文档视界 最新最全的文档下载
当前位置:文档视界 › 最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例
最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

一.摘要 (3)

二.网络最短路径问题的基础知识 (5)

2.1有向图 (7)

2.2连通性................... 错误!未定义书签。

2.3割集....................... 错误!未定义书签。

2.4最短路问题 (8)

三.最短路径的算法研究.. 错误!未定义书签。

3.1最短路问题的提出 (9)

3.2 Bellman最短路方程错误!未定义书签。

3.3 Bellman-Ford算法的基本思想错误!未定义书签

3.4 Bellman-Ford算法的步骤错误!未定义书签。

3.5实例....................... 错误!未定义书签。

3.6 Bellman-FORD算法的建模应用举例错误!未定义

3.7 Dijkstra算法的基本思想 (9)

3.8 Dijkstra算法的理论依据 (9)

3.9 Dijkstra算法的计算步骤 (9)

3.10 Dijstre算法的建模应用举例 (10)

3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法

思想有很大的区别错误!未定义书签。

Bellman-Ford算法在求解过程中,每

次循环都要修改所有顶点的权值,也就

是说源点到各顶点最短路径长度一直

要到Bellman-Ford算法结束才确定下

来。...................... 错误!未定义书签。

2.Diklstra算法和Bellman-Ford算法

的限制.................. 错误!未定义书签。

3.Bellman-Ford算法的另外一种理解错误!未定

4.Bellman-Ford算法的改进错误!未定义书签。

摘要

近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径

问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等

诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的

一个典型例子。

由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究,

使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最

短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

的建模问题中。

关键词:计算机图论交通道路网最短路径

A. In this paper,

Computer developing rapidly in recent years, graph theory research also have been greatly developed, and the shortest path problem is a typical problem in graph theory, it has been applied in geographical information science, computer science, and many other fields. And in the transportation network of the shortest route between two cities in is a typical example of the shortest path problem.

Due to the shortest path problem is widely used in various aspects, and the researchers on the in-depth study of the shortest path, make in the shortest path problem also generates a lot of classical algorithm. In this topic I'll suggest some algorithm and the algorithm of the shortest path problem between the comparison, finally the algorithm is applied to the modeling of the actual problem again.

Key words: computer graph traffic road network The shortest path

前言

最短路径问题是图论以及运筹学中的一个非常重要的问题,在生产实践,运输及工程建筑等方面有着十分广泛的应用。本文对图论中的最短路径问题进行分析,对其运算解法进行分析寻求比较快捷的模型解法;主要解决的是从某个顶点到其余各个顶点的最短路径问题。本文从Floyd算法以及Dijkstra算法两种算法入手,概述了这两种方法的原理,提出了求解最短路径问题的算法思想,并且对两种算法进行分析比较,提出改进的方法。

一网络最短路径问题的基础知识

算法设计与分析考试题及答案

算法设计与分析考试题 及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性 有穷性 可行性 0个或多个输入 一个或多个输出 2.算法的复杂性有时间复杂性 空间复杂性之分,衡量一个算法好坏的标准是 时间复杂度高低 3.某一问题可用动态规划算法求解的显着特征是 该问题具有最优子结构性质 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y 的一个最长公共子序列{BABCD}或{CABCD}或{CADCD } 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解 6.动态规划算法的基本思想是将待求解问题分解成若干_子问题 ,先求解_子问题 ,然后从这些子问题 的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为回溯法 背包问题的回溯算法所需的计算时间为o(n*2n ) ,用动态规划算法所需的计算时间为o(min{nc,2n }) 9.动态规划算法的两个基本要素是最优子结构 _和重叠子问题 10.二分搜索算法是利用动态规划法实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 ①问题具有最优子结构性质;②构造最优值的递归关系表达式; ③最优值的算法描述;④构造最优解; 2. 流水作业调度问题的johnson 算法的思想。 ①令N 1={i|a i =b i };②将N 1中作业按a i 的非减序排序得到N 1’,将N 2中作业按b i 的非增序排序得到N 2’;③N 1’中作业接N 2’中作业就构成了满足Johnson 法则的最优调度。 3. 若n=4,在机器M1和M2上加工作业i 所需的时间分别为a i 和b i ,且 (a 1,a 2,a 3,a 4)=(4,5,12,10),(b 1,b 2,b 3,b 4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 步骤为:N1={1,3},N2={2,4}; N 1’={1,3}, N 2’={4,2}; 最优值为:38 4. 使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)}。 解空间树为: 该问题的最优值为:16 最优解为:(1,1,0) 5. 设S={X 1,X 2,···,X n }是严格递增的有序集,利用二叉树的结点来存储S 中的元素,在表示S 的二叉搜索树中搜索一个元素X ,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=X i ,其概率为b i 。(2)在二叉搜索树的叶结点中确定X ∈(X i ,X i+1),其概率为a i 。在表示S 的二叉搜索树T 中,设存储元素X i 的结点深度为C i ;叶结点(X i ,X i+1)的结点深度为d i ,则二叉搜索树T 的平均路长p 为多少假设二叉搜索树T[i][j]={X i ,X i+1,···,X j }最优值为m[i][j],W[i][j]= a i-1+b i +···+b j +a j ,则m[i][j](1<=i<=j<=n)递归关系表达式为什么 .二叉树T 的平均路长P=∑=+n i 1 Ci)(1*bi +∑=n j 0 dj *aj

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

最短路径问题教学案例

专题学习:最短路径问题 一、教学目标: 知识与技能: 理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。 过程与方法: 能利用轴对称解决实际问题中路径最短的问题。 情感态度与价值观: 通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。 二、教学重、难点 教学重点:将实际问题转化成数学问题,运用轴对称解决生活中路径最短的问题,确定出最短路径的方法。 教学难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。 三、学法指导 自主探索,合作交流。 四、教学过程 (一)、创设情景,引入新知。 同学们:我们已经学习过“两点之间的所有连线中,线段最短。”和“直线外一点与直线上各点连接的所有线段中,垂线段最短。”等问题,我们称他们为最短路径问题。 (二)、自主学习,探究新知。 1、如图所示,从A地到c地有四条路可供选择,你会选走哪条路最近?你的理由是什么? 2、两点在一条直线异侧: F E D C B A

活动1: 已知:如图,A,B在直线l的两侧,在l上求一点P,使得这个点到点AB的距离和最短,即PA+PB最小。 思考:为什么这样做就能得到最短距离呢?你如何验证PA+PB最短呢? 3、两点在一条直线同侧 活动2:如图,牧马人从A地出发到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? (1)你能将这个问题抽象为数学问题吗? (2)这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直线. 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; (3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小

(完整版)算法设计与分析期末考试卷及答案a

一.填空题(每空 2 分,共30分) 1.算法的时间复杂性指算法中的执行次数。 2.在忽略常数因子的情况下,O、和三个符号中,提供了算法运行时间的一个上界。 3.设D n表示大小为n的输入集合,t(I)表示输入为I时算法的运算时间, p(I)表示输入 I 出现的概率,则算法的平均情况下时间复杂性A(n)= 。 4.分治算法的时间复杂性常常满足如下形式的递归方程: f (n) d , n n0 f(n) af(n/c) g(n) , n n0 其中,g(n)表示。 5. 分治算法的基本步骤包括。6.回溯算法的基本思想是。 7.动态规划和分治法在分解子问题方面的不同点是。 8.贪心算法中每次做出的贪心选择都是最优选择。 9.PQ 式的分支限界法中,对于活结点表中的结点,其下界函数值越小,优先级 10.选择排序、插入排序和归并排序算法中,算法是分治算法。 11.随机算法的一个基本特征是对于同一组输入,不同的运行可能得到的结果。12. 对于下面的确定性快速排序算法,只要在步骤3 前加入随机 化步骤,就可得到一个随机化快速排序算法,该随机化步骤的功能是。 算法QUICKSORT 输入:n 个元素的数组A[1..n] 。 输出:按非降序排列的数组 A 中的元素

1. quicksort(1, n) end QUICKSORT _ _ 过程 quicksort(A, low, high) _ _ // 对 A[low..high] 中的元素按非降序排序。 _ 号 学 2. if low

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

最短路径问题教案

课题:§13·4 课题学习最短路径问题(第2课时) 内容分析 1.课标要求 “课题学习”,着重在于考查学生综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。本节课是“最短路径问题(第2课时)”,让学生经历用“平移变换”和“两点之间,线段最短”来寻求分析问题和解决问题的方法的过程,在观察、操作、想象、论证、交流的过程中,体会图形变化在解决问题中的作用,感悟转化的思想。 2.教材分析 知识层面:本节课的教学内容是研究一道有趣的“造桥选址”问题,充分体现了利用平移变换实现问题转化,从而有效求解。学生是在已经学习了三角形及平移、轴对称知识的基础上进行的有关最短路径问题的研究。最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。 本节课以“造桥选址”为背景,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用平移将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题。对它的学习和研究,有助于对最短路径问题的分析、解决。为今后在求立体图形、圆、平面直角坐标系中求最值问题提供了方法。 能力层面:学生在七年级和上节课的学习过程中,已经掌握了用与最值有关的公理、定理解决问题的推理能力。“造桥选址”是实际生活中的极值问题,在这个问题中,平移起了一个桥梁作用,学习过程的本质是推理与化归的过程。有助于提高学生的推理能力、应用意识;分析问题、解决问题的能力。 思想层面:本节课在将实际问题抽象成几何图形的过程中渗透数学建模的思想。在如何将三条线段的和转化为两条线段的和的探索过程中体现了转化的思 想。在最值问题的证明中,“任取”一点'C(除了点C外),由于点'C的任意性, 所以结论对于直线上的每一点(除了点C外)都成立,这在数学中常采用的方法,体现了化归的思想。 3.学情分析 最短路径问题从本质上说是最值问题,作为初中学生,在此之前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有具体背景的最值问题,更会感到陌生,无从下手。 与上节课相比,本节课的问题更为复杂,出现了三段线段的和最小问题,解答“当点N在直线2l的什么位置时,NB AM+ +最小?”需要将其转化为“当 MN 点N在直线2l的什么位置时,NB AM+最小?”。能否这样转化,如何实现这样的转化?有的学生会存在理解上和操作上的困难,还有的学生可能会受思维惯性的影响(上节课学习了“利用轴对称解决最短路径问题”)。在教学中要巧妙引导,其本质还是在于对“两点之间,线段最短”的深刻理解。

算法分析与设计复习题及答案

算法分析与设计复习题及答案一、单选题 1.D 2.B 3.C 4.D 5.D 6.D 7.C 8.D 9.B 10.C 11.D 12.B 13.D 14.C 15.C 16.D 17.D 18.D 19.D 20.C 1.与算法英文单词algorithm具有相同来源的单词是()。 A logarithm B algiros C arithmos D algebra 2.根据执行算法的计算机指令体系结构,算法可以分为()。 A精确算法与近似算法B串行算法语并行算法 C稳定算法与不稳定算法D32位算法与64位算法 3.具有10个节点的完全二叉树的高度是()。 A6B5C3D 2 4.下列函数关系随着输入量增大增加最快的是()。 Alog2n B n2 C 2n D n! 5.下列程序段的S执行的次数为( )。 for i ←0 to n-1 do for j ←0 to i-1 do s //某种基本操作 A.n2 B n2/2 C n*(n+1) D n(n+1)/2 6.Fibonacci数列的第十项为( )。 A 3 B 13 C 21 D 34 7.4个盘子的汉诺塔,至少要执行移动操作的次数为( )。 A 11次 B 13次 C 15次 D 17次 8.下列序列不是堆的是()。 A 99,85,98,77,80,60,82,40,22,10,66 B 99,98,85,82,80,77,66,60,40,22,10 C 10,22,40,60,66,77,80,82,85,98,99 D 99,85,40,77,80,60,66,98,82,10,22 9.Strassen矩阵乘法的算法复杂度为()。 AΘ(n3)BΘ(n2.807) CΘ(n2) DΘ(n) 10.集合A的幂集是()。 A.A中所有元素的集合 B. A的子集合 C. A 的所有子集合的集合 D. 空集 11.与算法英文单词algorithm具有相同来源的单词是()。 A logarithm B algiros C arithmos D algebra 12.从排序过程是否完全在内存中显示,排序问题可以分为()。 A稳定排序与不稳定排序B内排序与外排序 C直接排序与间接排序D主排序与辅助排序 13.下列()不是衡量算法的标准。 A时间效率B空间效率 C问题难度D适应能力 14.对于根树,出度为零的节点为()。 A0节点B根节点C叶节点D分支节点 15.对完全二叉树自顶向下,从左向右给节点编号,节点编号为10的父节点编号为()。 A0B2C4D6 16.下列程序段的算法时间的复杂度为()。 for i ←0 to n do for j ←0 to m do

《最短路径问题探究》教案

最短路径问题探究 一、教材分析与学情分析 1.教材分析 (1)教学内容 《最短路径问题探究》是九年级下为让学生能灵活的运用对称、平移解决近几年中考中常见的最短路径问题而设置的一节专题课. 初中三年,孩子们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但受年龄特征的影响,他们知识迁移能力不强,自主探究能力较差,不善于思考。所以本节课设计为通过对最短路径问题探究,在于引导学生学会思考,帮助学生掌握良好的学习方法为一节学法指导课 (2)地位和作用 近几年各地中考均有最短路径问题的考试,为让学生能熟练解决该类问题,本节课在已有平移、对称知识的基础上,引导学生探究如何运用平移、对称解决最短路径问题。它既是平移、对称知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用. 2.学情分析 (1)已有基础知识与生活经验分析 学生已掌握对称、平移、勾股定理等知识,但综合运用能力还较差。加之来自社会、家长和老师的压力较大,学生学的辛苦.对于学习方法不好的同学来说,感觉疲惫,无法体验学习的乐趣;从平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,学生学得累。所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到提高学习能力的目的. (2)学生起点能力分析 学生已学过一些关于空间与图形的简单推理知识,具备了一定的合情推理能力,能应用勾股定理、线段公理等知识解决简单的问题,但演绎推理的意识和能力还有待加强,思维缺乏灵活性.综合运用能力较差,学习死,不能做到学习与研究相结合. 二、教学目标: 依据新课程标准的理念和学生实际情况,制定如下教学目标: ●知识与技能目标 1、结合具体实例,能灵活的运用勾股定理、线段公理解决实际问题 2、学会思考,逐步提高思维技能和思维的有效性,初步学会探究问题 ●方法与过程目标 1、经历问题的探究,学会从中提取有用信息,善于思考,善于提问,善于归纳总结,培养良好思维习惯. 2、经历运用已有的生活经验,已有的数学知识,培养思维能力、推理能力和有条理的表达能力 ●情感与态度目标

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案 一、简要回答下列问题: 1.算法重要特性是什么? 1.确定性、可行性、输入、输出、有穷性 2. 2.算法分析的目的是什么? 2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。 3. 3.算法的时间复杂性与问题的什么因素相关? 3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。 4.算法的渐进时间复杂性的含义? 4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。 5.最坏情况下的时间复杂性和平均时间复杂性有什么不同? 5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的 算法所耗时间。最坏情况下的时间复杂性取的输入实例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 6.简述二分检索(折半查找)算法的基本过程。 6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较, 如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

课题学习 最短路径问题 优秀教学设计

课题学习最短路径问题 【教学目标】 教学知识点 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想。 能力训练要求 在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。 情感与价值观要求 通过有趣的问题提高学习数学的兴趣。在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学。 【教学重难点】 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。 难点:如何利用轴对称将最短路径问题转化为线段和最小问题。 突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决。 【教学过程】 一、创设情景引入课题 师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题。现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”。 (板书)课题 学生思考教师展示问题,并观察图片,获得感性认识。 二、自主探究合作交流建构新知 追问1:观察思考,抽象为数学问题 这是一个实际问题,你打算首先做什么? 活动1:思考画图、得出数学问题 将A,B 两地抽象为两个点,将河l 抽象为一条直线。

追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? 师生活动:学生尝试回答,并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点。设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图)。 强调:将最短路径问题抽象为“线段和最小问题” 活动2:尝试解决数学问题 问题1 :如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗? 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小? 师生活动:学生独立思考,画图分析,并尝试回答,互相补充 如果学生有困难,教师可作如下提示 作法:

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

《算法分析与设计》期末复习题

一、选择题 1.一个.java文件中可以有()个public类。 A.一个B.两个C.多个D.零个 2.一个算法应该是() A.程序B.问题求解步骤的描述 C.要满足五个基本特性D.A和C 3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出 4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是() A.3,15,130,20,98,67B.3,15,20,130,98,67 C.3,15,20,67,130,98 D.3,15,20,67,98,130 5.下列关于算法的描述,正确的是() A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出 C.算法只能用流程图表示D.一个完整的算法至少有一个输入 6.Java Application源程序的主类是指包含有()方法的类。 A、main方法 B、toString方法 C、init方法 D、actionPerfromed方法 7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是() A.分治法B.减治法C.蛮力法D.变治法 8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。 A、import java.awt.* ; B、import java.applet.Applet ; C、import java.io.* ; D、import java.awt.Graphics ; 9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

课题学习最短路径问题

13.4 课题学习最短路径问题 一、教学设计理念 最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变化进行研究。 本节课以数学史中的两个经典问题——“将军饮马”“造桥选址”为载体展开对“最短路径问题”的课题研究,让学生经历将实际问题转化为数学问题,利用轴对称、平移等变化再把数学问题转化为线段和最小问题,并运用“两点之间线段最短”(或“三角形两边之和大于第三边”)解决问题,体现了数学化的过程和转化思想。 最短路径问题从本质上说是最值问题,作为初中生,此前很少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.解答“当点A、B在直线l的同侧时,如何在直线l上找到点C,使AC与CB 的和最小”,需要将其转化为“在直线l异侧两点的线段和最小值问题”,为什么需要这样转化、怎样通过轴对称、平移变化实现转化,一些学生在理解和操作上存在困难.在证明作法的合理性时,需要在直线上任取点(与所求作的点不重合),证明所连线段和大于所求作的线段和,这种思路、方法,一些学生想不到.所以在课堂上特别对这几个问题进行了针对性的设计。 二、教学对象分析 八年级的学生已经学习研究过一些“两点之间,线段最短”、“垂线段最短”等问题。一直以来,学生对多媒体环境下的几何探究都十分感兴趣,有较强的好奇心,在学习上有较强的求知欲望,学习投入程度大。他们观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。学生在数学问题的提出和解决上有一定的方法,但不够深入和全面,需要教师的引导和帮助,学生本身具有一定的探究精神和合作意识,能在亲身的经历体验中获取一定的数学新知识,但在数学的说理上还不规范,几何演绎推理能力有待加强。(1)最短路径问题从本质上说是最值问题,作为初中生,此前很少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。(2)解答“当点A、B在直线l的同侧时,如何在直线l上找到点C,使AC与CB的和最小”,需要将其转化为“在直线l异侧两点的线段和最小值问题”,为什么需要这样转化、怎样通过轴对称、平移变化实现转化,一些学生在理解和操作上存在困难。(3)在证明作法的合理性时,需要在直线上任取点(与所求作的点不重合)。证明所连线段和大于所求作的线段和,这种思路、方法,一些学生会想不到。 三、教学目标 1、了解解决最短路径问题的基本策略和基本原理。 2、能将实际问题中的“地点”“河”“桥”等抽象为数学中的“点”“线”,使实际问题数学化。 3、能运用轴对称、平移变化解决简单的最短路径问题,体会几何变化在解决最值问题中的重要作用。 4、在探索最短路径的过程中,感悟、运用转化思想。进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中的应用。 四,教学重点

算法设计与分析期末试题-考试版(汇编)

1、用计算机求解问题的步骤:1、问题分析 2、数学模型建立 3、算法设计与选择 4、算法指标 5、算法分析 6、算法实现 7、程序调试 8、结果整理文档编制 2、算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程 3、算法的三要素 1、操作 2、控制结构 3、数据结构 算法具有以下5个属性: 有穷性: 确定性: 可行性: 输入: 输出: 算法设计的质量指标: 正确性:算法应满足具体问题的需求; 可读性:算法应该好读,以有利于读者对程序的理解; 健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。 效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。一般这两者与问题的规模有

关。 复杂性的渐近性态 设T(N)是算法A的复杂性函数,使得当N→∞时有: (T(N)-T’(N))/T(N) → 0 那么,我们就说T’(N)是T(N)当N→∞时的渐近性态,或叫T’(N)为算法A当N→∞的渐近复杂性而与T(N)相区别。 P = NP 经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法 分而治之法 1、基本思想 将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以

便各个击破,分而治之。 分治法所能解决的问题一般具有以下几个特征: (1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。 3、分治法的基本步骤 (1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题; (2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题; (3)合并:将各个子问题的解合并为原问题的解。 递归: 直接或间接的调用自身的算法,叫做递归算法。 1·期盘覆盖 用分治策略,可以设计解棋盘问题的一个简捷的算法。 当k>0时,将2^k * 2^k棋盘分割为4个2^(k-1) * 2^(k-1)子棋盘 特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,我们可以用一个L型骨牌覆盖这3个较小的棋盘的汇合处,如下图所示,这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题化为4个较小规模的棋盘覆盖问题。递归的使用这种分割,直至棋盘简化为1x1棋盘。

相关文档
相关文档 最新文档