文档视界 最新最全的文档下载
当前位置:文档视界 › 差分放大器的两种有源负载

差分放大器的两种有源负载

差分放大器的两种有源负载
差分放大器的两种有源负载

差动放大器的两种有源负载

1镜像电流负载

2 Lee 负载

1.镜像电流负载:

镜像电流负载提供双端到单端的转换,而且不损失单端和多端的差模增益(尽管共模增益是其两倍,但仍然很小)。其数值随器件的种类不同而不同(pnp,npn,n-MOS,p-MOS );下面的例子是在镜像中应用p 型MOS 管驱动一个n 型共源差动增益级。

我们从了解镜像电流负载的原理着手,可参考如下两幅图。负载的有源特性是使流入带有差动输入的负载电流增加一倍,而流入带有共模输入的负载电流为零。详细分析结果列在了图的下方。

差动输入 共模输入

如上左图所示,经分析可得:差动输入为±V 时,输出为下式:

2/id out V []out V )/(2423L o o m G g g g ++ V

2/id 如上右图所示,共模输入为,则输出为下式:

ic V out V []out V ic L om om ob V G g g g )(2/42++ []ic m ob V g g 22/

2 Lee 负载

Lee 有源负载提供十分高的差模增益和相当小的共模增益。传统的带电流源负载的差动放大器能够产生一个数量级的共模增益,然而Lee 负载在此情况下其共模增益可以减小一到两个数量级[倍]。

A T GS V V V /)(min ?Lee 负载的原理图如下,

将其画成下图可能更容易理解。可以很容易的看出两个输入端是怎样反馈到有源负载的输入端,如此可以抵消差模增益,增强共模增益。

在差模和共模输入端我们输入小信号,运用半电路方法对Lee 负载的功能进行定量分析。先来分析差模输入,然后分析共模输入:

差模输入:

差动电路图如下所示:

这种差模输入放大器的线性等值半电路图如下。

参照此线性等值半电路,我们可以得到

[][]2/)2/()/(2/1552/313155id L o o m id L m m o o o m od V G g g g V G g g g g g g V ++=+++++= 即为差模增益,为

vd A =vd A )2/(155L o o m G g g g ++

我们可以看到系数在分母上,且是同等数量级中最大的系数,但符号相反,因此相抵消, m g 从而产生很大的差模增益。

共模输入:

共模输入电路图如下所示:

共模输入的线性等值半电路图如下:

参考此等值半电路,可得:

oc V []ic L m m o o ob V G g g g g g )(2/3131++++ 很明显这里的不能抵消。进一步分析发现其在分母中起着主要作用: m g oc V []ic L m o ob V G g g g )22(2/11++ []ic m ob V g g 14/ 即为共模电压增益,近似为:

vc A

vc A 14/m ob g g 因此,一般说来共模电压增益很小,很小而相对较大。 ob g 1m g

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压 Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管

图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs 可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

CMOS集成电路电流源负责的差分放大器

目录必做项目:与非门电路的设计 一设计目的与指导 二设计及过程分析 三结果分析 四体会 五任务分工 选做项目:电流镜负载的差分放大器设计 一设计目的与要求 二设计及过程分析 三结果分析 四体会 五任务分工

必做项目:与非门电路的设计 一、设计目的与指导 本项目要求基于csmc 0.35um 工艺,完成一个二输入与非门(2NAND)的电路设计。设计要求如下: 1、为了给顶层设计留出更多的布线资源,版图中只能使用金属1 和多晶硅作为互连线,输入,输出和电源、地线等pin 脚必须使用金属1 2、版图满足设计规则要求,并通过LVS 检查 3、设计分析 分析二输入与非门(2NAND)的电路,确定器件的宽长比。 设置华大九天环境 启动 Aether 建立自己的设计库 用 Schematic Editor 画电路原理图 形成符号图 在 MDE 中进行电路仿真 分析仿真结果,是否满足要求,若不满足要求,修正电路的参数,重新仿真。 4、版图设计 用 Layout Editer 画版图 利用 Aeolus 工具进行版图验证和提取 DRC 规则检测 LVS 检查 5、Tape out 增加焊盘等外围电路 输出 GDSII 版图结果。 二设计及过程分析 (一)电路原理图设计 电路原理图由两个NMOS和两个PMOS组成。两个PMOS并联,两个NMOS串联,然后将两个NMOS和两个PMOS串联起来。最后加 上相应的引脚(包括input、output、inputoutput),原理图如下图所示:

在给5V电压时,对V0与V1进行直流仿真分析直到VOUT斜率变化最大值在2.5V左右。不断调节管子宽长比,直至其满足要求,测得NMOS的W/L=0.8/0.5,PMOS的W/L=2/0.5.仿真图如下图所示

差分编码器设计和高频小信号放大器的设计

专业课程设计任务书 第一周课题(四选一) 1.1M调幅接收机设计 要求:中心频率f0=1MHz,低频信号频率f m=10kHz。 2.锁相频率合成器设计 要求:锁相环使用C4046芯片,频率范围为10k~100k,步进10k。 3.LC低通滤波器设计 要求:设计一五阶Butterworth低通滤波器,截止频率为1.6MHz,输入、输出阻抗为50Ω 4.差分编码器(码发生器和编码器)设计 要求:码发生器输出一n=4的m序列伪码,码元传输速率10kB 第二周课题(三选一) 5.FSK调制解调系统设计 要求:码元传输速率1kB,载波频率分别为300kHz和600kHz 6.高频小信号放大器设计 要求:中心频率f0=1MHz,通频带30kHz<2Δf0.7<50kHz,电压增益不低于15dB 7.高频LC振荡电路设计制作 要求:(1)设计一个LC正弦波振荡电路 (2)电路采用单电源12V (3)可采用考毕兹,克拉波或西勒振荡器电路稳定输出频率 (4)振荡频率在1-2MHz连续可调 (5)在频率范围内输出峰峰值大于4V且无明显失真

课题一 课程设计报告内容索引 内容页码 1、课程设计题目 (5) 2、主要技术指标(电路功能及其精度等) (5) 3、方案论证及选择 (5) 4、系统组成框图 (8) 5、单元电路设计及说明 (9) 6、总体电路图 (10) 7、元器件列表 (10) 8、总结 (10) 9、参考文献 (11)

一、课程设计题目 差分编码器设计 要求:码发生器输出N=4的序列伪码,码元传输速率10KB 二、主要技术指标 1、码发生器输出n=4的序列伪码 2、码元传输速率为10KB 三、方案论证及选择 方案一 1基本原理: DQPSK(Differential QuadriPhase-Shift Keying,差分四相正交相移健控)是在QPSK(四相正交绝对调相)的基础上作的改进,它克服了QPSK信号载波的相位模糊问题,用相邻码元之间载波相位的相对变化来表示两位二进制数字信息。常用的DQPSK系统的方框图如图1所示,信息源来的信码先通过串/并变换电路分成两路并行二进制信号,再送入差分编码器实现两路二进制(即四进制)的差分编码。由于格雷码有其自身的优点,即判决接收到一个信号码元时,如发生错误,最容易判为它相邻的信号码元,即最多错一比特,所以送入QPSK四相绝对调制器要用格雷码。由于差分编码器是对自然二进制作差分编码,所以要在差分编码器和QPSK调制器之间做一个二-格变换电路,把双比特自然二进制码变换为双比特格雷码,再输入QPSK调制器。

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

电流镜负载的差分放大器设计概要

电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在饱和区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不受工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。

一、设计目标(题目) (3) 二、相关背景知识 (4) 1、单个MOSTFET的主要参数包括: (4) 三、设计过程 (5) 1、电路结构 (5) 2、主要电路参数的手工推导 (6) 3、参数验证(手工推导) (7) 四、电路仿真 (7) 1、NMOS特性仿真及参数推导 (7) 2、PMOS特性仿真及参数推导 (10) 3、最小共模输入电压仿真 (12) 4、电流镜负载的差分放大器特性仿真及参数推导 (14) 五、性能指标对比 (18) 六、心得 (18)

一、设计目标(题目) 电流镜负载的差分放大器 设计一款差分放大器,要求满足性能指标: ● 负载电容pF C L 1= ● V VDD 5= ● 对管的m 取4的倍数 ● 低频开环增益>100 ● GBW(增益带宽积)>30MHz ● 输入共模范围>3V ● 功耗、面积尽量小 参考电路图如下图所示 设计步骤: 1、仿真单个MOS 的特性,得到某W/L 下的MOS 管的小信号输出电阻和跨导。 2、根据上述仿真得到的器件特性,推导上述电路中的器件参数。 3、手工推导上述尺寸下的差分级放大器的直流工作点、小信号增益、带宽、输入共模范围。

恒流源差分放大电路

天水师范学院 TIANSHUINORMALUNIVERSITY 《模拟电子技术基础》 《模拟电路综合设计》 设计报告 题目:恒流源差分放大电路 学院:电子信息与电气工程学院 专业:电子信息工程 班级: 1 6级电信一班 姓名:秦汉柱 学号:20161060132 指导老师:刘秉科 2017 年12月30日

目录 一、设计目的 (3) 二、实验预习与思考 (3) 三、恒流源 (3) 1、恒流源的作用 (3) 2、恒流源的分类 (4) 四、差分放大电路 (4) 五、设计原理 (4) 1、电路组成 (4) 1、第一级差分放大电路 (5) 3、第二级共射极放大电路 (6) 4、第三级功率放大器 (7) 六、仪器与元器件 (7) 七、测试方法 (8) 八、仪器表的操作使用 (9) 八、电路焊接及调试过程分析 (10) (1)、电路焊接 (10) (2)、电路调试及输出 (10) 九、设计总结和体会 (11) (1)设计总结 (11) (2)心得体会 (11)

一、设计目的 1、加深对差分放大电路的工作原理、分析方法的理解与掌握; 2、学习具有恒流源差分放大电路的测试方法; 3、了解恒流源在差分放大电路中的作用; 二、实验预习与思考 1、恒流源的作用?常见的恒流源有哪几种? 2、差分放大电路的电路组成、工作原理、主要指标理解及计算? 3、设计任务和要求? (1)、基本要求 预设一个具有恒流源的单端输入—单端输出差分放大器。+UCC=+6V,UEE=-6V。 (2)、扩展要求 电路要有创新 三、恒流源 1、恒流源的作用 由于普通差分电路存在温度漂移问题,引进长尾电路,也就是在差分对管发射极接入电阻RE,这个电阻对于共模信号(温度上升、下降引起的)有负反馈作用,因为温度上升时IC1,IC2同时上升,产生的增量发射极电流在其上面产生压降,使三极管UBE1、UBE2下降,IB1、IB2下降使IC1、IC2下降.对于差模信号没有负反馈作用.因为IC1增加多少,IC2就减少多少. 恒流源式差分电路其实就是把RE换成一个三极管恒流源,由于恒流源稳定电流的作用更强,效果比RE更好,也不需要把电源电压弄的很高.(长尾电路为了效果好,往往要加大RE的数值,但是也要提高电源电压)

差分放大器设计

第4节 差分放大器设计 [学习要求] 掌握差分放大器的主要特性参数及其测试方法;学会设计具有恒流源的差分放大器及电路的调试技术。 [重点与难点] 重点:差分放大器的传输特性及差模特性。 难点:恒流源的镜像电流;输入输出信号的连接方式对性能的影响。 [理论内容] 一、具有恒流源的差分放大器 具有恒流源的差分放大器,应用十分广泛。特别是在模拟集成电路中,常作为输入级或中间放大级,电路如图1所示。其中,T 1、T 2称为差分对管,常采用双三极管如5G921或BG319等,它与电阻R Bl 、R B2、R Cl 、R C2及电位器RP 共同组成差分放大器的基本电路。T 3、T 4与电阻R E3、R E4、R 共同组成恒流源电路,为差分对管的射极提供恒定电流。均压电阻R 0I 1、R 2给差分放大器提供对称差模输入信号。晶体管T 1与T 2、T 3与T 4的特性应相同,电路参数应完全对称,改变RP 可调整电路的对称性。由于电路的这种对称性结构特点及恒流源的作用,无论是温度的变化,还是电源的波动(称之为共模信号),对T 1、T 2两管的影响都是一样的。因此,差分放大器能有效地抑制零点漂移。 图1具有恒流源的差分放大器 1、输入输出信号的连接方式

如图1所示,差分放大器的输入信号与输出信号可以有4种不同的连接方 .id V . od V 式: ·双端输入—双端输出连接方式为①—A'—A ,②—B'—B ;③—C ,④—D 。 ·双端输入—单端输出连接方式为①—A'—A ,②—B'—B ;③、④分别接一电阻 RL 到地。 ·单端输入—双端输出连接方式为①—A ,②—B —地:③—C ,④—D 。 ·单端输入—单端输出连接方式为①—A ,②—B —地:③、④分别接一电阻R L 到地。 连接方式不同,电路的特性参数有所不同。 2、静态工作点的计算 静态时,差分放大器的输入端不加信号。对于恒流源电路的电流值 .id V 0 4444422I I I I I I I Q C Q C Q C Q C Q B R ≈≈+=+=β (1) 故称为0I R I 的镜像电流,其表达式为 407.0E EE R R R V V I I +??== (2) 上式表明,恒定电流主要由电源电压0I EE V ?及电阻R 、4E R 决定 对于差分对管T1、T2组成的对称电路,则有 2021I I I Q C Q C == (3) 21 01121C CC C Q C CC Q C Q C R I V R I V V V ?=?== (4) {}(){}mA I mV mA I mV r mA mA E be ?++?=?++?=226130026)1(3000ββ (5) 可见差分放大器的静态工作点,主要由恒流 源电流的大小决定 0I 二、主要特性参数及其测试方法 1、传输特性 传输特性是指差分放大器在差模信号输

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计 1、设计内容 本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。 本设计所用到的器件均采用SMIC 0.18μm的工艺库。 2、设计要求及工艺参数 本设计要实现的各项指标和相关的工艺参数如表1和表2所示:

3、放大器设计 3.1 全差分套筒式放大器拓扑结构与实际电路 图1 全差分套筒式放大器拓扑结构 图2 最终电路图

3.2 设计过程 在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。但同时降低了输出电压摆幅。为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。 本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。我们可以平均分配每个管子的过驱动电压。根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。 I D=1 2μn C ox W L (V GS?V TH)2(1+λV DS)(1) 其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。 4、仿真结果 经过调试优化之后的仿真结果如以下各图所示: 图3 增益及相位裕度 从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。 当CL为2pF时,相位裕度: PM=180°+∠βH(ω)=180°?125.5°=54.5° 电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20; 输入差模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

全差分放大器设计

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路 顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意 转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑 非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源) 关于共模反馈CMFB 从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。 设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。 从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3 一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题) 另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。 具体的,共模反馈可以分为连续时间和开关电容两类 连续时间的共模反馈 一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法: 1.电阻分压resistive-divider (如下左图) 电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA,工作电压U=3V+5×3.4V=20.0V。3V是WMZD-A20电阻压降,3.4V是LED的正向导通电压(或2.8V~4.2V),它的恒流特性见图1中的电流曲线II。

电流镜负载的差分放大器设计

《IC课程设计》报告 电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在包河区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不收工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。 目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (6) 3.1 电路结构设计 (6) 3.2 主要电路参数的手工推导 (6) 3.3 参数验证(手工推导) (7) 4 电路仿真 (9) 4.1 用于仿真的电路图 (9) NMOS: (9) PMOS (9) 整体电路图 (10) 4.2 仿真网表(注意加上注释) (10) 4.3 仿真波形 (13) 5 讨论 (17) 6 收获和建议 (17) 参考文献 (19)

1设计目标 设计一个电流镜负载的差分放大器,参考电路图如下:

2相关背景知识 据题目所述,电流镜负载的差分放大器的制作为0.35um CMOS 工艺,要求在5v 的电源电压下,负载电容为2pF 时,增益带宽积大于25MHz ,低频开环增益大于100,同时功耗和面积越小表示性能越优。 我们首先根据0.35um CMOS 工艺大致确定单个CMOS 的性能,即在一定值的W/L 下确定MOS 管在小信号模型中的等效输出电阻和栅跨导,然后记下得到的参数并将其带入到整体电路中计算,推导电流镜负载的差分放大器电路中的器件参数,例如,小信号模型的增益、带宽、功耗等,再分析是否满足题目中的各项指标的要求。若不满足,则依据摘要理所说的,调节晶体管的宽度,然后用调整后的参数进行仿真、验证,直到符合要求为止。 相关背景知识: 1. 差分式放大器 差分式放大器是由两个各项参数都相同的三端器件(包括BJT 、FET )所组成的差分式放大电路,并在两器件下端公共接点处连接一电流源。差分式又分为差模和共模信号:输入电压Vid 为Vi1和Vi2的差成为共模电压;另外,若输入电压Vic 为VI1和Vi2的算术平方根,则称为共模电压。当输入电压是共模形式时,,即在两个输入端各加入相同的信号电压,在差分放大电路中,无论是温度变化,还是电源波动引起的变化,其效果相当于在两个输入端加入了共模信号,两输出端输出的共模电压相同,故双端输出时输出电压为零;当输入电压是差模形式时,即在电路的两个输入端各加一个大小相等、极性相反的信号电压,一管电流将增加,另一管电流则减小,所以在两输出端间有信号电压输出。而差分放大器正是利用共模输入的特点来克服噪声信号和零点漂移的。此题要求用双端差模信号输入,单端输出,相应的计算公式如下: 1. 差模输入电压:12 id i i v v v =- 2. 共模输入电压:() 122 i i ic v v v += 3. 差模输出电压:12 od o o v v v =- 4. 共模输出电压:12 2 o o oc v v v += 5. 双端输入——单端输出的差模电压增益: 2(2|| v d m d s d s A g r r = 6. 双端输入——单端输出的等效栅跨导:

全差分运算放大器设计说明

全差分运算放大器设计 岳生生(6) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11135711 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益 9 2 291129 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- +P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

6种最常用恒流源电路的分析与比较

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压 Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管

图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

模电课设单入双出恒流源式差分放大电路的设计

目录 1 课程设计的目的与作用 (1) 1.1设计目的及设计思想 (1) 1.2设计的作用 (1) 1.3 设计的任务 (1) 2 所用multisim软件环境介绍 (1) 3 电路模型的建立 (3) 4 理论分析及计算 (4) 4.1理论分析 (4) 4..1.1静态分析 (4) 4.1.2动态分析 (5) 4.2计算 (5) 5 仿真结果分析 (6) 6 设计总结和体会 (9) 6.1设计总结 (9) 6.2心得体会 (9) 7参考文献 (10)

1 课程设计的目的与作用 1.1设计目的及设计思想 根据设计要求完成对单入双出恒流源式差分放大电路的设计,加强对模拟电子技术的理解,进一步巩固课堂上学到的理论知识。了解恒流源式差分放大电路的工作原理,掌握外围电路设计与主要性能参数的测试方法。 1.2设计作用 通过multisim软件仿真电路可以使我们对恒流源式差分放大电路有更深的理解,同时可以与长尾式放大电路加以比较,看到恒流源式差分放大电路的优越性。 1.3设计任务 1.设计一个单入双出恒流源是差分放大电路,在实验中通过调试电路,能够真正理解和掌握电路的工作原理。 2.正确理解所设计的电路中各元件对放大倍数的影响,特别是三极管的参数。 3.正确处理理论计算数据,并非仿真数据进行比较在比较中加深理解。 2 所用multisim软件环境介绍 multisim软件环境介绍 Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。 针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。其中教育版适合高校的教学使用。

相关文档
相关文档 最新文档