文档视界 最新最全的文档下载
当前位置:文档视界 › 管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)
管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)

绿色版无需安装解压后启动 Thecal.exe

该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。

硬件环境:

Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。

请将显示卡的分辨率设置为800×600或以上。

软件环境:

该软件运行在中文Windows 9X环境下。推荐使用中文Windows 98。

软件安装:

运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。

运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。

输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。

正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。

该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。

按<返回>按钮返回数据输入界面, 按<打印>按钮打印计算结果,需要说明的是,该软件所输出的计算结果采用的是A4号纸,需要事先在Windows的打印机管理模块中设置好。

该软件除了提供了管式换热器工艺计算功能外,还提供了几个实用的小程序,他们是<计算器>、<万能单位换算>,这些功能可以在主菜单中的<实用程序>项下找到。

本软件没有换热器强度计算功能,而管板厚度会影响换热面积的,如果管板厚度修改后,需要重新验证该换热器的传热性能。有关管壳式换热器的强度计算可以采用化工部设备设计技术中心站的钢制压力容器设计计算软件包或其他软件。

Thecal 1.1有如下问题需要注意:

1. 换热管数会因为设计压力不同需要必要的调整。

2. 由于该版本不具备强度计算功能,同时管板的厚度会影响总换热面积(换热管的长度一定),软件中的管板厚度仅为假设值,因而当管板经过强度计算以后,需要重新核准传热面积。

3. 折流板的间距为最大的允许距离,针对不同的工艺可能需要的调整。

4. 折流板约定为切除25 %的圆缺型折流板。

5. 根据文献,管外冷凝时,不论时水平管还是垂直管,气体流速对冷凝液膜流动的影响都很小,文献中的管外冷凝的膜系数不含气体流动特性因素。

6. 软件中采用“设计”所得的结果并不一定是最佳的方案,比如,采用默认数据时,设计结果是450的壳体,2.5米的管长,管程为双流程,当然也可以采用“校核”来选择400的壳体,3米的管长,或者是500的壳体,2米管长,4流程等等。

7. “保存文件”保存的仅是设计条件,而计算的结果没有保存。

请下载后获得此程序!

请用Adobe Acrobat打开下载的pdf文档,可在附件框中找到此程序,

注意一定用Adobe Acrobat软件打开!!

1.加热炉工艺计算软件FRNC5使用入门剖析

1.F RNC-5软件的引进与使用概况 中石化集团公司下属的若干设计院(石化工程公司)从1997年开始引进了多套美国PFR公司的通用加热炉工艺计算软件FRNC-5。此软件在加热炉工艺计算中得到很好的应用,发挥了重大作用。 美国PFR公司全称为PFR工程系统公司(PFR Engineering System,Inc )。公司设在美国洛杉矶,创建于1972年1月,从事热力学系统设计分析和人员培训。该公司的软件产品拥有六十多个用户,遍布六大洲的十五个以上的国家。其中FRNC-5PC软件有二十年以上的使用经验。 本软件可以优化加热炉设计,并可对现有加热炉进行操作分析、加强管理,是一个较为优秀的软件。 2.F RNC-5软件功能与特点 2.1 软件应用范围 本程序可用于炼油、石油化工及热电联合等装置中大多数火焰加热炉及水管锅炉的性能模拟及效率预测。程序采用经过证明了的技术,通过综合迭代,将工艺物流模拟、传热和压力降计算等过程组合在一起。 程序沿物流及烟气流程,逐个管组逐个炉段严格迭代求解,能精确确定加热炉的工艺参数。计算中还指明不利操作状态,如发出炉膛正压、管壁和扩面元件超温、超临界流动以及酸露点腐蚀等警告信息。 程序会算出与显示加热炉的以下工艺参数或不利操作状态: (1)加热炉总热负荷、总热效率,辐射室热负荷 (2)辐射室出口温度(桥墙温度)与烟囱入口处温度 (3)辐射和对流热强度的均值和峰值 (4)辐射段遮蔽段和对流段中所有管组的管壁金属温度和翅片尖端温度的峰值和均值(5)两相流流型及沸腾状态的确定 (6)管内两相流的传热和压降 (7)管外传热和阻力 (8)“阻塞”、“干锅”或“冷端”腐蚀的可能性 2.2 适用的加热炉类型 (1)常减压装置加热炉 (2)铂重整、铂铼重整和强化重整等装置加热炉 (3)重沸炉和过热炉 (4)一氧化碳加热炉和锅炉 (5)脱硫装置原料预热炉 (6)焦化炉和减粘加热炉 (7)润滑油蒸馏和蜡油加热炉

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

管壳式换热器的有效设计外文翻译

武汉工程大学邮电与信息工程学院毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

化学工艺流程设计软件

化学工艺流程设计软件 随着计算机技术的发展,许多学科都可以借助计算机来实现对其内容的研究与应用,然而此技术在化学方面却仍是举步维艰,尤其是在工艺流程设计上。在欧美一些国家,也有一些与此相关的软件,像美国AspenTech公司的Aspen Plus,Hysys,美国Chemstations公司的ChemCAD,美国WinSim Inc.公司的Design II,英国PSE公司的gPROMS,加拿大Virtual Materials Group公司的VMGSim等,这些软件也可以用于工艺流程的设计和图形绘制。目前,国内主要的化工流程模拟软件是SimSci-Esscor公司的PRO/II。综合比较这几套软件各自的特点,都有其不足之处。如Aspen,它是智能型的,且是开放式的,用于化工领域流程模拟,虽然数据库比较全,但只适用于较大或长的流程。ChemCAD则由于物性较少,使用不便,相对较差。PRO/II则主要适用于设备核算,短流程及馏核算。 化学工业出版社出版的《工艺流程设计软件》,其主要研究对象是化工工艺流程图的计算机办公文档处理、在线快速绘制、工程初步设计、课堂教学即时绘制讲解等。该软件高度模块化的操作特点,使其可以轻松实现各种化学图形和各类工艺流程,所见即所得,能进行撤销、恢复等操作,使使用者能随心所欲地绘制出完美的化学图形,任意表达其科学思维!

一、工艺流程设计软件的特点 工艺流程设计在使用计算机绘制的过程中存在着很大的难度,对于化工专业的大部分计算机用户来说,熟练运用一套专业的图形绘制软件是非常困难的。本软件通过科学的分类,将化工常规设备中的254个“图形”高度模块化,划分为“管件、阀门、贮罐、塔器、封头、仪表、换热器、搅拌器、除尘器、传动结构、管道特殊件、管道符号、几何图形”等13个组库,囊括了化学工艺流程绘制过程中所需要的大部分图形元件,使用户可以方便地按照化学原理对其进行各种单元操作组合、拆分、放大、缩小,绘制出各种化工工艺流程图。其特色如下: 1、在绘制过程中,您只需选择自己需要的图形元件模块,通过鼠标的拖拉就可以完成,操作简单方便,易学易用;形象逼真,图文并茂,比例恰当,为化学化工科技工作者提供一种我见即我得的工艺流程的表达方式,最大限度的增加了图文混排的可能性。 2、绘制的流程图可以方便、准确地一键“发送”到Word、PowerPoint、劝学课件制作软件等办公平台上进行输入和编辑。 3、方便的导入导出功能:既可以将您绘制的化学流程导出,从而形成独立的图形文件,又能将“照片、扫描、下载”等各种图形图像导入,为您的工艺流程添加“背景”,使您的图形生动形象,一改往日的死板沉闷。

管壳式换热器的建模、换热计算和CFD模拟

毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟 专业年级2007级热能与动力工程专业 学号姓名20070348 杨郭 指导教师刘巍 评阅人刘庆君 二零一一年六月 中国南京

任务书 课题名称:管壳式换热器的建模、换热计算与CFD模拟 课题类型:毕业论文 任务书内容: 1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文) 2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。其总流阻损失应在满足规定要求。 2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟; 3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。 3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。 3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。 3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6. 4.规定状态的CFD模拟结果和能量分析图; 3.6. 5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。准备毕业答辩的PPT文稿。 任务书进度: 1、16~17周,分析、熟悉毕业设计题目、查找相关翻译资料,对“毕业设计任务书”进行分析计划;收集相关行业信息;准备电脑、办公地点,学习相关软件; 2、18~19周,基础设计,查找技术资料、确定设计方案,对方案进行初步设计与计算; 3、1~4周,进行相关计算,结果分析,编写相关计算、设计、计划文件; 4、5~9周,计算结果分析、修改、撰写毕业论文; 5、10~14周,毕业论文和设计文件的修改,准备毕业答辩。

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

常用工业设计方案软件

常用工业设计软件(UG、Pro/E、SolidWorks、AautoCAD)的文件 相互转换技术 【摘要】本文重点介绍用三维图形文件转换成二维图形文件格式的一种可靠方法以及不同软件的三维图形文件的相互转换技术, 解决了各单位、各部门之间由于所用软件不同而需要达到 CAD 数据共享的问题。【关键词】二维图形三维图形数据转换在结构设计和模具、加工的过程中, 不同公司之间或同一公司不同应用之间, 由于大家使用不同的软件, 经常会遇到要把 UG、 Pro/E、Solid Works、 AutoCAD 的文件数据进行转换和再转换。一、有关 UG、 Pro /E、Solid Works、 AutoCAD 软件的简单介绍1.1、最有代表性的 C AD 系统是美国 Autodesk 公司开发的具有三维功能的通用二维 CAD 绘图软件—AutoCAD, 如最普及的 Aut o-CAD 2004 是用于机械、工程和设计的 AutoCAD 软件产品。1.2、 UG (全称 Unigraphics) 是美国 EDS 旗下 PLM Solution- UGS公司集 CAD/CAM/CAE 于一体的大型集成软件系统。其三维复合造型、特征建模、装配建模、装配间隙与干涉检查、机构运动分析和结构有限元分析的功能强大, 加上其在技术上处于领先地位的 CAM, 使产品设计、分析和加工一次完成, 实现了 CAD/CAM/CAE 的有机集成。1.3、 Pro/E(全称 Pro/ENGINEER)是美国 PTC 公司的数字化产品设计制造系统。率先将高端 CAD 系统从航空、航天、国防尖端领域推介到民用制造行业, 为现代 CAD 的技术发展与应用普及做出了贡献。1.4、美国 Solid Wor ks 公司开发的 Solid Works 是一个集二维/三维图形于一体的大型 CAD 软件。它的特点是: ( 1 ) 对文件数据有较强的自动修复功能。( 2 ) 输入输出的文件格式非常多, 可以很方便的进行文件数据的转换。( 3 ) 您可使用输入 AutoCAD .dxf 和 .dwg 文件到零件或工程图文件。二、 UG- 草图( UG- Drafting ) 与 DXF /DWG 文件相互转换2.1、问题的提出:2.1.1就中国用户来说, 由于制造设备目前还没有完全现代化, 真正 CAD/CA M 一体化的制造企业不多, 因此, 在产品生产过程中为了控制加工件的精度, 仍然需要零部件的标注有详细公差标准的二维设计图纸。2.1.2 任何一种 CAD 软件都不是十全十美的, UG 的 drafting 模块在汉字输入、符号标注和明细表编制方面从方便性来说还有不尽人意的地方。使用 UG, 虽有汉字输入模块, 但与 Windo ws 兼容性不理想 , 对于文字处理没有其它二维 CAD 软件( 如 AUTOCAD) 方便,对于复杂的装配图形需要用较多的时间作文字处理工作。作为一个CAD 应用单位, 总是充分利用每种 CAD 软件的长处, 特别是在UG套数较少的情况下, 为充分发挥 UG 的建模、分析和加工的长处, 常将二维图形的文字处理转到 AUTO CAD 上进行。2.2、问题的分析UG 是一个大型的 CAD/CAM/CAE 软件, 它的数据集成度高。其三维模型、装配和二维图纸信息都集中在一个 part 文件中, 而其它CAD 软件( 如 Solid Works, Pro/ENGINEER 等) 都是将模型、装配和二维图形信息分别存放在不同的文件中。在用 UG- Translator 的 UGTODXF 进行数据转换时 , 必须区分part 文件中的各类信息, 进行数据取舍。如果要将 UG- Drafting 中的图形转换到 AUTOC

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

管壳式换热器传热计算示例(终)-用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程(表压),壳程压力为(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2= Mp a(表压)。改为冷却水工作压力P2= Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2= kg/m3; 冷却水的比热查物性表得C p2= kJ/kg.℃ 冷却水的导热系数查物性表得λ2= W/m.℃ 冷却水的粘度μ2=×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=; 过冷水的定性温度℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=kg.℃; 过冷水的导热系数查物性表得λ1=m.℃; 过冷水的普朗特数查物性表得P r2; 过冷水的粘度μ1=×10-6 Pa·s。 过冷水的工作压力P1= Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=; 设计传热量: 过冷却水流量: ; 4)有效平均温差 逆流平均温差:

根据式(3-20)计算参数p、R: 参数P: 参数R: 换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=; 有效平均温差: 5)管程换热系数计算: 附录10,初定传热系数K0=400 W/m.℃; 初选传热面积: m2; 选用φ25×无缝钢管作换热管; 管子外径d0=m; 管子内径d i=×=0.02 m; 管子长度取为l=3 m; 管子总数: 取720根管程流通截面积: m2 管程流速: m/s 管程雷诺数: 湍流管程传热系数:(式3-33c) 6)结构初步设计: 布管方式见图所示: 管间距s=0.032m(按GB151,取); 管束中心排管的管数按所给的公式确定: 取20根;

化工工艺设计涉及计算的软件介绍

化工工艺设计涉及大量的计算,主要的有工艺流程的模拟,管道水力学计算,公用工程管网计算,换热器设计计算,容器尺寸计算,转动设备的计算和选型,安全阀泄放量和所需口径的计算,火炬泄放系统,控制阀Cv计算和选型,等等。这些计算过程通常都有专用的商业软件或者是工程公司自行开发的软件或者计算表格。大的设计公司通常也会指定公司用于以上设计过程的软件或经过确认的表格。下面就我的经验来看看常用的一些软件。 1. 工艺流程模拟: ?ASPEN Plus ?Pro II ?HYSYS 2. 管道水力学计算: ?通常是工程公司自备的EXCEL表格,没必要使用专用软件。当然,也可以自己编制,一般来说使用CRANE手册提供的公式就足够了。 ?两相流的水力学计算相当复杂,自己编制费力不讨好,用公司内部经过验证的表格就可以了。 3. 公用工程管网计算 ?我用过Pipe 2000,肯塔基大学教授的出品,包括Gas 2000, Water 2000, Steam 2000等一系列。 ?Pipenet也是不错的选择。 ?有人用SimSCI的InPlant。没用过,有用过的朋友可以介绍一下。 4. 换热器设计计算 ?HTRI ?HTFS ?这两个软件都可以。常见的介质用HTRI更好,因为它的物性数据是经过实验得到的。HTFS使用了ASPEN或HYSYS的物性数据,很多都是计算得到的,所以精度可能稍差。 5. 压力容器尺寸计算(长度与内径) ?工程公司往往使用自制的EXCEL表格来计算容器尺寸。内构件一般要提交供货商来设计。 ?计算容器尺寸首先要确定容器的用途:气液分离,液液分离,还是气液液三相分离。然后要确定容器是卧式还是立式。最后要根据物料属性,考虑是否使用Wire Mesh或其他内构件来除去微小雾滴。以上三项是影响计算的主要因素。 6. 塔设备计算

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

(工艺技术)FRNC5PC工艺计算软件中文操作指南

FRNC-5PC工艺计算软件操作指南

目录 1 总则 (3) 1.1主要应用 (3) 1.2相关标准及参考书籍 (3) 2 软件简介 (4) 2.1软件使用范围 (4) 2.1软件计算方法 (5) 2.1.1固定发热量(固定燃料量) (5) 2.1.2固定热负荷 (5) 3 输入部分 (6) 3.1燃烧室输入 (6) 3.1.1 Characteristic (6) 3.1.2 Furnace type (7) 3.1.3 Furnace dimension (7) 3.1.4 Flue Gas “Take-Off” (8) 3.1.5 The ID’s of Coil Sections in Firebox (9) 3.2对流室输入 (10) 3.2.1 Characteristic (10) 3.2.2 Internal Duct Dimensions (10) 3.2.3 Coil Section, Q-Bank, or Air Preheater ID (11) 3.3烟囱输入 (11) 3.3.1 Characteristic (11) 3.3.2 Geometry (12) 3.4管路输入 (12) 3.4.1 Geometry (13) 3.4. 2 Process fluid (13) 3.4.3 Geometry I (14) 3.4.4 Geometry II (14) 3.4.5 Additional data (16) 3.4.6 Additional data (17) 3.5炉管数据输入 (18) 3.5.1 General characteristics (18) 3.5.2 Fin type and diameter (19)

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

管壳式换热器的常见问题

管壳式换热器标准的一些常见问题 换热器-1 GB151-1999管壳式换热器的适用范围是什么? 答:1.适用于固定管板式、浮头式、U形管式和填料函式换热器。 2.适用的参数为: 公称直径DN ≤2600mm; 公称压力PN ≤35MPa; 且公称直径(mm)和公称压力(MPa)的乘积不大于1.75×104。 换热器-2 对于管、壳程设计压力均为内压的管壳式换热器,其受压元件在什么情况下可按压差设计?还应考虑什么问题? 答:对于同时受管、壳程内压作用的元件,仅在能保证管、壳程同时升、降压时,才可以按压差设计。压差的取值还应考虑在压力试验过程中可能出现的最大压差值,同时设计者应提出压力试验的步进程序。 换热器-3 试述管壳式换热器中管、壳程设计温度与管壁、壳壁温度的差异及作用。 答:管、壳程设计温度分别为管程管箱和壳程壳体的设计温度,是对应于管、壳程设计压力分别设定的管、壳程受压元件金属温度(沿元件金属横截面的温度平均值)的最高值或最低值。用于确定元件材料的许用应力。 管壁、壳壁温度分别为沿长度平均的换热管、壳程圆筒金属温度,分别是传热过程中形成的换热管、壳程圆筒金属温度沿长度方向的平均值。用于计算壳程圆筒与换热管的热膨胀差在管板、换热管和壳程圆筒中引起的应力。 这两组温度不仅定义、性质和作用不同,而且数值上也会有较大差异,因此,在计算时一定要注意,不可混用。 换热器-4 管壳式换热器中同时受管、壳程温度作用的元件的设计温度如何确定? 答:管壳式换热器中同时受管、壳程温度作用的元件的设计温度可按金属温度确定,也可取较高侧的设计温度。 换热器-5 管壳式换热器主要元件腐蚀裕量的考虑原则是什么? 答:管壳式换热器主要元件腐蚀裕量的考虑原则: a)管板、浮头法兰、球冠形封头和钩圈两面均应考虑腐蚀裕量; b)平盖、凸形封头、管箱和圆筒的内表面应考虑腐蚀裕量; c)管板和平盖上开槽时,可把高出隔板槽底面的金属作为腐蚀裕量,但当腐蚀裕量大于槽深时,还应加上两者的差值; d)压力容器法兰和管法兰的内直径面上应考虑腐蚀裕量; e)换热管不考虑腐蚀裕量; f)拉杆、定距管、折流板和支持板等非受压元件,一般不考虑腐蚀裕量。 换热器-6 对于无法进行无损检测的钢制固定管板式换热器壳程圆筒的环向焊接接头,其焊接接头系数如何选取? 答:对于无法进行无损检测的钢制固定管板式换热器壳程圆筒的环向焊接接头,当采用氩弧焊打底或沿焊接接头根部全长有紧贴基本金属的垫板时,其焊接接头系数φ=0.6。

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

管壳式换热器设计

课程设计 设计题目:管壳式水-水换热器 姓名 院系 专业 年级 学号 指导教师 年月日

目录 1前言 (1) 2课程设计任务书 (2) 3课程设计说明书 (3) 3.1确定设计方案 (3) 3.1.1选择换热器的类型 (3) 3.1.2流动空间及流速的确定 (3) 3.2确定物性数据 (3) 3.3换热器热力计算 (4) 3.3.1热流量 (4) 3.3.2平均传热温度差 (4) 3.3.3循环冷却水用量 (4) 3.3.4总传热系数K (5) 3.3.4计算传热面积 (6) 3.4工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (7) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (8) 3.4.7接管 (8) 3.5换热器核算 (8) 3.5.1热量核算 (8) 3.5.2换热器内流体的流动阻力 (12) 3 .6换热器主要结构尺寸、计算结果 (13) 3.7换热器示意图、管子草图、折流板图 (14) 4设计总结 (15) 5参考文献 (16)

1前言 在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。 根据热交换器在生产中的地位和作用,它应满足多种多样的要求。一般来说,对其基本要求有: (1)满足工艺过程所提出的要求。热交换强度高,热损失少。在有利的平均温度下工作。 (2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。 (3)设备紧凑。这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。 (4)保证低的流动阻力,以减少热交换器的消耗。 管壳式换热器是目前应用最为广泛的一种换热器。它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

相关文档
相关文档 最新文档