋白质边合成边通过易位子蛋白复合体进入内质网腔,在蛋白质合成结束后信号肽被切除。 蛋白质分选主要是指膜结合核糖体上合成的蛋白质, 通过信号肽,在翻译的同时进入内质网, 然后经过各种加工和修饰,使不同去向的蛋白质带上不同的标记, 最后经过高尔基体反面网络进行分选,包装到不同类型的小泡,并运送到目的地, 包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。广义的蛋白质分选也包括在游离核糖体上合成的蛋白质的定位。蛋白质是由核糖体合成的,合成之后必须准确无误地运送到细胞的各个部位,此过程称为蛋白质的分选。

(一)蛋白质分选途径大体可分为两种: 1)翻译后转运途径:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质基质的可溶性驻留蛋白和支架蛋白,通过该途径进入线粒体、叶绿体和过氧化物酶体等细胞器的蛋白质,必须在分子伴侣的帮助下解折叠或维持非折叠状态,这有利于通过膜上的输入装置。最近在酵母细胞也发现有些蛋白质在细胞质基质的游离核糖体上合成,然后再转运至内质网中,可见蛋白质的分选对细胞的生活有多么重要的意义啊。 2)共翻译转运途径:蛋白质合成在游离核糖体上起始后由信号肽引导移至糙面内质网,然后新生肽边合成边转入糙面内质网中,在经高尔基体加工包装运输到溶酶体、细胞质膜或分泌到细胞外,内质网与高尔基体本身的蛋白质分选也是通过这一途径完成的。 (二)蛋白质分选的四种基本类型: 1、蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。(其中进入内质网与进入线粒体、叶绿体和过氧化物酶体等的机制有所不同) 2、膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。其中涉及各种不同的运输小泡的定向转运,以及膜泡出芽和融合的过

探究分泌蛋白的合成和分泌过程

探究分泌蛋白的合成和分泌过程 师:这节课我们来探究分泌蛋白的合成和分泌过程。请看图片中潘长江吃米饭,是不是越嚼越甜? 生:是的。 师:为什么呢? 生:唾液淀粉酶分解淀粉成麦芽糖,麦芽糖是甜的。 师:对,唾液淀粉酶属于分泌蛋白。 生:老师,什么是分泌蛋白? 师:顾名思义,在细胞内合成后,分泌到细胞外起作用的蛋白质叫做分泌蛋白,如消化酶、抗体和部分激素。比如唾液淀粉酶、胃蛋白酶、胰蛋白酶,胰岛素、生长激素等。 生:分泌蛋白是在哪里合成的? 师:核糖体,你来思考核糖体的分布、组成、形态结构和功能。 生:核糖体在动植物细胞都有分布,它有RNA和蛋白质组成,椭球形的粒状小体,无膜结构,功能是合成蛋白质的场所。 师:附着核糖体和游离核糖体合成的蛋白质是一样的么? 生:不一样的吧,附着核糖体合成分泌蛋白,游离核糖体合成细胞自身所需蛋白质。 师:合成分泌蛋白接下来到哪里? 生:内质网 师:对,内质网你有了解多少呢? 生:由单层膜构成的囊腔和细管连接而成的网状物,绝大多数动植物细胞都有内质网。细胞核附近较多,并与核膜有一定的联系。有光面和粗面之分,粗面内质网是蛋白质的运输通道。 师:然后呢? 生:运输到高尔基体。 师:你再说一说高尔基体. 生:高尔基体存在于动植物细胞中,是单位膜构成的扁平小囊和其产生的小泡,对蛋白质进行分拣,分别送到细胞内或细胞外的目的地。 师:很好,我们用什么方法可以知道合成的分泌蛋白,要经过内质网和高尔基体,不是直接运输到细胞膜外的呢? 生:用同位素标记法 师:对,同位素标记法,就是用放射性同位素标记的化合物,化学性质不会改变。根据同位素标记的化合物的放射性,科学家可以对有关物质的运行和化学变化进行追踪,这种方法就叫做同位素标记法。你来根据图示说一说分泌过程。 生:核糖体合成分泌蛋白质,内质网和高尔基体要对合成的蛋白质进行加工、包装和运输等。 师:这些细胞器之间协调配合,才能生产出蛋白质这一产品。 生:同位素标记,怎么标记、怎么观察呢? 师:科学家将用放射性同位素氘3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中。我们将探测到射线的位置用红点来表示,红点位置的移动,代表着被标记的亮氨酸的位置移动。科学家们通过追踪氘3H标记的亮氨酸的位置变化,就可以弄清分泌蛋白的合成和运输过程。 生:哦 师:分泌蛋白从合成至分泌到细胞外,依次经过了哪些细胞结构?换句话说,依次在哪些位置出现了红点?生:最开始,被标记的亮氨酸作为原料,在内质网上的核糖体中参与肽链的合成;然后,被标记的亮氨酸出现在附着有核糖体的内质网中;再然后,出现在高尔基体中,又一会儿,出现在靠近细胞膜内侧的囊泡,以及释放到细胞外的分泌物中。 师:对,大约3min后,被标记的亮氨酸出现在附着有核糖体的内质网中;17min后,出现在高尔基体中,117min后,出现在靠近细胞膜内侧的囊泡,以及释放到细胞外的分泌物中。图中1~5表示合成和运输的顺序。你能根据合成的分泌蛋白运输到细胞外的过程示意图,说一说具体过程吗? 生:我试试:分泌蛋白合成的第1步,就是合成蛋白质。氨基酸在内质网上的核糖体中脱水缩合形成肽链,肽链进入内质网进行初步的修饰、加工,形成有一定结构的较成熟的蛋白质。

高中蛋白质的合成与运输教学设计教案

高中蛋白质的合成与运输教学设计教案 SANY GROUP system office room 【SANYUA16H-

教学设计 第二单元第一章第二节 蛋白质的合成与运输 无棣二中吴新三 一、教学目标: 1.简述蛋白质的合成和加工过程。 2.描述核糖体的形态结构和成分。 3.简述蛋白质分选。 4.能够利用同位素示踪法的现象和结果进行推理与推断。 5.激起同学们运用科学方法探索微观世界的兴趣及培养合作交流、独立思考等良好的个性品质。 二、教学重点和难点 1.教学重点:蛋白质的合成、分选与运输。 2.教学难点:蛋白质的合成、分选。 三、教学方法 合作讨论+讲授 五、教学过程 导入新课: 上一节我们学习了氨基酸的结构通式(你能写出来吗?),同学们可以以自身形态模仿氨基酸结构,以左右上肢分别代表氨基酸的氨基和羧基,下肢代表氢原子,躯干代表碳原子。让学生认识到:每个人的躯干和四肢是差不多的,人和人的特征不同,关键在于头部的不同,头部就代表R基。

两个氨基酸的脱水缩合形成二肽的过程还记得吗?你还记得哪个细胞器是蛋白质的装配机器吗?核糖体与脱水缩合反应之间到底有什么关系呢? 一、蛋白质的合成 1.核糖体的结构 核糖体含40%的蛋白质、60%的RNA,蛋白按照一定的顺序与RNA结合,组成两个核糖体亚单体,其中RNA是骨架结构,有些蛋白质不直接与RNA结合,而是结合在其它蛋白质组分上。核糖体中的蛋白质,rRNA以及其他一些辅助因子在一起提供了翻译过程所需的全部酶活性,这些酶活性只有在核糖体整体结构存在的情况下才具备。 2.蛋白质的合成 〖问题1〗 通过下面的探究活动,思考蛋白质初合成和初合成后进一步修饰加工的场所在哪里?并尝试写出分泌蛋白质的形成过程。 【探究活动】豚鼠胰腺蛋白的分泌 科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3 min后,被标记的氨基酸出现在附着有核糖体的内质网中,17 min后,出现在高尔基体中,117 min后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。 〖教学提示〗 这种方法叫做同位素标记法,常用于细胞学的研究,用来对分子的位置进行跟踪。 让学生注意观察蛋白质的运输路线:这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的。(展示幻灯片)

相关文档
相关文档 最新文档