文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学-函数与映射的概念练习

高中数学-函数与映射的概念练习

高中数学-函数与映射的概念练习
高中数学-函数与映射的概念练习

高中数学-函数与映射的概念练习

1.(重庆)函数f (x )=log 2(x 2

+2x -3)的定义域是( )

A .[-3,1]

B .(-3,1)

C .(-∞,-3]∪[1,+∞)

D .(-∞,-3)∪(1,+∞)

2.(湖北)函数f (x )=4-|x |+lg x 2-5x +6x -3

的定义域为( ) A .(2, 3) B .(2, 4]

C .(2,3)∪(3,4]

D .(-1,3)∪(3,6] 3.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的是( )

A .f :x →y =2x

B .f :x →y =x 2

C .f :x →y =52x

D .f :x →y =2x 4.(2012年大纲)函数y =x +1(x ≥-1)的反函数为( )

A .y =x 2-1(x ≥0) B.y =x 2-1(x ≥1)

C .y =x 2+1(x ≥0) D.y =x 2+1(x ≥1)

5.若函数y =f (x )的定义域是[1,2018],则函数g (x )=f x +1x -1

的定义域是( ) A .[0,2017] B .[0,1)∪(1,2017]

C .(1,2018]

D .[-1,1)∪(1,2017]

6.设f :x →x 2是集合M 到集合N 的映射.若N ={1,2},则M 不可能是( )

A .{-1}

B .{-2,2}

C .{1,2,2}

D .{-2,-1,1,2}

7.已知映射f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设点A (1,3),B (2,2),点M 是线段AB 上一动点,f :M →M ′.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M ′所经过的路线长度为( )

A.π12

B.π6

C. π4

D. π3

8.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0).

(1)若?x 1∈[-1,2],?x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是________;

(2)若?x 1∈[-1,2],?x 2∈[-1,2],使得g (x 1)=f (x 2),则实数a 的取值范围是________.

9.(1)求函数f (x )=

lg x 2-2x 9-x

2的定义域; (2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域.

10.规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].

(1)若x=7

16

,分别求f1(x)和f2(x);

(2)求x的取值范围,使它同时满足f1(x)=1,f2(x)=3.

函数与映射的概念

1.D 解析:由x 2+2x -3>0?(x +3)(x -1)>0,解得x <-3,或x >1.故选D.

2.C 解析:由函数y =f (x )的表达式可知:函数f (x )的定义域应满足条件:????? 4-|x |≥0,x 2-5x +6x -3>0,解得?????

-4≤x ≤4,x >2,x ≠3. 即函数f (x )的定义域为(2,3)∪(3,4].故选C. 3.C 解析:当x =2时,52x =5,集合Q 中没有元素与之对应,故不是映射. 4.A 解析:由y =x +1?x +1=y 2?x =y 2-1.而x ≥-1,故y ≥0.互换x ,y 得到y

=x 2-1(x ≥0).故选A.

5.B 解析:要使函数f (x +1)有意义,则有1≤x +1≤2018,解得0≤x ≤2017.故函

数f (x +1)的定义域为[0,2017].所以使函数g (x ) 有意义的条件是?

????

0≤x ≤2017,x -1≠0,解得0≤x <1或1<x ≤2017.故函数g (x )的定义域为[0,1)∪(1,2017].故选B.

6.C 解析:由映射的定义,集合M 中的每一个元素在集合N 中有唯一的元素与它对应,

对于选项C,22=4?N .故选C.

7.B 解析:线段AB :x +y =4(1≤x ≤2),f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设

P ′(x ,y ),则P (x 2,y 2).有x 2+y 2=4(1≤x ≤2),点M 的对应点M ′所经过的路线长度

为如图D89所示的两段圆弧的长,2×? ????π3-π4=π6.故选B.

图D89

8.(1)a ≥3 (2)0<a ≤12

解析:(1)f (x )=x 2-2x 在[-1,2]上的值域为[-1,3],而g (x )=ax +2(a >0)在[-1,2]

上单调递增,则g (x )=ax +2的值域为[2-a,2a +2].由题意,得[-1,3]?[2-a,2a +2],即????? 2-a ≤-1,2a +2≥3.解得a ≥3.

(2)由题意,得[-a +2,2a +2]?[-1,3],有????? -a +2≥-1,2a +2≤3,解得a ≤12

.又a >0,故0<a ≤12

. 9.解:(1)要使函数有意义,只需:

????? x 2-2x >0,9-x 2>0,即?????

x >2或x <0,-3

解得-3<x <0或2<x <3.

故函数f (x )的定义域是(-3,0)∪(2,3).

(2)∵y =f (2x )的定义域是[-1,1],即-1≤x ≤1, ∴12≤2x ≤2.

∴对于函数y =f (log 2x ),有12≤log 2x ≤2,

即log 2 2≤log 2x ≤log 24,∴2≤x ≤4. 故函数f (log 2x )的定义域为[2,4]. 10.解:(1)∵当x =7

16时,4x =7

4, ∴f 1(x )=??????7

4=1,g (x )=74-??????74=3

4.

∴f 2(x )=f 1[g (x )]=f 1? ????34=[3]=3.

(2)∵f 1(x )=[4x ]=1,g (x )=4x -1,

∴f 2(x )=f 1(4x -1)=[16x -4]=3.

∴????? 1≤4x <2,3≤16x -4<4.∴716≤x <1

2.

高中数学函数的零点和最值

函数的零点 1、函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。 方程f(x)=0有实数根?函数y=f(x)的图象与x 轴有交点?函数y=f(x)有零点 注意:零点是一个实数,不是点。 练习:函数23)(2 +-=x x x f 的零点是( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 方程f(x)=0的根的个数就是函数y=f(x)的图象与x 轴交点的个数。 方程f(x)=0的实数根就是函数y=f(x)的图象与x 轴交点的横坐标。 方法:①(代数法)求函数的零点就是求相应的方程的根,一般可以借助求根公式或因式分解等办法,求出方程的根,从而得出函数的零点。 ②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 练习:Ⅰ求零点 ①y=x 3-1, ② y=2^x-1, ③y=lg(x 2-1)-1, ④y=2^|x|-8, ⑤y=2+log 3x Ⅱ结合函数的图像判断函数f(x)=x 3-7x+6的零点 Ⅲ判断函数f(x)=lnx+2x 是否存在零点及零点的个数 2、一元二次方程和二次函数 例,当a>0时,方程ax 2+bx+c=0的根与函数y=ax 2+bx+c 的图象之间的关系如下表: 练习:如果函数f(x)= ax 2-x-1仅有一个零点,求实数a 的范围。 3、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根。 例1:观察二次函数f (x)=x 2- 2x - 3的图象: ① 在区间[-2,1]上有零点_______; f (-2)=_____,f (1)=_____, f (-2) · f(1)___0(< 或 > 或 =) ② 在区间[2,4]上有零点_______; f (2) · f(4)___0(< 或 > 或 =) 例1图 例2图 例2:观察函数 y = f (x)的图象: ①在区间[a ,b]上___(有/无)零点; f (a) · f(b)___0(< 或 > 或 =) ②在区间[b ,c]上___(有/无)零点; f (b) · f(c)___0(< 或 > 或 =) 练习:①判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点? 4、函数最值: 最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x0∈I ,使得f(x0) = M ,那么,称M 是函数y=f(x)的最大值. 方法:利用函数单调性的判断函数的最大(小)值 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b). 练习:①函数 f (x )= )1(11 x x --的最大值是______ ②函数f (x )=ax (a >0,a ≠1)在[1,2]中的最大值比最小值 大2a ,则a 的值为______ ③设a 为实数,函数f (x )=x2+|x -a|+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值. ④已知二次函数f (x )=(lga )x2+2x +4lga 的最大值为3,求a 的值.

第2讲函数与映射的概念复习.docx

第2讲函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则于,对于集合A中的每一个数x ,在集合B中都冇唯一确定的数和它对应,那么这样的对应叫做从4到B的一个函数,通常记为y = /(x),x G A (2)函数的定义域、值域 在函数y = /(x),x G A中,x叫做口变量,x的取值范碉A叫做y = /0)的定义域;与x的值和对应的y值叫做函数值,函数值的集介{f(x)卜e A}称为函数y = f(x)的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念:设A、B是两个集合,如果按照某种对应法则/,对于集合A中的任意元素,在集合B小都有唯-确泄的元素与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f : A — B ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象两数的定义域 重难点:1?关于抽象函数的定义域 求抽象函数的定义域,如果没冇弄清所给函数Z间的关系,求解容易出错误问题1:已知函数y = /(x)的定义域为[a, b],求y = /(x + 2)的定义域. 问题2:己知y = /(x + 2)的定义域是[d, b],求函数y = f (x)的定义域. 1.求值域的几种常用方法 (1 )配方法:对于(可化为)'、二次函数型〃的函数常用配方法,如求函数y = -sin2兀一2cosx + 4, 变为y = - sin? x-2cosx + 4 = (cosx-1)2 + 2解决. (2)基本函数法:一些由基木函数复合而成的函数可以利用基本函数的值域来求,如函数y = log j (-x2 + 2x + 3)就是利用函数y = log丨u和u = -x2 + 2兀+ 3的值域来求. 2 2 2JC + 1 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数/ 的值域 兀'―2兀+ 2 山),=严+1得y/—2(y + i)x + 2y — l = 0,若y = 0 ,则得 % = 所以y = 0 x - 2x + 2 2 是函数值域中的一个值;若y ^0 ,则由△ = [—2(y + l)『—4y(2y —1)? 0得

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

{高中试卷}高一上数学各知识点梳理:映射与函数[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

5、映射与函数 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.下列对应是从集合A 到集合B 的映射的是 ( ) A .A =R , B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N + ,x ∈A ,f :x →|x -1| C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2 D .A =Q ,B =Q ,f :x → x 1 2.已知映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是 A 中的元素在映射f 下的象,且对任意的a ∈A ,在 B 中和它对应的元素是|a|,则集合B 中的元素的个数是 ( ) A .4 B .5 C .6 D .7 3.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是( ) A .2 B .3 C .4 D .5 4.在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %(a ,b >0,a ≠b ),则x 与y 的函数关系式是 ( ) A .y = b c a c --x B .y =c b a c --x C .y =c b c a --x D .y =a c c b --x 5.函数y=3 23 2+-x x 的值域是 ( ) A .(-∞,-1 )∪(-1,+∞) B .(-∞,1)∪(1,+∞) C .(-∞,0 )∪(0,+∞) D .(-∞,0)∪(1,+∞) 6.下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 7.函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1}

函数、映射的概念

函数、映射的概念 ?1、映射: (1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应, 那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。 (2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。 2、函数: (1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。 (2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。显然值域是集合B的子集。 3、构成函数的三要素: 定义域,值域,对应法则。 值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。 4、函数的表示方法: (1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法; (2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法; (3)图象法:就是用函数图象表示两个变量之间的关系。 注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。?映射f:A→B的特征: (1)存在性:集合A中任一a在集合B中都有像; (2)惟一性:集合A中的任一a在集合B中的像只有一个; (3)方向性:从A到B的映射与从B到A的映射一般是不一样的; (4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。 ?(1)函数两种定义的比较: ①相同点:1°实质一致2°定义域,值域意义一致3°对应法则一致 ②不同点:1°传统定义从运动变化观点出发,对函数的描述直观,具体生动. 2°近代定义从集合映射观点出发,描述更广泛,更具有一般性.

高中奥林匹克数学竞赛 映射与函数1

第二讲 映射与函数 [知识要点] 1.映射有关概念 2.函数定义,定义域、值域 [能力训练] 1. 合B A ,的并集{}321,,a a a B A =?,当B A ≠时,),(B A 与),(A B 视为不同的对,则这样的),(B A 对的个数为( )(1993年全国高中数学联赛试题) (A ) 8 (B ) 9 (C )26 (D )27 [解法一]:若{}321,,a a a A =,则满足题意的B 有:{}{}{}{}{}{}{}; ,,;,;,;,;;;;321323121321a a a a a a a a a a a a B φ=即这时的配对个数有:8)(3323130333=+++C C C C C ;仿此,若{}21,a a A =(或{}{}3231,,,a a a a ),满足题意的B 的个数,即配对个数有:12)(2 2120223 =++C C C C ;于是,全部配对个数有:2716128=+++。 [解法二]:B A =且P B A =?的情形只有1个配对:P B P A ==,,而B A ≠的配对个数必是偶数,所以全部配对个数为奇数。又粗略计数后知,配对个数不少于16,故选(D )。 [评注]:两种解法反映的是一种数学思想:配对思想。解法一是分类讨论;解法二是估算法。 2. 设A ={4321,,,a a a a },},,,,{54321b b b b b B = (1)写出一个f :A →B ,使得f 为单射,并求所有A 到B 的单射的个数。 (2)写出一个f :A →B ,使得f 不是单射,并求所有这些映射的个数。 (3)A 到B 的映射能否是满射? 解:(1)作映射f :A →B ,使得4,3,2,1 ,)(==i b a f i i 则此映射即为A 到B 的一个单射,这种单射的个数为1204 5=P 。 (2)作映射f :A →B ,可以先求A 到B 的映射的个数:分四步确定4321,,,a a a a 的象,每步都有5种可能,因此所求映射的个数为4 5个,因此满足条件的映射的个数为4 5-4 5P =505。 (3) 不能。由于A 中的每一个元素恰与B 中的一个元素对应,|A |=4,|B |=5, 所以B 中至少有一个元素在A 中找不到与它对应的元素,因此A 到B 的满射不存在。 说明:一般地,若A 到B 有一个单射,则|A |≤|B |,若A 到B 有一个满射, 则|A |≥|B |,若A 到B 有一个一一映射,则|A |=|B | 思考:在上述问题中,如何求从A 到B 的子集上的一一映射的个数? B 中的4个元素的子集共有45 C 个,从A 到B 的每4个元素的子集上的一一映射各有44P 个,所求的映射的 个数是4 5C 4 4P =120个。 3. 若函数)(log 23a ax x y -+=的值域为R ,则实数a 的取值范围是________________。(94年第5届“希 望杯”全国数学邀请赛)

函数与映射的概念及其表示方法

函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 [误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a [正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数与映射概念的理解

玩转函数第一招 第1招:函数与映射概念的理解【知识点理解】 ①映射.映射f : A→B 的概念。 对于两个集合A,B 如果按照某种对应法则f,对于集合A中的任.何.一.个.元素在集合 B 中都有唯一的元素和它对应,这样的对应(包括A、B 及f)叫做从集合 A 到集合B的映射. 记作:f:A→B. 对于映射这个概念,应明确以下几点: ①映射中的两个集合A 和B 可以是数集,点集或由图形组成的集合以及其它元素的集合. ②映射是有方向的,A 到 B 的映射与 B 到 A 的映射往往是不相同的. ③映射要求对集合 A 中的每一个元素在集合 B 中都有象,而这个象是唯一确定的.这种集合 A 中元素的任意性和在集合 B 中对应的元素的唯一性构成了映射的核心. ④映射允许集合B 中的某些元素在集合A 中没有原象,也就是由象组成的集合 C B. ⑤映射允许集合A 中不同的元素在集合B 中有相同的象,即映射只能是“多对一”或“一对一”,不能是“一对多”. 一一映射:设 A ,B 是两个集合,f :A → B 是从集合 A 到集合 B 的映射,如果在这个映射的作用下,对于集合A 中的不同的元素,在集合B中有不同的象,而且 B 中每一元素都有原象,那么这个映射叫做从.A.到.B.上.的一一映射. 一一映射既是一对一又是 B 无余的映射. 在理解映射概念时要注意:⑴A 中元素必须都有象且唯一; ⑵B中元素不一定都有原象,但原象不一定唯一。总结:取 元任意性,成象唯一性。 【精准训练】

(1)设f :M→N是集合M到N的映射,下列说法正确的是 A、M中每一个元素在N中必有象 B、N中每一个元素在M中必有原象 C、N中每一个元素在M中的原象是唯一的 D、N是M中所在元素的象的集合(答:A); (2)、若从集合A 到集合B 的映射 f满足 B 中的任何一个元素在 A中都有原象,则称映射 f 为从集合 A 到集合 B 的满射,现集合 A 中有 3 个元素,集合 B 中有 2 个元素,则从集合 A 到集合 B 的满射 f 的个数是: A 、 5 B 、6 C、 8 D、 9 (答:B )(3)点(a,b)在映射f的作用下的象是(a-b,a+b),则在f作用下点(3,1)的原象为点 _______ (答:(2,-1)); (4)a、b为实数,集合M{b ,1}, N ={a,0}, f : x→ x表示把集合M中的元素x映射到集合N中a 仍为x,则a +b= A、1 B、0 C、-1 D、±1 (5)若A = {1,2,3,4},B ={a,b,c},a,b,c R,则A到B的映射有个,B到A的 映射有个,A到B的函数有个(答:81,64,81); (6)设集合M={-1,0,1},N={1,2,3,4,5},映射f :M→ N满足条件“对任意的x M,x+ f(x)是奇数”,这样的映射f有_____ 个(答:12); (7)设f :x→ x2是集合A到集合B的映射,若B={1,2},则A B一定是_______ (答: 或{1}). 8)、已知集合A = {1, 2,3} ,B={-1,0,1},则满足条件f(3)=f(1)+f(2)的映射f : A→ B的个数是()(A)2 (B)4 (C)5 (D)7 (9)、从集合A={1,2,3}到B={3,4}的映射f : A→ B中满足条件f(3)= 3个数是()(A )2 (B )3 (C )4 (D)6 (10)、已知集合A={1,2,3},在A→ A的映射中满足条件f(3)=3,f(2)=1个数是() (11)、.A={1,2,3,4,5,},B={6,7,8,}从集合A到B的映射中满足f(1)≤f (2)≤f(3)≤f(4)≤f(5)的映射有() A、27 B、9 C、21 D、12 解:(1)当一个不等号也没有时,(即与B中的一个元素对应),则f有C13个

高中数学 经典资料 第118课--隐零点及卡根思想

第118课 隐零点及卡根思想 基本方法:导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题.导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”. (1)函数“隐零点”的存在性判断 对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ×<,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x =的解的判断,并通过合理的变形将方程转化为合适的形式在处理. (2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难.处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式进行合理的代换进而求解. (3)函数“隐零点”的数值估计-卡根思想 函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题.对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计. 一、典型例题 1.已知函数()22e x f x x x =+-,记0x 为函数()f x 极大值点,求证: ()0124f x <<.答案:见解析 解析:()()22e x f x x x x =+-∈R ,则()22e x x x f +'=-, 设22e )2(()e ,x x x g x g x '==+--,令()0g x '=得ln2x =, 当(),ln2x ∈-∞时,()()0,g x g x '>为增函数;当()ln2,x ∈+∞时,()()0,g x g x '<为减函数; 所以,()()g x f x '=在ln2x =处取得极大值2ln20>, 容易判断()f x '一定有2个零点,分别是()f x 的极大值点和极小值点. 设0x 是函数()f x 的一个极大值点,则()00022e 0x f x x '=+-=, 所以,00e 22x x =+,又()3 2235e 0,26e 02f f ??''=->=-< ???,所以03,22x ??∈ ???,此时()022*******e 2(,2)2x f x x x x x ??=+-=-∈ ?? ?,所以()0124f x <<.2.已知函数()4ln (1)x f x x x += >.若*k N ∈,且()1 k f x x <+恒成立.求k 的最大值.答案:6

高中数学-函数与映射的概念练习

高中数学-函数与映射的概念练习 1.(重庆)函数f (x )=log 2(x 2 +2x -3)的定义域是( ) A .[-3,1] B .(-3,1) C .(-∞,-3]∪[1,+∞) D .(-∞,-3)∪(1,+∞) 2.(湖北)函数f (x )=4-|x |+lg x 2-5x +6x -3 的定义域为( ) A .(2, 3) B .(2, 4] C .(2,3)∪(3,4] D .(-1,3)∪(3,6] 3.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的是( ) A .f :x →y =2x B .f :x →y =x 2 C .f :x →y =52x D .f :x →y =2x 4.(2012年大纲)函数y =x +1(x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B.y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D.y =x 2+1(x ≥1) 5.若函数y =f (x )的定义域是[1,2018],则函数g (x )=f x +1x -1 的定义域是( ) A .[0,2017] B .[0,1)∪(1,2017] C .(1,2018] D .[-1,1)∪(1,2017] 6.设f :x →x 2是集合M 到集合N 的映射.若N ={1,2},则M 不可能是( ) A .{-1} B .{-2,2} C .{1,2,2} D .{-2,-1,1,2} 7.已知映射f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设点A (1,3),B (2,2),点M 是线段AB 上一动点,f :M →M ′.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M ′所经过的路线长度为( ) A.π12 B.π6 C. π4 D. π3 8.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0). (1)若?x 1∈[-1,2],?x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是________; (2)若?x 1∈[-1,2],?x 2∈[-1,2],使得g (x 1)=f (x 2),则实数a 的取值范围是________. 9.(1)求函数f (x )= lg x 2-2x 9-x 2的定义域; (2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域.

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

3.映射函数的定义

映射函数的定义 1.设是集合A 到集合B 的映射,且集合B 中的每一个元素都有原象,若,则等于( ) A .{0} B .{2} C .{0,2} D .{-2,0} 2.下列各对应中,构成映射的是 ( ) 3.设集合A =B ={(,),}x y x R y R ∈∈,从A 到B 的映射在映射下,B 中的元素为(4,2)对应的A 中元素为 ( ) A .(4,2) B .(1,3) C . (3,1) D .(6,2) 4.设集合和集合都是自然数集合,映射,把集合中的元素映射到集合中的元素 ,则在映射下,象20的原象是( ) A.2 B.3 C.4 D.5 5.设A={|02x x ≤≤}, B={y | 0≤y ≤3 }, 下列各图中不能表示从集合A 到B 的映射是( ) A . B . C . D . :||f x x →{2,0,2}A =-A B ) ,(),(:y x y x y x f -+→

6.下列图像表示函数图像的是() y x y x y x y x A B C D 7.下列图像中,是函数图像的是() A. (1) (2) B.(2) (3) C.(2)(4) D.(1) (3) 8.下列各图像中,不可能 ...是函数 ()x f y=的图像的有几个() A.1个 B.2个 C.3个 D.4个 9.集合A 中含有2个元素,集合A到集合A可构成个不同的映射. 10.已知集合A={1,2,3,4},B={-1,-2},设映射f:A→B, 如果集合B中的元素都是A中元素在f下的象,那么这样的映射有 _________________________个. o x y ① o y x ② o y x ③ o y x ④ 试卷第2页,总2页

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

函数与映射的概念主要知识梳理

函数与映射的概念知识梳理第 1 页 共 1 页 函数与映射的概念主要知识梳理 ●函数的基本概念: 1、函数的定义:设B A ,是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个函数。 ①关键词:非空的数集、任意性、唯一性 ②作用:判断一个对应是否是函数 2、函数的三要素: 定义域A 、值域(?B)、对应法则f (定义域和对应法则最为关键) 作用:判断两函数是否是同一函数的依据(只要判断定义域和对应法则是否相同即可) ●函数的表示方法: 解析式法,列表法,图像法 ●分段函数与复合函数 分段函数:? ??∈∈=)()()()()(21D x x h D x x g x f ,复合函数:))((x g f y = ●映射的概念 1、定义:设设B A ,是非空集合,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x , 在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个映射。 ①关键词:非空集合、任意性、唯一性 ②作用:判断一个对应是否是映射 2、映射的三要素: 原象集A 、象集(?B)、对应法则f 作用:判断两映射是否是同一映射的依据(只要判断原象集和对应法则是否相同即可) 3、函数是特殊的映射; ●反函数 1、概念; 设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ?=.如果对于C 中 每个y 值,在A 中都有唯一的值和它对应,那么()x y ?=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈) 2、存在反函数的条件:函数()y f x =在定义域内单调(一 一映射) 3、求反函数的一般步骤: (1)求原函数的值域; (2)反解,由()y f x =解出)(y x ?=; (3)写出反函数的解析式1()y f x -=(互换,x y ),并注明反函数的定义域(即原函数的值域). 4、互为反函数的两个函数具有如下性质: (1)反函数的定义域、值域上分别是原函数的值域、定义域; (2)互为反函数的两个函数在各自的定义域内具有相同的单调性;它们的图象关于x y = 对称; (3)?=b a f )(a b f =-)(1 ●常见的思想方法 1、主要思想: ①数形结合:-------树形图 ②分类讨论:①按象的个数分类;②按原象个数分类; ③按对应关系(一对一、多对一,不能一对多)分类. 2、易错易混点 ①映射B A f →:与函数的定义).(x f y =-----A 中元素的任意性和B 中元素的唯一性? ②一个映射与某一对应的值. ③定义域与原象集以及与集合A 的关系. 值域与象集以及集合B 的关系. 3、主要题型: ①判断映射与函数; ②知原象、象、对应法则三者中的任意二个求余下一个; ③求映射与函数的个数.(注意分类讨论、注意和排列组合知识的综合应用)

高中数学知识点总结 第二章函数

高中数学第二章-函数 考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. §02. 函数 知识要点 一、本章知识网络结构: F:A →B 二次函数 二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数 函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数 反函数的定义 设函数 ))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表 示出,得到x=?(y). 若对于y 在C 中的任何一个值,通过x=?(y),x 在A 中都有唯一

的值和它对应,那么,x=?(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=?(y) (y ∈C)叫做函数 ))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成 )(1x f y -= (二)函数的性质 ⒈函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 ⑴偶函数:)()(x f x f =- 设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1) () (=-x f x f . ⑵奇函数:)()(x f x f -=- 设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时, 1) () (-=-x f x f . 3. 对称变换:①y = f (x )) (轴对称 x f y y -=???→? ②y =f (x )) (轴对称 x f y x -=???→? ③y =f (x )) (原点对称x f y --=???→? 4. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 在进行讨论. 5. 外层函数的定义域是内层函数的值域. 例如:已知函数f (x )= 1+ x x -1的定义域为A ,函数f [f (x )]的定义域是B ,则集合A 与集合B 之间的关系是 . 2 21222121222 22121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-) (

相关文档
相关文档 最新文档