文档视界 最新最全的文档下载
当前位置:文档视界 › 大学物理实验报告答案大全(实验数据)

大学物理实验报告答案大全(实验数据)

大学物理实验报告答案大全(实验数据)
大学物理实验报告答案大全(实验数据)

U 2 I 2

大学物理实验报告答案大全(实验数据及思考题答案全包括)

伏安法测电阻

实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。

(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理

根据欧姆定律, R = U

,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只,

一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。

实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理

(1) 由 U = U max ? 1.5%,得到 U 1 = 0.15V , U 2 = 0.075V

; (2) 由 I

= I max ? 1.5%,得到 I 1 = 0.075mA , I 2 = 0.75mA ;

(3) 再由 u R

= R ( 3V ) + ( 3I ) ,求得 u R 1

= 9 ? 101 &, u R 2 = 1&; (4) 结果表示 R 1

= (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)&

光栅衍射

实验目的

(1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。

(3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

又∵a+b=1/500mm=2*10m ,

λ=589.0nm=589.0*10m

∴k=2*10/589.0*10=3.4

若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:

(a + b) sin ψk

=dsin ψk =±kλ

如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、 ψ =0 处,各色光仍重叠在一起,形成中央明条纹。在中央明条纹两侧对称地分布着 k=1,2,3,…级光谱,各级光谱 线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光。如果已知光栅常数,用分光计测出 k 级光谱中某一明条纹的衍射角ψ,即可算出该明条纹所对应的单色光的波长λ。 实验步骤

(1) 调整分光计的工作状态,使其满足测量条件。

(2) 利用光栅衍射测量汞灯在可见光范围内几条谱线的波长。

①由于衍射光谱在中央明条纹两侧对称地分布,为了提高测量的准确度,测量第k 级光谱时,应测出+k 级和-k 级光谱线的位置,两位置的差值之半即为实验时k 取1 。

②为了减少分光计刻度盘的偏心误差,测量每条光谱线时,刻度盘上的两个游标都要读数,然后取其平均值(角 游标的读数方法与游标卡尺的读数方法基本一致)。

③为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。

④测量时,可将望远镜置最右端,从-l 级到+1 级依次测量,以免漏测数据。

数据处理 (1) 与公认值比较

λ0为公认值。

(2) 计算出紫色谱线波长的不确定度

差 ? ? x ? 0

其中

u(λ) =

(a + b ) | cos ∏ | u (∏ )

= 1 600 ? cos 15.092? ? 60 ? 180

=0.467nm ; U =2×u(λ) =0.9 nm

最后结果为: λ=(433.9±0.9) nm

1.

当用钠光(波长λ=589.0nm)垂直入射到 1mm 内有 500 条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?并 请说明理由。 答:由(a+b)sinφ=kλ

∵φ最大为 90o

-6 -9

-6

得 k={(a+b)/λ}sinφ

所以 sinφ=1

-9

最多只能看到三级光谱。 2.

当狭缝太宽、太窄时将会出现什么现象?为什么? 答:狭缝太宽,则分辨本领将下降,如两条黄色光谱线分不开。 狭缝太窄,透光太少,光线太弱,视场太暗不利于测量。

3. 为什么采用左右两个游标读数?左右游标在安装位置上有何要求? 答:采用左右游标读数是为了消除偏心差,安装时左右应差 180o。

(2)电光源发光后,其照度随距光源的距离的平方成(r)反比即光电管得到的光子数与r 成反比,因此打出的电子

数也与r 成反比,形成的饱和光电流也与r 成反比,即I ∝r 。

光电效应

实验目的

(1) 观察光电效现象,测定光电管的伏安特性曲线和光照度与光电流关系曲线;测定截止电压,并通过现象了解其物 理意义。

(2) 练习电路的连接方法及仪器的使用; 学习用图像总结物理律。 实验方法原理

(1) 光子打到阴极上,若电子获得的能量大于逸出功时则会逸出,在电场力的作用下向阳极运动而形成正向 电流。在没达到饱和前,光电流与电压成线性关系,接近饱和时呈非线性关系,饱和后电流不再增加。

2 2

2 2 -2

(3) 若给光电管接反向电压 u 反,在 eU 反< mv max / 2=eU S 时(v max 为具有最大速度的电子的速度) 仍会有电子移动

到阳极而形成光电流,当继续增大电压 U 反,由于电场力做负功使电子减速,当使其到达阳极前速度刚好为零时 U 反=U S , 此时所观察到的光电流为零,由此可测得此光电管在当前光源下的截止电压 U S 。 实验步骤

(1) 按讲义中的电路原理图连接好实物电路图; (2) 测光电管的伏安特性曲线:

①先使正向电压加至30伏以上,同时使光电流达最大(不超量程), ②将电压从0开始按要求依次加大做好记录; (3) 测照度与光电流的关系:

①先使光电管距光源20cm 处,适当选择光源亮度使光电流达最大(不超量程); ②逐渐远离光源按要求做好记录; 实验步骤

(4) 测光电管的截止电压: ①将双向开关换向;

②使光电管距光源20cm 处,将电压调至“0”,适当选择光源亮度使光电流达最大(不超量程),记录此时的光 电流I 0,然后加反向电压使光电流刚好为“0”,记下电压值U S ;

③使光电管远离光源(光源亮度不变)重复上述步骤作好记录。 数据处理

(1) 伏安特性曲线

伏安特性曲线

照度与光电

流曲线

(3) 零电压下的光电流及截止电压与照度的关系

述:hν=(1/2)mv max+A。

替的同心圆环——牛顿环。透镜的曲率半径为:R=Dm Dn=

在鼓应? 答:临界截止

电压与照度无关,实验结果与理论相符。

光具有干涉、衍射的特性,说明光具有拨动性。从光电效应现象上分析,光又具有粒子性,由爱因斯坦方程来描2

2. 可否由U s′ ν曲线求出阴极材料的逸出功?答:可以。由爱因斯坦方程hυ=e|u s|+hυo可求出斜率Δus/Δυ=h/e

和普朗克常数,还可以求出截距(h/e)υo,再由截距求出光电管阴极材料的红限υo,从而求出逸出功A=hυo。光的干涉—牛顿环

实验目的

(1) 观察等厚干涉现象及其特点。

(2) 学会用干涉法测量透镜的曲率半径与微小厚度。

实验方法原理

利用透明薄膜(空气层)上下表面对人射光的依次反射,人射光的振幅将分成振幅不同且有一定光程差的两部分,这是一种获得相干光的重要途径。由于两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,同一条干涉条纹所对应的薄膜厚度相同,这就是等厚干涉。将一块曲率半径R 较大的平凸透镜的凸面置于光学平板玻璃上,在透镜的凸面和平板玻璃的上表面间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。当平行的单色光垂直入射时,入射光将在此薄膜上下两表面依次反射,产生具有一定光程差的两束相干光。因此形成以接触点为中心的一系列明暗交

2 2 4(m n)?

y

4(m n)?

实验步骤

(1) 转动读数显微镜的测微鼓轮,熟悉其读数方法;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行(判断的方法是:转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)。

(2) 为了避免测微鼓轮的网程(空转)误差,整个测量过程中,轮只能向一个方向旋转。尽量使叉丝的竖线对准暗

干涉条纹中央时才读数。

(3) 应尽量使叉丝的竖线对准暗干涉条纹中央时才读数。

(4) 测量时,隔一个暗环记录一次数据。

(5) 由于计算R 时只需要知道环数差m-n,因此以哪一个环作为第一环可以任选,但对任一暗环其直径必须是对应的两切点坐标之差。

数据处理

= 0.12 +8.9?10 8=0.6%

c

R

20.635

2

u c ( R ) = R ? u c ( R ) R =5.25mm ;U = 2× u c ( R ) = 11 mm

R = ( R ± U ) =(875±11)mm

1. 透射光牛顿环是如何形成的?如何观察?画出光路示意图。答:光由牛顿环装置下方射入,在 空气层上下两表面对入射光的依次反射,形成干涉条纹,由上向下观察。

2. 在牛顿环实验中,假如平玻璃板上有微小凸起,则凸起处空气薄膜厚度减小,导致等厚干涉条纹 发生畸变。试问这时的牛顿环(暗)将局部内凹还是局部外凸?为什么? 答:将局部外凸,因为同一条纹对应的薄膜厚度相同。

3. 用白光照射时能否看到牛顿环和劈尖干涉条纹?此时的条纹有何特征?

答:用白光照射能看到干涉条纹,特征是:彩色的条纹,但条纹数有限。

双棱镜干涉

实验目的

(1) 观察双棱镜干涉现象,测量钠光的波长。

(2) 学习和巩固光路的同轴调整。 实验方法原理

双棱镜干涉实验与双缝实验、双面镜实验等一样,都为光的波动学说的建立起过决定性作用,同时也是测量光波 波长的一种简单的实验方法。双棱镜干涉是光的分波阵面干涉现象,由 S 发出的单色光经双棱镜折射后分成两列,相当 于从两个虚光源 S 1和 S 2射出的两束相干光。这两束光在重叠区域内产生干涉,在该区域内放置的测微目镜中可以观察

到干涉条纹。根据光的干涉理论能够得出相邻两明(暗)条纹间的距离为 x =d D ?,即可有 ? = d D

x 其中 d 为两

个虚光源的距离,用共轭法来测,即 d = d 1d 2 ;D 为虚光源到接收屏之间的距离,在该实验中我们测的是狭缝到测 微 目 镜 的 距 离 ; x 很 小 , 由 测 微 目 镜 测 量 。

实验步骤

(1) 仪器调节 ①粗调

将缝的位置放好,调至坚直,根据缝的位置来调节其他元件的左右和高低位置,使各元件中心大致等高。 ②细调

根据透镜成像规律用共轭法进行调节。使得狭缝到测微目镜的距离大于透镜的四倍焦距,这样通过移动透镜能够在 测微目镜处找到两次成像。首先将双棱镜拿掉,此时狭缝为物,将放大像缩小像中心调至等高,然后使测微目镜能够接 收到两次成像,最后放入双棱镜,调双棱镜的左右位置,使得两虚光源成像亮度相同,则细调完成。各元件中心基本达 到同轴。

(2) 观察调节干涉条纹

调出清晰的干涉条纹。视场不可太亮,缝不可太宽,同时双棱镜棱脊与狭缝应严格平行。取下透镜,为方便调节可 先将测微目镜移至近处,待调出清晰的干涉条纹后再将测微目镜移到满足大于透镜四倍焦距的位置。

(3) 随着 D 的增加观察干涉条纹的变化规律。 (4) 测量

①测量条纹间距 x

②用共轭法测量两虚光源 S 1和 S 2的距离 d

u( x) u(d) u(D)

= + + =4.128?10mm;

u(d) 1 u(d1)

+1 u(d2)

=1.374?10 5mm。

③测量狭缝到测微目镜叉丝的距离 D

数据处理

测 x数据记录mm

次数

1

2

3

4

5

6 条纹位置

起始位置 a

8.095

3.554

8.030

3.550

8.184

3.593

终了位置a′

3.575

8.035

3.573

8.100

3.680

8.080

被测条纹数

10

10

10

10

10

10

|a-a′|

4.520

4.481

4.457

4.550

4.504

4.487

x

0.4520

0.4481

0.4457

0.4550

0.4504

0.4487

x = 0.44998mm

测 d 数据记录mm

次数

1

2

3

4

5

6 放大像间距d1

a1

7.560

5.771

7.538

5.755

7.520

5.735

a1′

5.774

7.561

5.766

7.549

5.753

7.515

|a1-a1′|

1.786

1.790

1.772

1.794

1.767

1.780

缩小像间距d2

a2

7.357

6.933

7.381

6.910

7.355

6.951

a2′

6.965

7.360

6.968

7.330

6.940

7.360

|a2-a2′|

0.410

0.428

0.413

0.420

0.415

0.409

d 1 = 1.7915mm;d 2 = 0.4158mm

测 D 数据记录mm

狭缝位置 b

1

x的不确定度-29(1) 测微目镜差丝位置b′

660

D=|b-b′|

659

u A ( x) = 0.001329mm;u B ( x) =

= 0.005770mm;

2 2

(2) 求d1与d2的不确定度

u A (d1 ) = 0.004288mm;u A (d 2 ) = 0.002915mm;

u B (d1 ) = 0.007mm;u B (d 2 ) = 0.005mm;u B (d ) =

= 0.005770mm;

2 2

2 2

(3) 求D 的不确定度

u(D) = 1mm。

(4) 波长的合成相对不确定度

u c (? )

? x d D 2 2 2

4

2

其中 =

d

(5) 测量结果4 d1

2

4 d 2

2

答:d=(d 1*d 2)或利用波长λ已知的激光作光源,则d=(D/Δx)λ

f,缩小像1/(u+e)+1/(v-e)=1/f,由于u+v=L ,所以f=(L-e)/4L 。

1

由 ? = d D

x 求得 ? = 5.87731 ? 10-4 mm 。

2 u c (? ) = 2.427 ? 10 7 mm ;包含因子 k = 2 时, ?的扩展不确定度U = 2u c (? )结果表达式为 ? = ? + U = (5.877 ± 0.005) ? 10 4 mm 。

1.

测量前仪器调节应达到什么要求?怎样才能调节出清晰的干涉条纹?

2.

答:共轴,狭逢和棱背平行与测微目镜共轴,并适当调节狭逢的

宽度。

2. 本实验如何测得两虚光源的距离 d?还有其他办法吗? 1/2

3. 狭缝与测微目镜的距离及与双棱镜的距离改变时,条纹的间距和 数量有何变化?

答:狭缝和测微目镜的距离越近,条纹的间距越窄,数量不变,狭缝 和双棱镜的距离越近,条纹间距越宽,数量越小。

4 . 在同一图内画出相距为 d 虚光源的 S 1和 S 2所成的像 d 1和

d 2的光路图。

测薄透镜的焦距

实验目的

(1) (2) (3) (4) 掌握测薄透镜焦距的几种方法; 掌握简单光路的分析和调整的方法; 了解透镜成像原理,掌握透镜成像规律; 进一步学习不确定度的计算方法。 实验方法原理

(1) 自准法

当光(物)点在凸透镜的焦平面上时,光点发出的光线经过透镜变成平行光束,再经过在透镜另一侧的平面镜反射后

又汇聚在原焦平面上且与发光点(物点)对称。 (2) 物距像距法 测出物距(u)与相距(v)代入公式:1/u +1/v=1/f 可求 f (3) 共轭法

保持物与屏的距离(L)不变,移动透镜,移动的距离为(e),其中一次成放大像另一次成缩小像,放大像1/u + 1/v=1/

2 2

(4)

凹透镜焦距的测量 利用光路可逆原理,将凸透镜所成的实像作为凹透镜的物,即可测出凹透镜成实像的物距和像距,代入公式1/u + 1/v=1/f 可求出焦距 f 。 实验步骤

本实验为简单设计性实验,具体实验步骤由学生自行确定,必要时课建议学生按照实验原理及方法中的顺序作试

(e ( ≤L e 2)L ∞?

≤L e ?

u(f)=0.368×10×19.683cm=0.072cm

验。要求学生自行设计的能直接反映出测量结果的数据记录表格。 数据处理

(1) 自准法,物距像距法,则凹透镜焦距三个试验将所测数据及计算结果填写在自行设计的表格中。 (2) 对共轭法的测量数据及处理实例 测量数据记录表

6

u A(e)=

1

i

e )

6(6 1)

2

= 0.047 cm

u B (e ) =

0.30 cm u (e)=

u A 2 (e ) + u B 2 (e ) =

0.31 cm

u (L) = 0.30 cm

所以

u ( f ) f ? L 2 + e 2 /

= ' 2

2

? 2e /

∞ 2

u 2 (e ) = 0.368 ? 10- 2

-2

U =2u( f )=0.145cm=0.1cm

②最后表达式:f = (19.7±0.1) cm

1. 你认为三种测量凸透镜焦距的方法,哪种最好?为什么?

答:共轭法最好,因为这个方法把焦距的测量归结为对可以精确测定的量 L 和 e 的测量,避免了在测量 u 和 v 时,由于 估计透镜光心位置不准确所带来的误差。

2. 由

f =

L 2 e 2

4 L

推导出共轭法测 f 的标准相对合成不确定度传递公式。根据实际结果,试说明 u B (L)、u B (e)、u A (e)

哪个量对最后结果影响最大?为什么?由此你可否得到一些对实验具有指导性意义的结论? 答:u A (L)对最后结果影响最

大,因为 L 为单次测量量。对 O 1、O 2的测量时,要采用左右逼近法读数。

3. 测量凹透镜焦距 f 和实验室给出的 f 0,比较后计算出的 E 值(相对误差)一般比较大,试分析 E 大的原因? 答:E 较大的原因可能是因为放入凹透镜后所成像的清晰度很难确定,即像的聚焦情况不好,从而导致很难测出清 晰成像的位置。

4. 在测量凸透镜的焦距时,可以利用测得的多组 u 、v 值,然后以 u+v 作纵轴,以 u·v 作横轴,画出实验曲线。根据

式(3-15-1)事先推断一下实验曲线将属于什么类型,怎样根据这条曲线求出透镜的焦距 f?

答:曲线是直线,可根据直线的斜率求出 f ,f=1/k ,因为 1/f=1/u+1/v ,即

f =

u υ

u + υ,故可有 f=1/k 。 5. 测量凸透镜的焦距时,可以测得多组 u 、v 值,以 v/u(即像的放大率)作纵轴,以 v 作横轴,画出实验曲线。试问这 条实验曲线具有什么形状?怎样由这条曲线求出透镜的焦距 f ? 答:曲线是直线,在横轴上的截距就是 f 。

H H e -N

e 首先要熟悉本实验所用仪器和光学元件。打开激光器电源,点亮He-Ne 激光器,调整其工作电流,使其输出最强的 H

激光全息照相

实验目的

(1) (2) (3) (4) 了解全息照相的原理及特点。

掌握漫反射物体的全息照相方法,制作漫反射的三维全息图。 掌握反射全息的照相方法,学会制作物体的白光再现反射全息图。 进一步熟悉光路的调整方法,学习暗室技术。 实验方法原理

(1) 概述

全息照相是利用光涉的干涉和衍射原理,将物光波以干涉条纹的形式记录下来,然后在一定条件下,利用衍射再现 原物体的立体图像。可见,全息照相必须分两步进行:①物体全息图的记录过程;②立体物像的再现过程。

(2) 全息照相与普通照相的主要区别

①全息照相能够把物光波的全部信息记录下来,而普通照相只能记录物光波的强度。

②全息照片上每一部分都包含了被摄物体上每一点的光波信息,所以它具有可分割性,即全息照片的每一部分都能 再现出物体的完整的图像。

③在同一张全息底片上,可以采用不同的角度多次拍摄不同的物体,再现时,在不同的衍射方向上能够互不干扰地 观察到每个物体的立体图像。

(3) 全息照相技术的发展

全息照相技术发展到现在已有四代。本实验将用激光作光源完成物体的第二代全息图—漫反射全息图和第三代全息 图—反射全息图的拍摄和再现。

M 2

O

L 2

L.K S

O

H

L

L.K

实验步骤

θ

θ

L 1

M 1

M 激光,然后按下述内容和步骤开始进行实验。 (1) 漫反射全息图的拍摄

①按漫反射全息光路图摆放好各元件的位置,整个光路大概占实验台面的三分之二左右。②各光束都应与台面平 行,通过调平面镜的俯仰角来调节。且光点都要打到各元件的中心部位。③两束光的光程差约为 20cm,光程都是由分束 镜开始算起,沿着光束前进的方向量至全息底片为止。④物光与参考光夹角为 30°~50°。⑤参考光与物光的光强比为

3:1~8:1(通过调整扩束镜的位置来实现)。⑥曝光时间为 6S 。⑦上底片及曝光拍照(底片上好后要静止 1~2min ),药 膜面要正对物体放。

(2) 白光再现反射全息图

①按反射全息光路摆放好各元件的位置,先不放入扩束镜 L ,各光事与台面平行。②调整硬币,使之与干板(屏) 平行,使激光束照在硬币的中心。③放入扩束镜,使光均匀照射且光强适中,确定曝光时间为 3s 。④曝光,硬币与 干板间距为 1cm 。

(3) 底片处理

①显影。②显影后冲洗 1min ,停显 30s 左右,定影 3~5min ,定影后可打开白炽灯,用水冲洗干板 5~10min ,再 用吹风机吹干(吹时不可太近且不可正对着吹,以免药膜收缩)。

(4) 再现观察

①漫反射全息图的再现。

②白光再现反射全息图的观察。 数据处理本实验无数据处理内容

1. 全息照像有哪些重要特点?

答:全息照相是利用光波的干涉和衍射原理,将物体“发出”的特定波前(同时包括振幅和位相)以干涉条纹的形式记 录下来,然后在一定条件下,利用衍射再现原物体的立体像。全息照相必须分两步进行:(1)物体全息图的记录过程; (2)立体物像的再现过程。

2. 全息底片和普通照像底片有什么区别?

答:(1)全息照相能够把物光波的全部信息(即振幅和相位)全部记录下来,而普通照相只能记录物光波的强度(既 振幅),因此,全息照片能再现出与原物体完全相同的立体图象。(2)由于全息照片上的每部分都包含了被摄物体上 每一点的光波信息,所以,它具有可分割性,即全息照片的每一部分都可以再现出原物体的立体图象。(3)在同一张 全息底片上,可以采用不同的角度多次拍摄不同的物体,再现时,在不同的衍射方向上能够互不干扰地观察到每个物体 的立体图象。

3. 为什么安装底片后要静止一段时间,才能进行曝光?

答:为了减少震动,提高拍摄质量,减震是全息照相的一项重要措施,要保证照相质量,光路中各元器件的相对位移量 要限制在<λ/2 范围内。

5. 普通照像在冲洗底片时是在红光下进行的,全息照像冲洗底片时为什么必须在绿光甚至全黑下进行?

答:因为全息干板涂有对红光敏感的感光材料,所以冲洗底片时必须在绿光甚至全黑下进行。

用惠斯通电桥测电阻

实验目的

(1) 掌握用惠斯通电桥测电阻的原理 (2) 正确应用复射式光点检流计 (3) 学会用QJ19型箱式电桥测电阻 实验方法原理

应用自组电桥和箱式电桥两种方法来测未知电阻 R x 。

其原理如图示,其中 R 1、R 2、R 3是三个已知电阻与未知电阻 R x 构成四个臂,调节

R 3,当

U cd =0 时电桥平衡。即 I 1R 1=I 2R 2, I 1R x =I 2R 3

4 R x = R 1 R 2

R 3。

实验步骤

(1) 自组电桥: ①按图 3-9-1 连接电路,根据被测阻值范围恰当选择比例臂(在电阻箱上), 判断平衡指示仪用指针式检流计。 ②调整测定臂 R 3使其平衡,记下各臂阻值.逐一测得 R X1、R X2、R X 串,R X 并。 (2) 箱式电桥:

① (按图 3-9-3 或箱式电桥仪器铭牌右上角的线路图接线,平衡指示仪用复射式光点检流计。 ②参照书 P 95页表格选取 R 1、R 2两臂和电源电压,参照自组桥测试结果选取 R 3的初始值。 ③对每个被测电阻通过不同的灵敏度分别进行粗细调平衡,并记录相应阻值。 数据处理 自组点桥数据

箱式电桥数据

(1) 自组电桥(a =0.1 级)

由△R=

3 Ra/100

而U 0.95=0.95△R

得:U 1=0.95×

3 ×1475.20.1÷100=2Ω

U 2

U 3 U 4=0.95× 3 ×1042.8×0.1/100=2Ω

测量结果:

R 1=(1475±2) Ω R 2=(3592±6) Ω

R 3=(5069±8) Ω R 4=(1043±2) Ω

(2) 箱式电桥(a = 0.05 级) 由NR=±a/100%(kR3+R /10),

又 U 0.95=0.95△R

得:U=0.95×0.05/100×(10R3+1000/10)

∴U 1=0.95×0.05/100×(10×146.60+100)=0.7Ω U 2=0.95×0.05/100×(10×358.51+100)=2Ω U 3=0.95×0.05/100×(10×506.42+100)=2Ω U 4=0.95×0.05/100×(10×104.21+100)=0.5Ω 测量结果: R 1=(1466.0±0.7)Ω R 2=(3585±2)Ω

思考题

R 3=(5064±2)Ω R 4=(1042.1±0.5)Ω

(1) 电桥一般有两个比例臂 R 1、R 2,一个测定臂 R 3和另一个待测电阻 R X 组成。电桥的平衡条件是

R X =(R 1/R 2)

R 3

(2) 不能平衡,因为桥臂两端 C 和 D 两点电位不会相等。

(3) ①不会,因为被测阻值仅仅依赖于 R 1、R 2、R 3三个阻值。 ②会,因为要由检流计判断是否平衡。

③不会,因为检流计分度值不影响电桥误差。

④会,因为电压太低会降低电桥的灵敏度,从而增大误差。 ⑤会,因为除了 R 1、R 2、R 3三个电阻外,还有导线电阻。

(4) 由被测阻值大约为1.2kΩ,应考虑电源电压及倍率。电源电压选择6V ,倍率R1/R2=1, 因为当电桥的四个臂接近时电桥有较高的灵敏度。 1.电桥由哪几部分组成? 电桥的平衡条件是什么? 答:由电源、开关、检流计桥臂电阻组成。

平衡条件是 R x =(R 1/R 2)R 3

2.若待测电阻 Rx 的一个头没接(或断头),电桥是否能调平衡?为什么?答:不能,R x 没接(或断头),电路将变为右图

所示,A 、C 及 C 、D 间总有电流,所以电桥不能调平。

3.下列因素是否会使电桥误差增大?为什么?(1) 电源电压不太稳定;由于电桥调 平以后与电源电压无关,则电源电压不太稳定基本不会使电桥误差增大。(2) 检 流计没有调好零点;若检流计没有调好零点,当其指针指零时检流计中电流不为 零,即电桥没有达到平衡正态,此时的测量读数中将会含有较大误差甚至会出现 错误读数;

(3) 检流计分度值大;检流计分度值大时会使电桥误差增大,因电桥的灵敏度 与分度值成反比;

(4) 电源电压太低;电源电压太低会使电桥误差增大,因电桥的灵敏度与电源电

压成正比;

(5) 导线电阻不能完全忽略;对高电阻不会,当被测电阻的阻值很高时导线电阻可以忽略。4. 为了能更好地测准电阻, 在自组电桥时,假如要测一个约 1.2kΩ的电阻,应该考虑哪些因素?这些因素如何选取? 答:应考虑电源电压,比例 臂的电阻值,检流计的分度值。电源电压取 6V ,R 1,R 2取 1000Ω,检流计取 1.5 级μA 表。

液体粘滞系数的测定

实验目的

(1) 观察液体的内摩擦现象,了解小球在液体中下落的运动规律。 (2) 用多管落球法测定液体粘滞系数。 (3) 掌握读数显微镜及停表的使用方法。 (4) 学习用外延扩展法获得理想条件的思想方法。 (5) 用作图法及最小二乘法处理数据。 实验方法原理

液体流动时,各层之间有相对运动,任意两层间产生等值反向的作用力, 称其为内摩擦力或粘滞力 f , f 的方向沿液 层接触面,其大小与接触面积 S 及速度梯度成正比,即

f = ? S dv dx

当密度为ρ的小球缓慢下落时,根据斯托克斯定律可知,小球受到的摩擦阻力为 f = 3 ?v d

小球匀速下落时, 小球所受的重力ρvg,浮力ρo vg,及摩擦阻力 f 平衡,有

V ( ? ? o )g = 3 ?v o d

1 6

d 3 (? ? o )g = 3 ?v o d

=

( ? ? o )gd 2

18v o

大量的实验数据分析表明 t 与 d/D 成线性关系。以 t 为纵轴,d/D 为横轴的实验图线为一直线,直线在 t 轴上的截 距为 t o ,此时为无限广延的液体小球下所需要的时间,故

实验图线为直线,因此有

t = t o + ax

可用最小二乘法确定 a 和 t 0的值。 实验步骤

v o = L

t

(1) (2) (3) (4) 用读数显微镜测钢珠的直径。 用卡尺量量筒的内径。

向量筒内投入钢球,并测出钢球通过上下两划痕之间距离所需要的时间。 记录室温。 数据处理

o

t = 26.01 x = 0.0527

xt = 1.37 x 2 = 0.000328

a = 0.0527 ? 26. 01 1.37 0.05272 0.000328

= 2.29

t o = 25.89 ( 2.29) ? 0.0527 = 26.01s

v o =

L t o = 4.61mm

s

=

(? ? ) gd 2

18v o

= 1.37 ?10 3 kg / m ⊕ s

1. 用误差理论分析本实验产生误差(测量不确定度)的主要原因。怎样减小它的测量误差?

答:主要有小球半径测量不确定度 u(d)、小球下落距离测量不确定度 u(L)和小球下落时间测量不确定度 u(t)等。① u(d)有两种原因:①是小球直径不均匀,因此应求平均半径;②是仪器误差。② u(L)有两种原因:①用钢板尺测 L 所带 来的误差;②按计数器时,因小球刚好没有对齐标示线而产生的误差。③ u(t)按计数器时所产生的误差。

分析结果可见,小球直径的误差对测量结果影响最大,所以小球不能太小,其次量筒应适当加长,以增加落球时间,从 而减少时间测量的误差。

2. 量筒的上刻痕线是否可在液面位置?为什么?

答:不能。因为开始小球是加速运动,只有当小球所受的重力、浮力、粘滞力三力平衡后,小球做匀速运动时,才可以 计时,所以不能从液面开始。 3. 为什么小球要沿量筒轴线下落?

答:圆形玻璃量筒的筒壁对小球运动产生严重影响,只能在轴线上运动,才能使筒壁横向的作用力合力为零。 用电位差计测量电动势 实验目的

(1) 掌握电位差计的基本线路及测量原理。

(2) 掌握用线式电位差计、UJ37箱式电位差计测量电动势的电压的基本实验方法。

实验方法原

(1) 用补偿法准确测量电动势(原理)

如图 3-10-2 所示。E X 是待测电源,E 0是电动势可调的电源,E 0和 E X

起。当调节 E 0的大小,使夫流计指针不偏转,即电路中没有电流时,两个 等,互相补偿,即 E X =E 0,电路达到平衡。

(2) 电位差计测量电动势(方法) 3-10-2 补偿原理

通过检流计联在一 电源的电动势大小相

由电源 E 、开关 K 、变电阻 R C 精密电阻 R AB 回路。由 R AB 上有压降,当改变 a 0、b 0两触头的位置,就改变 a 0、b 0间的电R C

E

位差 U a 。b 。,就相当于可调电动势 E 0。测量时把 U a 。b 。引出与未知电动势 E A

a 0

比较。由 E X 、K X 和 R axbx 组成的回路叫测量回路。调节 R C 路中电流值 I 0和 R AB 的乘积 I 0R AB 略大于 E S 和 E X 二者中大的一个。 G

实验步骤

(1) 用线式电位差计测电池电动势

①联结线路

3-10-3 电位差计原理图

按书中图 3-10-4 联电路,先联接工作回路,后联接测量回路。正确 联接测量回路的关键是正确联双刀双掷开关 K 2。

②测量

(a) 调节 R C 使 U AB ≥E X ,I 0值调好后不许再变。

(b) 将 K 2掷向 E S 一侧,将滑动触头从 1 逐一碰试,直到碰相邻插孔时检流计指针向不同方向摆动或指零,将 a 插 入较小读数插孔,移动 b′使检流计指零。最后合上 K 3。

(c) 将 K 2掷向 E X ,重复步骤(b )。 (2) UJ37 箱式电位差计的校准和使用

UJ37 箱式电位计测量范围为 1~103mV ,准确度级别 0.1 级,工作温度范围 5℃~45℃。 ①校准

先把检流计机械调零。把四刀双掷扳键 D 扳向“标准”,调节工作电流直至检流计指零点。 ②测量

校准完后,把待测电压接入未知,将未知电压开关扳向“ON”。先粗调,后细调。 数据处理

) )

)

L S 左=4.6687

L X 左=9.5364 4

5

6 L S 右=4.6691 L S4=4.6689 L S 左=4.6684 L S 右=4.6692 L S5=4.6688 L S 左=4.6686 L S 右=4.6690 L S6=4.6688

L X 右=9.5370 L X4=9.5367 L X 左=9.5360 L X 右=9.5370 L X5=9.5365 L X 左=9.5378 L X 右=9.5385 L X6=9.5382

平均值

L S =4.6687

L X

=9.5364

x

E x = L x S

S =3.2004V

(2) 计算未知电动势 E x 的不确定度 U ①计算直接测量量 Ls 的标准不确定度 u

(L S )

u A (L S ) =

u A (L S ) = (L Si L S n (n 1) (

L Si L S

n (n 1)

2

2

=0.3mm ; u B =0.3mm ; u B

(L S ) = 8mm ;

(L S ) = 8mm ;

2 2

②计算直接测量量的 L x 的标准不确定度 u

(L x )

u A (L x ) =

(

L xi L x

n (n 1) 2

=1.1mm ;

u B (L x ) = 12mm ;

2 2

③ E s 的标准不确定度

3 =0.002V 。

④间接测量量 E x 的标准不确定度

u c (E x )

u crel (E x ) = 0.38%; E x

的合成标准不确定度 u c

(E x )= u crel (E x )E x =0.012V 。

L 1

L 2

R

⑤ E x 的扩展不确定度

G

取包含因子k = 2,Ex 的扩展不确定度U 为

U = ku c (E x ) = 2u c (E x )=0.024V 。

思考题

(3) 结果表达式

E x =

(E x

+ U )V = (3.20 ± 0.02)V ;k = 2

(1) 按图3-10-4联好电路做实验时,有时不管如何调动a 头和b 头,检流计G 的指针总指零,或总不指零,两种情 况的可能原因各有哪些?

(2) 用电位差计可以测定电池的内阻,其电路如图3-10-6所示,假定工作电池E>E X ,测试过程中R c 调好后不再变动, R X 是个准确度很高的电阻箱。R 是一根均匀的电阻丝。L 1、L 2分别为K X 断开和接通时电位差计处于补偿状态时电阻丝的长

度。试证明电池E X

的内阻 r =L 1 L 2

L 2

X

1.按图 3-10-4 联好电路做实验时,有时不管如何调动 a 头和 b 头,检流计 G 的指针总指零,或总不指零,两种情况的 可能原因各有哪些?答:总指零的原因:测量回路断路。总不指零的原因:① E 和 E x 极性不对顶;②工作回路断路; ③ R AB 上的全部电压降小于 E S ,E x 二者中小的一个。

图 3-10-6

思考题 2 附图

2. 用电位差计可以测定电池的内阻,其电路如图3-10-6 所示,假定工作电池E>Ex,测试过程中Rc 调好后不再变动,

Rx 是个准确度很高的电阻箱。R 是一根均匀的电阻丝。L1、L2分别为Kx 断开和接通时电位差计处于补偿状态时电阻丝的长度。试证明电池Ex 的内阻r=[(L1-L2)/L2]R x(R x为已知)。

证明:设A 为R 上单位长度的电位差,V x为K2的端电压,则有:E x=AL1 (1) V x=AL2 (2) 而

代入(2)式得:

Rx / ( r + Rx )Ex =AL2 (3)

(1)

式除(3)式,整理后得:r =[(L1 - L2) / L2] R x

4. 如图3-10-4 所示的电位差计,由A 到B 是11m 长的电阻丝,若设a=0.1V/m,11m 长的电压降是1.1V,用它测仅几

毫伏的温差电动势,误差太大。为了减少误差,采用图3-10-8 所示电路。图3-10-8 是将11m 长的电阻丝AB 上串接了两个较大的电阻R1和R2。若AB 的总电阻已知为r, 且R1、R2、r 上的总电压为1.1V,并设计AB(11m)电阻丝上的a=0.1mV/m,试问R1+R2的电阻值应取多少? 若标准电池E0的电动势为1.0186V,则R1可取的最大值和最小值分别为多少(用线电阻r

表示)?答:①由于电位差计单位长度电阻线的电位差为a,则电阻线AB 上的电位差V AB=11a=1.1mV,而回路电流应为

I =V AB/r。另一方面,由于I(R1+R2+r)=1.1V,

所以(V AB/r)(R1+R2+r)= 1.1V, 即V AB[ (R1+R2)/r +1]= 1.1V。所以R1+R2=[(1.1/V AB)-1]r=(1.1/0.0011-1)r=999r 。②

当R2I = E0时,R1为最小,即R1= R1min,此时有R1I + E0+ Ir = 1.1。由于I =V AB/r =0.0011/r,所以R1min=(1.1-E0-Ir)/I=73r。

当R2I+Ir =E0则R1为最大,即R1= R1max,此时有R1I + E0 = 1.1。所以R1max =(1.1-E0)/I=74r

电热法测热功当量

实验目的

(1) 学习用电热法测热功当量,即Q与W的比值。

(2) 了解热学实验的特殊条件和基本方法。

(3) 学会用修正中温的方法作散热修正。

实验方法原理

将一电阻放入一定量的水中,电阻通电t 秒,则电功为A = VIt,由电流的热效应,这些功将转化为参与热交换的工作物质的温升,则

Q = (c0 m0 + c1m1 + c2 m2 +? + 0.46?V ) ⊕ (T f T0 ) ,

如没有热量散失到环境中去,必有热功当量J 为J = A Q

终温修正是将散失到环境中的热量的温度的形式补偿回来,依据牛顿冷却公式。即dT

dt

= k (T ? ), 而

k = 1

t

2

T f2 ?

T0 ?

,采用逆推的方法可以求到温度亏损 ?T = dT1 + dT2 +? + dT15 (计算机中有现成计算程序引

资利用)

实验步骤

(1) 先将温度传感器探头悬在空气中,直接读室温θ下的电阻值。

(2) 用天平分别称量量热器内筒及内筒盛水后的质量。

(3) 按图接好电路。

(4) 再接通电源,立即开始搅拌,当温度高于室温后,听到报时器响声,即记录起始电阻值R0,然后每隔1分钟记一次电阻值,共记16次,然后断开电源。

(5) 切断电源后,待温度不再升高后,开始记录降温的初始阻值R′0,之后每隔一分钟记录一次电阻值,共记16 次。

1. 该实验所必须的实验条件与采用的实验基本方法各是什么?系统误差的来源可能有哪些?

答:实验条件是系统与外界没有较大的热交换,并且系统(即水)应尽可能处于准静态变化过程。实验方法是电热法。系统误差的最主要来源是系统的热量散失,而终温修正往往不能完全弥补热量散失对测量的影响。其他来源可能有①水的温度不均匀,用局部温度代替整体温度。②水的温度与环境温度差异较大,从而给终温的修正带来误差。③温度,质量及电功率等物理量的测量误差。

2. 试定性说明实验中发生以下情况时,实验结果是偏大还是偏小?

(1) 搅拌时水被溅出;答:实验结果将会偏小。水被溅出,即水的质量减少,在计算热功当量时,还以称横水的质量

计算,即认为水的质量不变,但是由于水的质量减少,对水加热时,以同样的电功加热,系统上升的温度要比水没有上升时的温度要高,即水没溅出在同样电功加热时,应上升T 度,而水溅出后上升的温度应是T+ΔT 度。用J = A / Q ,有Q =(c i m i T),J = A / [(T+△T)/ mc],分母变大J 变小。

(2) 搅拌不均匀;答:J 偏大、偏小由温度计插入的位置与电阻丝之间的距离而定。离电阻丝较远时,系统温度示数

比,匀均系统温度低,设T 为均匀系统温度,温度计示值应为T-ΔT,用J=A/θ计算,分母变小,则J 变大;离电阻丝较近时,温度计示值应为T+ΔT,分母变大,因而J 变小。

(3) 室温测得偏高或偏低。答:设θ0为室温,若测得值偏高Δθ时,测量得到的温度值为θ0+Δθ;偏低Δθ时,测

量温度值为θ0-Δθ,在计算温度亏损时,dT i=k(T i-θ),k 是与是室温无关的量(k 与室温有关),只与降温初温和降温

终温以及降温时间有关,测得室温偏高时,dT i=k[T i- (θ0+Δθ)],每秒内的温度亏损dT i小于实际值,t 秒末的温度亏

损δT i=∑k[T i- (θ0+Δθ)]。此值小于实际值,由于散热造成的温度亏损δT i=T f+ T f″,修正后的温度T f″为:T f″= T f

-δT i,δT i为负值,当测量值低于实际室温时,δT i的绝对值变小:T f″=T f+|δT i|,即T f″变小,ΔT 变小(其中Δ

T=T f″- T f 初,T f 初:升温初始值),

J = A

Q

A

c i m i T

, J 变大,反之J 变小。

电表的改装和校正

实验目的

(1) 掌握将微安表改装成较大量程的电流表和电压表的原理和方法。

(2) 了解欧姆表的测量原理和刻度方法。

(3) 学会绘制校准曲线的方法并对改装表进行校对。

实验方法原理

设微安表头满量程是I g,内阻为R g.

(1) 将表头并联一个分流阻值R s改成量成为I 的电流表,如图(a)示,则有(I-I g)R s=I g R g,即R s=R g/(n-1)

(n = I/I g )

(2) 将微安表头串联一个分压电阻 R H 改成量程为 U d 电压表,如图(b)示,则有 I g (R g +R H )=U 即 R H =U/I g -R g

实验步骤

(1) 改装量程为5 A 电流表

①计算分流阻值R s 的理论值,负载电阻R L 取1000Ω左右。

②按图3-7-8连接电路,各部件摆放原则是方便于观擦与调节。

③自查电路(线路的连接、标准表量程的选取、滑线变阻器初值的设定、各阻值的取值)。 ④校准电表:首先进行满量程校正,然后进行逐点校正(完成数据表格) (2) 改装电压表(程序与上面相同,电路图按3-7-10进行) 数据处理

1. 校正电流表时,如果发现改装的毫安表读数总是高于标准表的读数,分流电阻应调大还是调小?为什么? 答: 应调小。让电路中标准表读数不变,即保持回路电流不变,分流电阻值减小后将会分得更多的电流,从而使流过被改装 表表头的电流减小,改装表的读数也减小。

2. 校正电压表时,如果发现改装的电压表读数总是低于标准表的读数,分压电阻应调大还是调小?为什么? 答:应调小。 让电路中标准表读数不变,即加在改装电表上电压值不变。调小电阻,改装表的总电阻降低,流过改装毫安表的电流增 大,从而读数也增加。

3. 试证明用欧姆表测电阻时,如果表头指针正好指在表盘标度尺的中心,则这时的欧姆表指示值为什么正好等于该欧 姆表的内阻值。答:设表头指针满刻度电流为 I g 、表头指针指表盘中心时电路中电流为 I ,根据题意

I = 1 2 ,当表

内阻为 R g 、待测电阻为 R x 时,

I =

V R g + R x

= 1 2

;根据欧姆表工作原理,当待测电阻 R x =0 时,

I g =

V R g

。即

V R g + R x

=

1 V

2 R g

,因而可得 R x =R g 。所以,欧姆表显示测

R x 读数即为该欧姆表的内阻。

思考题

(1) 应调小。因为表头过载,所以需要再分掉一部分多余的电流。 (2) 应调小。因为串联电路中电压的分配和阻值成正比。 (3) 证明因为 I g =U/(R g +r) 而I =U/(R g +r+R x )

所以当2I =I g 时即2U/(R g +r+R x )=U/(R g +r) 所以 R x =R g +r 证毕

(4) 由误差=量程×级别%,设改装表的级别为a′, 则 5×a′%= ? I

max

+ 5×0.5%

4a′

= 0.9 ,故该装电流表的级别为 1.0 级

=y

频率相同位相不进行使萨如图形

示波器的原理和使用

实验目的

(1) (2) (3) (4) 了解示波器的主要结构和显示波形的基本原理; 掌握模拟示波器和函数信号发生器的使用方法; 观察正弦、矩形、三角波等信号发生器的使用方法;

通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理

(1) 模拟示波器的基本构造

示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理

如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示 波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。

(3) 扫描同步

当扫描电压的周期 T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏 上得到清晰而稳定的波形,这叫做信号与扫描电压同步。

(4) 多踪显示

根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率

X 方向切线对图形的切点数N x

N y

f f x

4

2

3 4

5

4

3 2

7 4

2

实验步骤

(1) 熟悉示波器各控制开关的作用,同时的李用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的 CH1 或 CH2,观察信号波形。

(3) 用示波器测量信号的周期 T 、频率 f 、幅值 U 、峰-峰值 Up-p 、有效值 Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。

(5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ①多波形显示法观测相位差。 ②李萨如图形判别法观测相位差。 数据处理

(1) 测量正弦信号峰峰值 U P-P ,周期 T

E u p p

=

U p p U 显 U 显

= 0

E T =

T T 0 T 0

= 0

(2) 测量直流信号的幅度 H = 5.8

V 0/DIV=0.5V/DIV

U =2.9V

U 显=3.0V

(3) 测量相移

答:在模拟示波器垂直偏转板上加的是被观测信号电压,而在水平偏转板上加的是锯齿波(时间线性变化)信号电压,

所以示波器的示波管的横轴相当于直角坐标的时间轴,经过一个锯齿波信号周期,电子束便在示波管的荧光屏上描绘出

被观测信号的波形的一段轨迹。当锯齿波信号的周期大于或等于周期性观测信号的周期且与其相位锁定时(同步),电

子束便在示波管的荧光屏上描绘出被观测信号的波形的同一段轨迹,由于人眼的视觉暂留和荧光屏的余辉,便可以观测

到信号的波形。

2. 在本实验中,观察李萨如图形时,为什么得不到长时间稳定的图形?

答:因为CH1 与CH2 输入的是两个完全不相关的信号,它们的位相差难以保持恒定,所以得不到长时间的稳定波形。

3. 假定在示波器的Y 轴输入一个正弦信号,所用的水平扫描频率为120Hz,在荧光屏上出现三个稳定完整的正弦波形,那么输入信号的频率是什么?这是否是测量信号频率的好方法?为何?

答:输入信号的频率是360Hz。这种方法不是测量信号频率的好方法,因为用此方法测量的频率精确度低。

4. 示波器的扫描频率远大于或远小于输入正弦信号的频率时,屏上的图形是什么情况?

答:扫描频率远小于输入正弦信号频率时,出现图形是密集正弦波;扫描频率远大于输入正弦信号频率时,一个周期

的信号波形将会被分解成数段,显示的图形将会变成网状交叉线。

超声波声速的测量

实验目的

(1) 进一步熟悉示波器的基本结构和原理。

(2) 了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

(3) 学习几种测定声波传播速度的原理和方法。

(4) 通过时差法对声波传播速度的测量,了解声纳技术的原理及其重要的实用意义。

实验方法原理

声波是一种弹性媒质中传播的纵波,波长、强度、传播速度等是声波的重要参数,超声波是频率大于20 kH 的机械波,本实验利用声速与振动频率 f 和波长λ之间的关系v = λ f 来测量超声波在空气中的传播速度。

SV5 型声速测量组合实验仪(含专用信号源),可以做时差法测定超声波传播速度的实验;配以示波器可完成利用

共振干涉法,双踪比较法和相应比较法测量声速的任务。本声速测量仪是利用压电体的逆压电效应而产生超声波,利用

正压电效应接收超声波,测量声速的四种实验方法如下:(由于声波频率可通过声源的振动频率得出,所以测量声波波

长是本实验主要任务。)

(1)李萨如图形相位判别法

频率相同的李萨如图形随着Δφ的不同,其图形的形状也不同,当形状为倾斜方向相同的直线两次出现时,Δφ变

化2 ,对应接受器变化一个波长。

(2)共振法

由发射器发出的平面波经接受器发射和反射器二次反射后,在接受器与发射器之间形成两列传播方向相同的叠加

波,观察示波器上的图形,两次加强或减弱的位置差即为波形λ。

(3)双踪相位比较法

直接比较发信号和接收信号,同时沿传播方向移动接受器位置,寻找两个波形相同的状态可测出波长。

(4)时差法

测出脉冲声速传播距离X 和所经历时间t, 便可求得声速。

实验步骤

(1) 李萨如图形相位比较法

转动声速测量组合实验仪的距离调节鼓轮,观察波形当出现两次倾斜方向相同的倾斜直线时,记录这两次换能器的

位置,两次位置之差为波长。

(2) 共振法

移动声速测量仪手轮会发现信号振幅发生变化,信号变化相邻两次极大值或极小值所对应的接受器移动的距离即是

λ/2 ,移动手轮,观察波形变化,在不同位置测6 次,每次测3 个波长的间隔。

(3) 比较法

使双通道两路信号双踪显示幅度一样,移动手法会发现其中一路在移动,当移动信号两次与固定信号重合时所对应

的接收器移动的距离是λ,移动手轮,观察波形变化,多记录几次两路信号重合时的位置,利用逐差法求波长。

(4) 时差法

转动手轮使两换能器的距离加大,每隔10mm 左右记录一次数据x i和t i ,根据公式获得一系列v i后,可以利用逐差法求得声速v 的平均值?。

数据处理

(1) 李萨如图形相位比较法

温度=20.8℃信号发生器显示频率=37.003 kHz

??j =9.34?10 3m ;v =f ?=3.4561?102m /s 6 ??i =9.36?10 3m ;v v =f ?=3.4649?102m /s ? =

1 5

j =0

(2) 共振法

温度=20.8℃ 信号发生器显示频率=37.012 kHz

其中 ? =

1 6

6 i = 1

(3) 比较法

温度=20.8℃

温度=20.8℃ 信号发生器显示频率=37.015 kHz

信号发生器显示频率=37.032 kHz

? =

1 5

6 j =

2

mm/s

(5) 环境温度为 T(℃)时的声速

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

大学物理实验报告书(共6篇)

篇一:大学物理实验报告1 图片已关闭显示,点此查看 学生实验报告 学院:软件与通信工程学院课程名称:大学物理实验专业班级:通信工程111班姓名:陈益迪学号:0113489 学生实验报告 图片已关闭显示,点此查看 一、实验综述 1、实验目的及要求 1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。 2.学会直接测量、间接测量的不确定度的计算与数据处理。 3.学会物理天平的使用。 4.掌握测定固体密度的方法。 2 、实验仪器、设备或软件 1 50分度游标卡尺准确度=0.02mm 最大误差限△仪=±0.02mm 2 螺旋测微器准确度=0.01mm 最大误差△仪=±0.005mm 修正值=0.018mm 3 物理天平 tw-0.5 t天平感度0.02g 最大称量 500g △仪=±0.02g 估读到 0.01g 二、实验过程(实验步骤、记录、数据、分析) 1、实验内容与步骤 1、用游标卡尺测量圆环体的内外径直径和高各6次; 2、用螺旋测微器测钢线的直径7次; 3、用液体静力称衡法测石蜡的密度; 2、实验数据记录表 (1)测圆环体体积 图片已关闭显示,点此查看 (2)测钢丝直径 仪器名称:螺旋测微器(千分尺)准确度=0.01mm估读到0.001mm 图片已关闭显示,点此查看 图片已关闭显示,点此查看 测石蜡的密度 仪器名称:物理天平tw—0.5天平感量: 0.02 g 最大称量500 g 3、数据处理、分析 (1)、计算圆环体的体积 1直接量外径d的a类不确定度sd ,sd=○ sd=0.0161mm=0.02mm 2直接量外径d的b类不确定度u○ d. ud,= ud=0.0155mm=0.02mm 3直接量外径d的合成不确定度σσ○ σd=0.0223mm=0.2mm 4直接量外径d科学测量结果○ d=(21.19±0.02)mm d = 5直接量内径d的a类不确定度s○

大学物理实验报告优秀模板

大学物理实验报告优秀模板 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页) 把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学

论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。 实验报告内容与格式 (一) 实验名称 要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。 (二) 所属课程名称 (三) 学生姓名、学号、及合作者 (四) 实验日期和地点(年、月、日) (五) 实验目的 目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 (六) 实验内容 这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程. (七) 实验环境和器材 实验用的软硬件环境(配置和器材)。 (八) 实验步骤 只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理实验报告-基本测量

学实验报告 课程名称:_____ 大学物理实验(一)_________ 实验名称:实验1 基本测量______________ 学院:______________________________________ 专业:______ 课程编号: ________________________ 组号:16 指导教师: ________________ 报告人:__________ 学号_______________ 实验地点__________ 科技楼906 __________ 实验时间:______ 年_______ 月 ____ 日星期________ 实验报告提交时间:

四、实验容和步骤 五、数据记录 1用游标卡尺R测量圆筒的外径D径d、和高H 表1

2、用螺旋测微计测量粗铜丝、细铜丝的直径表2单位:________ 千分尺零点:____________ 千分尺基本误差:_____________ 六、数据处理: 1、计算圆筒的外径D ,并计算D(5分) 2、计算圆筒的径d ,并计算d(5 分)

2 3、计算圆筒的高 H ,并计算 H (5分) 4、计算粗铜丝直径 D 1及 D 1 (6分) 5、计算细铜丝直径 D 2及 D 2 (6分) 6、间接量B D 1D 2 D 1 D 2 ,计算B 的平均值、相对误差和绝对误差。 (5 分) 提示: D 2 D i D 2

七、实验结果与讨论 实验结果1: 圆筒的外径: D P = D D ( ) 实验结果2: 圆筒的径:d P = d d ( ) 实验结果3: 圆筒的高:H P = H H ( ) 实验结果4: 粗铜丝的直径: D i P = D i D i ( ) 实验结果5: 粗铜丝的直径: D2 P = D2 D2 ( ) 实验结果讨论:6: B P = B B ( )

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

大学物理实验报告分光计

竭诚为您提供优质文档/双击可除大学物理实验报告分光计 篇一:大学物理实验报告答案大全(实验数据) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1)利用伏安法测电阻。(2)验证欧姆定律。 (3)学会间接测量量不确定度的计算;进一步掌握有效数字的概念。实验方法原理 根据欧姆定律,R??,如测得u和I则可计算出R。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。实验装置待测电阻两只,0~5mA电流表1只,0-5V电压表1只,0~50mA 电流表1只,0~10V电压表一只,滑线变阻器1只, DF1730sb3A稳压源1台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示

学生参照第2章中的第2.4一节的有关内容。分压电路是必须要使用的,并作具体提示。(1)根据相应的电路图对电阻进行测量,记录u值和I值。对每一个电阻测量3次。(2)计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。(3)如果同一电阻多次测量结果相差很大,应分析原因并重新测量。数据处理 ;(1)由???u?umax??1.5%,得 到???u1??0.15V,???u2??0.075V (2)由???I?Imax??1.5%,得 到???I1??0.075mA,???I2??0.75mA; ??u2??I2 )??(,求得uR1?9??101??,uR2??1?;(3)再由uR?VI (4)结果表示R1?(2.92??0.09)??103??,R2??(44??1)?? 光栅衍射 实验目的 (1)了解分光计的原理和构造。(2)学会分光计的调节和使用方法。 (3)观测汞灯在可见光范围内几条光谱线的波长实验方法原理 若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定:=dsinψk=±kλ(a+b)sinψk

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

大学物理实验报告优秀正式版

For the things that have been done in a certain period, the general inspection of the system is also a specific general analysis to find out the shortcomings and deficiencies 大学物理实验报告优秀正 式版

大学物理实验报告优秀正式版 下载提示:此报告资料适用于某一时期已经做过的事情,进行一次全面系统的总检查、总评价,同时也是一次具体的总分析、总研究,找出成绩、缺点和不足,并找出可提升点和教训记录成文,为以后遇到同类事项提供借鉴的经验。文档可以直接使用,也可根据实际需要修订后使用。 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页)

把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达

大学物理实验报告模板(完整版)

报告编号:YT-FS-7848-78 大学物理实验报告模板 (完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

大学物理实验报告模板(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电 和火花放电等,通过此演示实验观察火花放电的发生 过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相 等。尖端电极放电,而球型电极未放电。这是由于电 荷在导体上的分布与导体的曲率半径有关。导体上曲 率半径越小的地方电荷积聚越多(尖端电极处),两极 之间的电场越强,空气层被击穿。反之越少(球型电极 处),两极之间的电场越弱,空气层未被击穿。当尖端 电极与平板电极之间的距离大于球型电极与平板电极 之间的距离时,其间的电场较弱,不能击穿空气层。

而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生 五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 这里填写您企业或者单位的信息 Fill In The Information Of Your Enterprise Or Unit Here

大学物理实验讲义(密度测定)

图3 静力称衡法测密度 不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m = ρ (1) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1 m m V ρ-= 水 密度瓶 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天平

被测物密度: 1 m m V m m ρρ= = -水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为: 12 m m V ρ-= 水 被测物密度为: 12 m m V m m ρρ= = -水 (3) 3、用密度瓶测定碎小固体(小石子)的密度 假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。 然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。 这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+- 图5 密度瓶法测小石子的密度 123 4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

大学物理上实验报告(共2篇)

篇一:大学物理实验报告 大学物理演示实验报告 院系名称:勘察与测绘学院 专业班级: 姓名: 学号: 辉光盘 【实验目的】: 观察平板晶体中的高压辉光放电现象。 【实验仪器】:大型闪电盘演示仪 【实验原理闪电盘是在两层玻璃盘中密封了 涂有荧光材料的玻璃珠,玻璃珠充有稀薄的 惰性气体(如氩气等)。控制器中有一块振荡 电路板,通过电源变换器,将12v低压直流 电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场, 由于稀薄气体受到高频电场的电离作用二产 生紫外辐射,玻璃珠上的荧光材料受到紫外 辐射激发出可见光,其颜色由玻璃珠上涂敷 的荧光材料决定。由于电极上电压很高,故 所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 【实验步骤】: 1. 将闪电盘后控制器上的电位器调节到最小; 2. 插上220v电源,打开开关; 3. 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4. 用手触摸玻璃表面,观察闪光随手指移动变化; 5. 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 【注意事项】: 1. 闪电盘为玻璃质地,注意轻拿轻放; 2. 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3. 闪电盘不可悬空吊挂。 辉光球 【实验目的】 观察辉光放电现象,了解电场、电离、击穿及发光等概念。 【实验步骤】 1.将辉光球底座上的电位器调节到最小; 2.插上220v电源,并打开开关; 3. 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光; 4.用手触摸玻璃球壳,观察到辉光随手指移动变化; 5.缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。

《大学物理(一)》实验报告

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理(一) 实验名称:速度、加速度的测定和牛顿运动定律的验证 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:学号: 年级专业层次: 学习中心: 提交时间:2020 年04月05 日

一、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5.掌握验证物理规律的基本实验方法。 二、实验原理 1.速度的测量 一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 (1) 实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。 2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为

大学物理实验讲义汇总

大学物理实验讲义 ()

目录 实验1 复摆 (4) 预习报告 (8) 实验2 弦振动的研究 (9) 预习报告 (13) 实验3 速度和加速度的测量 (14) 预习报告 (21) 实验4 动量守恒定律的验证 (22) 预习报告 (27) 实验5 空气中声速的测量 (28) 预习报告...................................................... 错误!未定义书签。实验6 RLC电路的稳态特性 (24) 预习报告...................................................... 错误!未定义书签。实验报告.. (34) 实验7 油滴法测定基元电荷 (46) 预习报告 (53) 实验8 用双臂电桥测量低值电阻 (54) 预习报告...................................................... 错误!未定义书签。实验9 牛顿环. (60) 预习报告 (67) 实验10 光电效应及普朗克常数的测定 (68) 预习报告 (73) 实验11 单缝衍射 (60) 预习报告...................................................... 错误!未定义书签。实验12 多缝的夫琅和费衍射. (79) 预习报告...................................................... 错误!未定义书签。

实验报告——速度和加速度的测量 (83) 实验报告——牛顿环 (88)

大学物理演示实验报告.doc

大学物理演示实验报告 大学物理演示实验报告一: 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。 注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用 大学物理演示实验报告二: 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

相关文档