文档视界 最新最全的文档下载
当前位置:文档视界 › 初中数学建模案例

初中数学建模案例

初中数学建模案例
初中数学建模案例

中学数学建模论文指导

中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。

一、建模论文的标准组成部分

建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。

1. 题目

题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。

2. 摘要

摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。

摘要一般分三个部分。用三句话表述整篇论文的中心。

第一句,用什么模型,解决什么问题。

第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。

当然,对于低年级的同学,也可以不写摘要。

3. 正文

正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。

4. 结论

论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。

5. 参考资料

在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。

二、建模论文的写作步骤

1. 确定题目

选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。

2. 开展科研课题

去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息。同时如果有条件的话,可以去拜访相关领域的专家和学者。然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证。完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进。记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议。在论文写作结束以后,一定要得出结论。记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设。只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的。最后,需要很好地写一份摘要。摘要的字数应该是论文字数的十分之一左右。

3. 完成论文写作

完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等。最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人。

喝饮料品数学

湖南省株洲市北京师范大学株洲附属学校 C0812 班晏阳天指导老师:董宏亮

摘要:喝饮料,品数学。在日常生活中我们经常遇到用空瓶换汽水问题,喝完了,凉爽的汽水还能用空瓶换汽水继续喝,从中引发了我对问题的深入思考。如果用3个空瓶换一瓶新的

汽水,当原有瓶数X为偶数时,当原有瓶数为 X 时, 总共能喝到多少瓶汽水呢如果现有 X 瓶汽水,每Y个空瓶可以换一瓶新的汽水。总共又能喝到多少瓶汽水呢这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。关键词:饮料瓶数空瓶兑换优化

一.问题的发现

日常生活中,我们经常遇到过空瓶换汽水问题。喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。如果没有经历过,那么这道小学时的奥林匹克数学题你应该见到过:

现有10 瓶汽水,每三个空瓶可以换一瓶新的汽水。问总共能喝到多少瓶汽水呢

我曾经问过不少人这道题,他们给的结果通常都是14 瓶(先喝10 瓶,用9空瓶换来3整瓶,喝3瓶,还有3+1=4 个空瓶。然后用3个空瓶再换一整瓶,喝掉。最后剩下2个空瓶。共10+3+1=14 瓶)

当我提示他们剩下的两个空瓶仍然能够利用的时候,有些聪明人就给出了正确答案:借来一个装满饮料瓶,喝完后,连同那剩下的两个空瓶一起还给人家。所以共喝了 15 瓶。

这就是这道题的正确答案。

最近我突然想到了这个问题,它能不能被深入地推广一下呢于是我就开始了对这个论文题目的思考与研究。

二. 建立数学模型

我列出了原有饮料瓶数和实际能喝到的瓶数的一些数据:

注意观察:看下方整理过的列表

发现什么了吗

根据不完全归纳的情况,我得出这样一个重要的规律:

当原有偶数瓶饮料时,实际能喝到原来倍瓶数的饮料。

当原有奇数瓶时,则实际喝到原来倍瓶数取整数的饮料。

但这只是不完全归纳,如何从正面直接推导呢

三. 数学模型的分析与问题的解决

又经过我细致的观察,发现:只要是每有两个空瓶,都可以运用文章开头那种“借瓶子”的方法再喝一瓶饮料。这个发现太重要了。我可以这样处理那些剩余的空瓶:分为两个两个

一组,每一组等于一瓶“没有空瓶”的汽水(只可以喝,但不能得到空瓶)。这样就可以正面对待问题了。

当原有瓶数 X 为偶数时:先喝掉X瓶,然后把空瓶分为2 个组,每组个正好分完。每组又是一瓶。共喝掉X + = X 瓶。

当原有瓶数X为奇数时:先喝掉 X 瓶,然后把空瓶分为2个组,每组(X-1)个,还剩一个空瓶,浪费掉。共喝 X +(X—1)= 瓶。其实取整之后结果是和上述整理过的表格一一对应的。这正验证了上文中不完全归纳得出的结论。

通过这种思想,我们能不能进一步再推广呢如果是 4 个、5 个或更多空瓶换一瓶饮料,又会怎么样呢

四. 数学模型的进一步推广

现有 X 瓶汽水,每 Y 个空瓶可以换一瓶新的汽水。问总共能喝到多少瓶汽水呢

由上文的推导过程来看,如果是Y个空瓶可以换一瓶饮料,那么每拥有(Y—1)个空瓶,就可以用借瓶子法得到一瓶饮料。所以当喝完X瓶饮料得到X个空瓶之后,又能喝到 [ X/(Y—1)]瓶饮料。总共就是 [ X + X /(Y—1)] 瓶饮料(若除不尽时则向下取整数)。整理该式子,就得到了最后的结论:可以喝到 [ XY /(Y—1)] 瓶饮料(若除不尽则向下取整数)。五. 论文总结

问题:现有 X 瓶饮料,每 Y 个空瓶可以换一瓶新的饮料。问总共能喝到多少瓶饮料呢

答:总共可以喝到 [ XY /(Y—1)] 瓶饮料(若除不尽则向下取整数)

这篇文章的题目是我在坐长途汽车时偶然想到的。在百般无聊的时候,我给我父亲出了此论文开始时那样的一道问题,却引发了我们长时间的讨论。这种题目的类型不止用于换饮料当中。啤酒、酱油、醋……生活中的这类问题也并不少见。而细致地进行处理,周密地进行思考,就可以从容地应对那些看似复杂的问题。这个问题的探讨与解决,对于我们在日常生活中如何处理使开支与效益达到最优化具有一定的指导意义。

参考文献:

[1]韩中庚。数学建模方法及其应用[M].北京:高等教育出版社.2005

[2]庞军:对边际分析和最优化原理地探讨[J].商业时代,2005

[3]赵胜民:经济数学.科学出版社,2005

[4]陈宝林:最优化理论与算法[M].北京:清华大学出版社,2005

致谢:

在论文完成之际,我要特别感谢我的指导老师,他在论文的写作过程中给我提出了许多宝贵的建议,给予了许多无私的支持和帮助,感谢所有关心、支持、帮助过我的良师益友,在此一并致以诚挚的谢意。最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位专家表示衷心地感谢!

北京师范大学株洲附属学校初中部 C0812 班晏阳天

2010-4-28

《红色警戒》中兵种战斗力的数字建模与统计研究:以苏联为例

北京二中初一(2)班韩澈

摘要:数学建模是应用知识从实际课题中抽象、提炼出数学模型的过程。本文利用数学建模的方法,对游戏《红色警戒 red alert》中的兵力情况进行分析,以苏联的9 种兵力为例,探讨了在如此多的兵种中,哪个兵种的攻击力更有价值问题。研究通过数学建模的思想,运用统计分析方式,发现在此款游戏中,炮兵综合值最高,在战争中最有价值,其次是光凌坦克,最弱的是战斗机。在今后的对比研究中还可继续拓展分析,以便得到更全面的数据。

关键字:数学建模;红色警戒;比较;统计

红色警戒是一款策略游戏,玩家控制苏联或美国来制造军队,配合正确的战略手段,最终将敌人消灭。在这款游戏中,苏联和美国各有9个兵种,每个兵种都有自己的优势和劣势。

在游戏《红色警戒 red alert》当中,苏联共有9种兵力,在如此多的兵种中,究竟哪个更有价值当玩家在玩“红警”时,总会想到这个问题,只要自己制造的兵力的价值最高,就能在战争中获得胜利。我把这九种兵力按照“制造时间”、“制造金钱”、“生命”、“攻击”、“打击范围”这几个方面进行统计制成下表:

为了更加清楚地比较出哪种兵力更好,我又分别制成了条形统计图,具体分析了每种兵力的特点。如下:“制造时间”的条形统计图:

由于在战争中,速度决定成败,所以制造时间越短,在时间上的优势就越大。通过图表我们可以很清楚地看出:制造“熊”所需的时间最短,其次是步兵,然后是炮兵,制造所需时间最长的是天启坦克。

“制造金钱”的条形统计图:

金钱是战争中必要的资源之一,所以花费的金钱数额相对越少,就有更多优势,可以利用有效的资金建造更多武器资源。此图标分析出:“熊”的花费最少,“天启”耗资最多。“生命”的条形统计图:

上图表明:天启坦克的生命值最多,其次是光凌坦克,最低为步兵、炮兵、熊。

“攻击”的条形统计图:

此图研究出攻击力最强的是天启坦克和飞艇,它们的攻击力是2,最弱的是步兵。

“打击范围”的条形统计图:

打击范围是指:此种兵力在空对空、地对地、空对地、地对空的战争中所占的种类。打击范围越大,对战争越有利。有图可知:炮兵和直升机的打击范围最大,在战争中最占优势。

综上所述,经过几个图表的分析研究结果,将各项统计值进行排名汇总,得出最终结论,如下表:

结论:此表中炮兵综合值最高,在战争中最有价值,其次是光凌坦克,最弱的是战斗机。本文只是分析研究了前苏联的9种兵力,当然,还有其他国家的兵力没有进行分析统计。在今后的对比研究中还可继续拓展分析,以便得到更全面的数据。

参考文献:

[1]百度百科.红色警戒[EB/OL].

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

初中数学建模案例40056

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

初中数学建模案例

初中数学建模案例 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

初中数学建模案例

初中数学建模案例Last revision on 21 December 2020

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

数学核心素养之数学建模教学案例

数学核心素养之数学建模教学案例 1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。 其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。 特级教师张思明提出“我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、自主解决问题的机会。近年来,数学建模应用题的数量和分值在高考中逐步增加,可见在命题中已经在转变传统的数学学科体系观念,旨在引导学生关心社会、关心未来,实现高考命题改革与中学教育、教学观念改革的结合。 2.中学数学模型的教学 2.1中学数学中常见的数学模型分类: (1)与函数的最值相关问题。工程中的用料最省、利润最大,列出所求量的函数解析式,利用代数工具解函数最大值。 (2)线性回归直线、非线性回归直线;如中学生身高和体重的关系,红铃虫产卵数与温度的关系。 (3)与周期有关的三角函数模型建立。电路信号,音频震动,潮水涨落周期。 (4)线性规划问题。关于求解含有多个约束条件的,目标函数的最有解问题。 (5)抽样统计调查类,独立性假设检验。 2.2数学建模的课堂陷入几个误区。 (1)数学建模课堂,教师陷入了对数学建模理论的讲解,而数学建模的基本步骤是什么,介绍集中常见的数学建模工具,里面有大量的数学公式推到,学生对数学建模的思想领会很少。

初中数学建模的若干简要案例

初中数学建模的若干简要案例 初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践) 课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。 问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题: ( 1 )我观察的这辆自行车是什么牌子的? ( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是 _______cm ,精确到1cm 。 ( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。 问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。 问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?: 选做问题4 :你认为对问题3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么? 求解工作的表格省略 初中数学数学建模案例 2 :----- 线路设计问题(自学、探索、创新实践) 课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。 实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。 2: 复习必要的知识, 如一笔画方法, 最短邮路的画法和算法等 . 3: 画出小区的平面示意图, ( 最好复印一下, 以避免后面画坏时重画), 在图上完成邮政投递路线的设计, ( 使邮递员走的路线最短).

小学数学建模案例

小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会有很多,如:他们在中间碰到了;两个人面对面在走;两个人背对背在走……此时就可以引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即返回,第二次在距A地60千米处相遇。求A、B两地间的路程。②抽象概括,建立模型,导入学习课题。此题可以将整个过程用线段图来形象地描述,这就是这个相遇问题建立的数学模型。③研究模型,形成数学知识。 总结出一般规律之后可以举个例子让学生做,看看学生是否已经掌握,是否会应用这个规律来解决实际问题。如:两艘渡轮在同一时刻垂直驶离H河的甲、乙两岸相向而行,它们在距离甲岸720米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客

上船下船,然后返航。这两艘在距离乙岸4OO米处又重新相遇。问:该河的宽度是多少?可以请两位同学到黑板上来做,其他同学做在作业本上,然后讲解,并充分肯定学生的表现,增强学生的学习积极性。案例二:小学高年级数学教学时会遇到“牛吃草问题”,牛吃草问题又称消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。 由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断变化。例:牧场上一片青草,每天牧草都匀速生长,这片草地可供l0头牛吃20天,或者可以供l5头牛吃10天,问:可供25头牛吃几天?分析:这类题目难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新长出来的草两部分。牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面就要设法计算出原有的草量和每天新长出的草这两个不变的量。

初中数学建模案例

初中数学建模案例 2011年3月10日,云南盈江县发生里氏5.8级 地震。萧山金利浦地震救援队接到上级命令后立即 赶赴震区进行救援。救援队利用生命探测仪在某建筑 物废墟下方探测到点 C 处有生命迹象,已知废墟一侧 地面上两探测点A 、B 相距3米,探测线与地面的夹角 分别是30°和60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:2 1.41,3 1.73) 解:如图,过点C 作CD ⊥AB 交AB 于点D. ∵探测线与地面的夹角为30°和60° ∴∠CAD=30°,∠CBD=60° 在Rt △BDC 中,BD CD 60tan ∴3 60tan CD CD BD 在Rt △ADC 中,AD CD 30tan ∴3 330tan CD CD AD ∵3 BD AD AB ∴33 33CD CD ∴) (6.2273 .13233米CD 答:生命所在点C 的深度大约为 2.6米。

分析:这是综合解直角三角形的问题,画出示意图,先计算出 360tan CD CD BD ,再计算出3330tan CD CD AD ,进而由关系式3BD AD AB 计算出CD 的长,最 后确定生命所在点 C 的深度。 设计说明与思路: 实际问题是复杂多变的,数学建模较多的是探索性和创造性,但是初中数学应用性问题常见的建模方法还是有规律可以归纳总结的, 本题涉及解直角三角形问题,常需要建立相应的几何模型,转化为几何或三角函数问题求解。 初中数学题源于实际问题,探讨这类问题的解法具有重要的现实意义,数学建模就是 将具有实际意义的应用问题,通过数学抽象转化为数学模型,以求得问题的解决,其基本思路是:实际问题----数学模型----数学问题的解决----抽象----解答----解释(检验)。 在应用性问题和数学建模的教学活动设计中,应把学生当作教学活动的主体,让学生 自己通过观察,只考虑去提问题,解决问题,是数学建模教学的重要环节。不要只把问题解决的过程展示给学生看,教学活动的设计应有利于发挥学生的主体性、创造性、协作精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具和建模求解更好地结合起来,使学生在应用性问题与数学建模教学过程中学数学、 用数学、得到“微科研”的体验,从而达到学好数学,提高素质,增长才干的目的,达到“面向所有的学生,让所有的学生获得更 多可以广泛应用、与现实世界及其他学科密切相关的数学! 让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考, 并积极地参与数学活动,进行自主探索!”的目的。

数学建模案例――最佳捕鱼方案.(优选)

最佳捕鱼方案 摘要: 本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121 111i i i i i i i i W w p s q m =====?-?∑∑∑。 由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。 关键词:“0-1”整数规划,单目标线性规划,离散型分布。 一. 问题重述 一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。 承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳? 二. 模型假设 1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕 捞过程中草鱼总量保持在25,000公斤不变。 2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每 天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。 3.在水库自然放水的21内将草鱼捕完。 4.在草鱼日供应量未达饱和的之前,市场供应量等于销售量。 5.每天草鱼的捕捞成本随着每天水位的降低呈等差数列递增分布。 6.随着水库水位的下降,草鱼的种群密度逐渐变大,存在着对空间、食物、氧 气的竞争,种群死亡率逐渐升高。题设中给定草鱼死亡及捕捞损失率随着水位的降低而升高,在这里我们假设草鱼损失率是一个统计学概念,即已经综合了因自然死亡和捕捞等其他原因共同造成的损失。 7.草鱼损失率与水库水位成反比关系,每天捕捞量的损失率与当天池塘总鱼量 的损失率是一致的,以每次捕捞时池塘总鱼数为当次基数。 8.捕捞上的草鱼中的死鱼将另行处理,不会放回水库也不会与活鱼一起出售。 9.日供应量在1000---1500公斤时,我们假定草鱼价格为20元每公斤这一常数。

一个中学数学建模的简要案例--------教育储蓄问题

一个中学数学建模的简要案例--------教育储蓄问题 我们以高中数学教学为背景, 介绍一个数学建模的教学的设计,它的问题设计是利用“教育储蓄”的素材,学习和应用数列和数列求和的知识。它的教学目的是:使学生初步了解用数学建模方法解决生活中实际问题的过程,体会所学数学知识的应用价值和数学理论由于它的一般性和抽象性所带来的应用的广泛性。培养学生关注并能发现生活中常见现象中的数学因素、数学问题,主动应用自己所学的数学知识去概括、抽象、解决问题的意识。 由于教育储蓄问题的特殊性,可以用这个问题来学习或复习、应用等差、等比数列的通项、求和等知识。教与学的过程一种参考设计是: 请学生个人或组成小组,利用课余时间调查有关“教育储蓄”的资料,事先可以让学生讨论需要了解的信息是什么,主要途径:网上主题词检索、各大银行直接询问。 以往的应用题常常是“没有源头”的,所需解决问题的信息都是已知的,不多不少,没有信息寻求、选择、加工的过程。 而解决实际问题的第一步应该是从寻求有关信息开始。 让学生交流、互相启发补充扩展他们取得的信息。重点确认以下信息: 教育储蓄的适用对象:(在校中小学学生),储蓄类型和特点:(是“零存整取”的形式,但享受“整存整取”的利率,不扣利息税。),最低起存金额:(人民币50元),每户存款本金的最高限额(人民币2万元),支取方式:(到3年期或到六年期,凭学校开出的在学证明一次支取本息),银行现行的各类、各档存款利率:(略),零存整取、整存整取的本息计算方法。 学生常常出现的问题是信息寻求时“丢三拉四”,用互相交流的方式常常可以改善这一点;同时,合作学习,合作解决问题的意识,也是我们特别要培养的东西。 3.请学生提出拟解决的问题,根据问题,在教师带领下,寻找适用的数学工具,建立相应的数学模型,如有: (1)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)或6年时一次可支取本息共多少钱?(等差数列求和,公式应用模型)。 (2)依教育储蓄的方式,每月存a元,连续存3年,到期(3年)或6年时一次可支取本息共多少钱?(公式模型的一般化)。 (3)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)时一次可支取本息比同档次的“零存整取”多收益多少钱?(比较方知优劣)。 (4)欲在3年后一次支取教育储蓄本息合计1万元,每月应存入多少钱?

数学建模案例分析--最优化方法建模6动态规划模型举例(新)

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

相关文档