文档视界 最新最全的文档下载
当前位置:文档视界 › 不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题
不等式解法15种典型例题

不等式解法15种典型例题

典型例题一

例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3

2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x

把方程0)3)(52(=-+x x x 的三个根

3,2

5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为?

?????

><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x

???>-<-≠????>-+≠+?2

450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

典型例题二

例2 解下列分式不等式:(1)2

2123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)

()(≤<或x g x f 时,要注意它的等价变形 ① 0)()(0)()(

)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于

02

23223≤+--?+≤-x x x x x x 0)2)(2(650)2)(2()2()2(32≤+-++-?≤+---+?x x x x x x x x x

???≠-+≥+-+-?≥+-+-?0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(x x x x x x x x x x 用“穿根法”

∴原不等式解集为[)[)+∞?-?--∞,62,1)2,(。

(2)解法一:原不等式等价于 02

7313222>+-+-x x x x 0)273)(132(2

2>+-+-?x x x x ?????<+-<+-?????>+->+-?02730132027301322222x x x x x x x x 或 212

131><<

0)

2)(13()1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2

1()31

,(+∞??-∞ 典型例题三

例3 解不等式242+<-x x

分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义

?

??<-≥=)0()0(a a a a a ;二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法.

解法一:原不等式?????+<-<-?????+<-≥-?2

40424042222x x x x x x 或,即???>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<

31<

解法二:原不等式等价于 24)2(2+<-<+-x x x

即?????+->-+<-)2(42422x x x x ∴312132<<<-x x x x 故或.

典型例题四

例4 解不等式04125622<-++-x

x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两

个不等式组:?????>-+<+-041205622x x x x 或?????<-+>+-0

41205622x x x x ,所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

解法一:原不等式等价下面两个不等式级的并集:?????>-+<+-0412,05622x x x x 或?????<-+>+-0

412,05622x x x x ???<-+<--?;0)6)(2(,0)5)(1(x x x x 或???>-+>--;0)6)(2(,0)5)(1(x x x x ;???<<-<-<><6

,2,5,1x x x x 或或 ,51<x .∴原不等式解集是}6512{><<-

解法二:原不等式化为0)

6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号. )

6)(2()5)(1(-+--x x x x 符号 ∴原不等式解集是}6512{><<-

说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解.解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.

典型例题五

例5 解不等式x x x x x <-+-+2

22322. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.

解:移项整理,将原不等式化为0)

1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)

1)(3()2(>+--x x x .

解之,得原不等式的解集为}321{><<-x x x 或.

说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.

典型例题六

例6 设R m ∈,解关于x 的不等式03222<-+mx x m .

分析:进行分类讨论求解.

解:当0=m 时,因03<-一定成立,故原不等式的解集为R .

当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;

若0>m 时,解得m x m 13<<-;若0

x m 31-<<. 综上:当0>m 时,原不等式的解集为????

??<<-m x m x 13; 当0

x 31. 说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.

在解出03222=-+mx x m 的两根为m x 31-

=,m x 12=后,认为m

m 13<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,m m 13<-;当0-. 典型例题七

例7 解关于x 的不等式)0(122>->-a x a ax .

分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.

解:原不等式??

???->-≥->-?;)1(2,01,02)1(222x a ax x a ax 或???<-≥-.01,02)2(2x a x

由0>a ,得:???

????<+++-≤>?;01)1(2,1,2)1(22a x a x x a x ?????>≥?.1,2)2(x a x

由判别式08)1(4)1(422>=+-+=?a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.

当20≤

1212

≤-+≤a a a ,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤

+∞-+,21a a ;当2>a 时,原不等式的解集是??

????+∞,2a . 说明:本题分类讨论标准“20≤a ”是依据“已知0>a 及(1)中‘2a x >

,1≤x ’,(2)中‘2

a x ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.

典型例题八

例8 解不等式331042<--x x .

分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.

解答:去掉绝对值号得3310432<--<-x x ,

∴原不等式等价于不等式组

??????<-->-??????<----<-061040104331043104322

22x x x x x x x x ???????<<->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为?

?????<<<<-325021x x x 或. 说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化

为不等式组,变成求不等式组的解.

典型例题九

例9 解关于x 的不等式0)(322>++-a x a a x .

分析:不等式中含有字母a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.

解:原不等式可化为0))((2>--a x a x .

(1)当2a a <(即1>a 或0<或;

(2)当2a a >(即10<<或2;

(3)当2a a =(即0=a 或1)时,不等式的解集为: {}a x R x x ≠∈且.

说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.

典型例题十

例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x

求不等式02>++a bx cx 的解集.

分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.

解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴a b -

=β+α,a

c =β?α.又02>++c bx ax 的解集是{}β<<αx x ,说明0α,0>β000?>αβ?c a c ,∴0022<++?>++c a x c b x a bx cx . ???????--==--=+-=????????=?-=+),1)(1(1,11βααβ

βααββαβαβαa c c b a c a b

∴02<++c

a x c

b x ,即0)1)(1()11(2<β-α-+β-α-+x x , 即0)1)(1(<β-α-x x . 又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为?

?????α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根, ∴a

c =

β?α.又02>++c bx ax 的解集是{}β<<αx x ,说明0α,0>β000?>αβ?c a

c . 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+?+?c x

b x a . 令x t 1=,该方程即为02=++

c t b t a ,它的两根为α=1t ,β=2t , ∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β

1. ∵β<α<0,∴β>α11.∴不等式02>++a bx cx 的解集是?

?????α<<β11x x . 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.

典型例题十二

例12 若不等式

1

122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,,Y ,求a 、b 的值. 分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子.

解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x , ∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意?????????=-++=-+->-+3

4231202b a b a b a b a b a ,∴???????==23

25b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.

典型例题十三

例13 不等式的解集为{}21<<-x x ,求a 与b 的值.

分析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x ,不等式022<-+bx ax 需满足条件0>a ,0>?,022=-+bx ax 的两根为11-=x ,22=x .

解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:

???????-=?-=+a x x a b x x 22121 由题意:????????-=-+-=-21221a

a b ∴1=a ,1-=b ,此时满足0>a ,0)2(42>-?-=?a b .

解法二:构造解集为{}21<<-x x 的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不

等式与原不等式022<-+bx ax 应为同解不等式,故需满足:

2

211--=-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好. 典型例题十四

例14 解关于x 的不等式01)1(2<++-x a ax .

分析:本题考查一元一次不等式与一元二次不等式解法,因为含有字母系数,所以还考查分类思想. 解:分以下情况讨论

(1)当0=a 时,原不等式变为:01<+-x ,∴1>x

(2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①

①当0--x a x ,∴不等式的解为1>x 或a

x 1<

. ②当0>a 时,①式变为0)1)(1(<--x a

x . ② ∵a a a -=-111,∴当10<a ,此时②的解为a x 11<<.当1=a 时,11=a

,此时②的解为11<

. 说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类: ????

?????????????????>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要

注意在讨论0

典型例题十五

例15 解不等式x x x ->--81032. 分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:?

??<≥0)(0)(x g x f 或??

???>≥≥2)]([)(0

)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组:

①???≥--<-0103082x x x ②?????->--≥--≥-222)

8(103010308x x x x x x 由①得???-≤≥>258x x x 或,∴8>x 由②得∴???????>-≤≥≤.

1374258x x x x 或 81374≤≤<881374x x x 或,即为????

??>1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:?????≤≥≥?≤2)]

([)(0)(0)()()(x g x f x g x f x g x f ,

这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,?

?????-≤--=x x x x A 81032, 则所求不等式的解集为A 的补集A ,

由2)

8(10301030881032222-≤??????-≤--≥--≥-?-≤--x x x x x x x x x x 或13745≤

≤x .即?

?????≤≤≤=137452x x x A 或,∴原不等式的解集是??????>=1374x x A .

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

8下一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4、求不等式的解集的过程,叫做解不等式。 5、用数轴表示不等式的方法 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0, 那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式 1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式, 这样的不等式叫做一元一次不等式。 2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1 考点四、一元一次不等式组 1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 6、不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。 ③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号 方向相反。 7、不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

完整word版,一元一次不等式典型例题

一元一次不等式典型例题 类型一:一元一次不等式的解集问题 1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是. 2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是. 3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________ 4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______类型二:一元一次不等式组无解的情况 1.若关于x的一元一次不等式组无解,则a的取值范围是. 2.已知不等式组无解,则a的取值范围是 3.已知关于x的不等式组无解,则a的取值范围是 类型三:明确一元一次不等式组的解集求范围 1.若不等式的解集为x>3,则a的取值范围是 2.若关于x的不等式的解集为x<2,则a的取值范围是. 3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________ 4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 5.已知不等式组的解集为﹣1<x<2,则(m+n)2008= 类型四:一元一次不等式组有解求未知数的范围

1.若有解,则a的取值范围是 2.若关于x的不等式组有实数解,则a的取值范围是 3._______ 类型五:一元一次不等式组有整数解求范围 1.不等式组有3个整数解,则m的取值范围是. 2.不等式组有3个整数解,则m的取值范围是. 3.已知关于x的不等式组仅有三个整数解,则a的取值范围是. 4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______ 6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围. 7.已知关于x的不等式组有四个整数解,求实数a的取值范围.

不等式及其解法练习题

不等式的练习题 一、填空题 1、不等式2654x x +<的解集是 . 2 不等式-4≤x 2-3x <18的整数解为 . 3、如果不等式21x 同时成立,则x 的取值范围是 4.不等式x x ->+512的解集是 5.不等式x x x x ->-11的解是 6.函数x x x y -+= )21 (的定义域是 7.不等式331≤--x x 的解集为 . 13、函数22--=x x y 的定义域 是 . 14.不等式:(1)x x 1 <的解为 . 15、321>++-x x 的解为 .

16.使不等式a x x <-+-34有解的条件是 . 17.已知关于x 的方程ax 2 +bx+c <0的解集为{x |x <-1或x >2}.则不等式ax 2 -bx+c >0的解集为 . 二、解不等式: 1、302x x -≥- 2、21 13 x x ->+ 3、22 32023x x x x -+≤-- 4、221 02x x x --<- 5、()()() 3 22 1603x x x x -++≤+ 6、()2 309x x x -≤- 7、 101x x <-< 8、 . 0)25)(-4-( 2 2<++x x x x

9 、 (2 1x -)(2 68x x -+)≤0 10 、 22 41 1372 x x x x -+≥-+ 11 、 12 、x x x 211322 +>+-

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

不等式的解法典型例题

不等式的解法·典型例题 【例1】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“区间法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可参照(2)的解法转化为不含重根的不等式,也可直接用“区间法”,但注意“奇穿偶不穿”.其法如图(5-2).

【例2】解下列不等式: 变形 解:(1)原不等式等价于 用“区间法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞).

用“区间法” 【例3】解下列不等式: 【分析】无理不等式的基本解法是转化为有理不等式(组)后再求解,但要注意变换的等价性. 解:(1)原不等式等价于

(2)原不等式等价于 ∴原不等式解集为{x|x≥5}. (3)原不等式等价于 【说明】解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.此外,有的还有其他解法,如上例(3).

原不等式化为 t2-2t-3<0(t≥0)解得0≤t<3 【说明】有些题目若用数形结合的方法将更简便.【例4】解下列不等式:

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有 一个 未知数,且未知数的次数是 1 且系数 不为0 的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、 去括号 、移项、 合并同类项 、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、67922-+≥-x x x x B 、01=+x C 、 0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 101.0)39.1(102.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于634+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为 , 不等式a x >(0>a )的解集为 ; (2)解不等式42<-x ;

不等式的典型例题解析

不等式的典型例题解析 【例1】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“区间法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可参照(2)的解法转化为不含重根的不等式,也可直接用“区间法”,但注意“奇穿偶不穿”.其法如图(5-2). 【例2】解下列不等式:

变形 解:(1)原不等式等价于 用“区间法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). 用“区间法”

【例3】解下列不等式: 【分析】无理不等式的基本解法是转化为有理不等式(组)后再求解,但要注意变换的等价性. 解:(1)原不等式等价于 (2)原不等式等价于 ∴原不等式解集为{x|x≥5}. (3)原不等式等价于

【说明】解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.此外,有的还有其他解法,如上例(3). 原不等式化为 t2-2t-3<0(t≥0)解得0≤t<3 【说明】有些题目若用数形结合的方法将更简便. 【例4】解下列不等式:

基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 .基本不等式 ①公式: -_b ab (a 0,b 0),常用 a b 2. ab 2 2 ■ 2 2 ②升级版: a b a b ab a,b R 2 2 选择顺序:考试中,优先选择原公式,其次是升级版 二?考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定三相等 一正: 指的是注意a,b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时 a b 典型例题: 1 例1?求 y x £;(x 0)的值域 分 x 范围为负,提负号(或使用对钩函数图像处 1 解:y (x ) Q x 0 2x 2x 1 x 2x 得到y ( , &]

1 分析:sinx 的范围是(0,1),不能用基本不等式,当 y 取到最小值时,sinx 的值是.2,但「2不 在范围内 解:令 t sinx , t (0,1) 是对钩函数,禾U 用图像可知: 2 在(0,1)上是单减函数,所以t 3,(注:3是将t 1代入得到) y (3,) 注意:使用基本不等式时,注意 y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式 ,要借助对钩函数图像来求 值域。 例2 ?求y 2x (x 3)的值域 解:y 2x (“添项”,可通过减3再加3,利用基本不等式后可出现定值 ) 2(x 3) 22 即 y 2.2 6, 例3?求 y sin x 2 sin x (0 x )的值域

y t f (p 为常数)型函数,要注意t 的取值范围; 【失误与防范】 1.使用基本不等式求最值,其失误的真正原因 是对其前提“一正、二定、三相等”的忽视. 要利 用基本不等式求最值,这三个条件缺一不可. 2 ?在运用重要不等式时, 要特别注意“拆” “拼” “凑” “正” “定” “等”的条件. 3.连续使用公式时取 等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 【题型2】条件是a b 或ab 为定值,求最值(值域)(简) x 2 2x 1 例 4.求 y (x 2)的值域 分析:先换元,令t x 2 ,t 0,其中x 解:y (t 2)2 2(t 2) 1 t 2 6t 1 t Qt 0 [8, 总之:形如y 2 CX ax b dx f (a 0,c 0)的函数,一般可通过换元法等价变形化为 等技巧,使其满足重要不等式中 例5. 0, y 0且x y 18,则xy 的最大值是 解析: 由于 x 0,y 0,则x y 2 xy ,所以2 xy 18,则xy 的最大值为81 例6. 已知 x,y 为正实数,且满足 4x 3y 12,则xy 的最大值为

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

相关文档
相关文档 最新文档