文档视界 最新最全的文档下载
当前位置:文档视界 › 六自由度飞行动力学

六自由度飞行动力学

六自由度飞行动力学

六自由度飞行动力学

一、总体框图

无人机在空间的自由移动由质心的三个移动自由度和绕质心的三个转动自由度组成。六自由度动力学解算流程如下:

二、合理假设

(1)假设无人机是刚体、不考虑其结构和弹性形变

(2)假设地球为惯性系统,即假设地面坐标系为惯性坐标系

(3)忽略地球曲率,把大地看做平面

(4)机体的重心位置不变,不考虑地球自转

航天飞行动力学作业及答案(2)

第四章 第二次作业及答案 1. 考虑地球为自转椭球模型,请推导地面返回坐标系及弹道坐标系(半速度坐标系)下航天 器无动力再入返回质心动力学方程和运动学方程,以及绕质心旋转动力学和运动学方程。 解答: (1)地面返回坐标系:原点位于返回初始时刻地心矢径与地表的交点处,ox 轴位于当地水平面内指向着陆点,oy 垂直于当地水平面向上为正,oz 轴形成右手坐标系。 地面返回坐标系下的动力学方程:与发射坐标系下的动力学方程形式相同,令推力为0即可得到。 (2)弹道(航迹,半速度)坐标系定义:原点位于火箭质心,2ox 轴与速度矢量重合,2oy 轴位于包含速度矢量的当地铅垂平面内,并垂直于2ox 轴向上为正,2oz 轴形成右手 坐标系。 由于弹道坐标系是动坐标系,不仅相对于惯性坐标系是动系,相对于地面返回坐标系也是动系,在地面坐标系下的动力学方程可以写为: 惯性系下:22222()=F=++m e e e d m m m m t dt t δδδδ=+?+??r r r ωωωr P R g 地面系下:22=++m -2-()e e e m m m t t δδδδ???r r P R g ωωωr 弹道系下:22=()=++m -2-()t e e e m m m m m t t t t δδδδδδδδ'=+????'r v v r ωv P R g ωωωr 式中,t δδ''v 表示速度矢量在弹道坐标系的导数,t ω表示弹道坐标系相对于地面坐标系的 旋转角速度,将上式矢量在弹道坐标系分解得到: 速度矢量00v ????=??????v ,角速度矢量=tx t ty tz ?? ???????? ωωωω 00cos 0sin 00sin =+=()001000sin 0cos 0cos t y L σσσθσσσσθσσθσθ?? --??????????????????????+=+=? ???????????????????????????????????ωθσ sin 0 cos 0=0cos 0sin 0cos cos 0sin 00t v v v v σθσθσσσθσθσθσθσ σθ σ????--?????? ????????????==????????????????? ???---??????????ωv 等式左边:()=cos t v m v t v δσθδσ? ? '??+???'??-?? v ωv 等式右边将所有力转换到弹道坐标系下,如果不方便直接转换,可以先转到地面系,然 后再转到弹道系。其中:

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 20, longitudinal cyclic pitching angle is B1 70, rotor longitudinal flapping angle is a1s 30. Assuming the tilted angle of rotor shaft is 00, please determining the following angles: Helicopter climb angle Fuselage attack angle Rotor attack angle s Rotor flapping due to forward speed a10 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2 °,纵向周期变距7°,纵向挥舞角-3 °,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2 ° 桨盘平面迎角-2 ° 吹风挥舞4°

Chapter Two 1. For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2. Whythe gradient of control stick forces can' t be too large or small? 3. Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1. 操纵——气动面——响应P13 表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/ 后倒——前飞/后飞,俯仰 左推/ 右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/ 总距杆——改变总距——改变垂向速度脚蹬——改变尾桨总距——改变航向 2. 为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3. 共轴、纵列、倾转旋翼机如何悬停转弯?共轴——上下旋翼总距差动纵列——前后横向周期变距一个向左一个向右倾转旋翼——一侧后倒一侧前倒

2018年北京航空航天大学宇航学院航天飞行器动力学原理试题-精选.pdf

航天飞行器动力学原理 A 卷一、轨道力学的定义是什么 ,简述主要的研究内容。二、什么是轨道要素,典型的轨道要素如何描述航天器的轨道特性,给出典型轨道的定义,并用图示方法具体说明。 三、简述太阳同步轨道,地球同步轨道,地球静止轨道,临界轨道以及回归轨道的定义,说明上述各种对应轨道要素应满足的数学条件。 四、根据322R R dt R d ,说明L E H ,,三个积分常量及其具体含义(物理意义)。 五、什么是霍曼转移轨道,试求平面内霍曼轨道转移所需的两次轨道增量和变轨作用时间(包括轨道转移和轨道交会的时间条件)。 六、弹道导弹弹道一般由哪几段组成,各段有什么特点? 七、弹道导弹自由飞行段的最大射程弹道是惟一的, ,已知关机点速度0q ,试根据开普勒方程给出自由飞行段最大射程角 ,最大射程对应的关机点当地弹道倾角0的表达式(利用半通径0,q 的关系)。 八、忽略地球转动并假设地球为圆球形, 设导弹以常值当地弹道倾角再入,已知再入点高度e h 和当地弹道倾角e ,再入段射程如何计算? 九、分析垂直上升段飞行时间计算公式1//40001G P t 的物理意义。 十、什么是比力,加速度计感受到的是什么量,导引惯性加速度和比力的关系?

航天飞行器动力学原理 B 卷(补考) 一、轨道力学定义,内容二、瞬时轨道要素,平均轨道要素,开普勒轨道要素的定义,区别 三、太阳同步轨道定义,数学条件,特点 四、根据322R R dt R d ,说明L E H ,,三个积分常量及其具体含义(物理意义)五、轨道平面转移相关(一次脉冲和三次脉冲的分界点) 六、主动段氛围哪几段,要求是是什么。 七、已知关机点的r,v ,从发射坐标系转换到当地铅锤坐标系。 八、求q,e,a 和000,,v r 的关系 利用cos 1/e p r 说出为什么会有高低轨道 (20分)九、推导再入段方程组力垂直于速度方向的方程(原题给出了方程,我懒得写了)

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

航天飞行动力学课程设计-飞船再入质点弹道数值计算

航天飞行动力学课程设计 ——飞船再入质点弹道 日期:2019-09-12 航天飞行动力学课程设计 0 ——飞船再入质点弹道 0 1.题目重述 (1) 1)假设:1 2)标称轨迹制导 1 2.背景分析 (2) 3.数值求解方法 (2) 1)地球以及大气模型2 2)再入初始数据 2 3)线性插值方法 2 4)积分方法-四阶龙格库塔 2 5)蒙特卡洛打靶随机数生成2 4.分析过程 (3) 1)求解ODE获取基准弹道 3 2)给定偏差量求解ODE获取制导弹道弹道3 5.结果分析 (3) 1)基准弹道情况 3 2)100次打靶结果分析5 6.C++程序结构及主要代码 (6) 1)头文件6 2)Cpp文件6 3)函数声明 7 4)函数定义 8

1. 题目重述 1) 假设: ● 考虑地球旋转影响。 ● 地球看成质量均匀分布的圆球,质心在球心。 ● 把飞行器看成质点,应用瞬时平衡假设。 2 2 22sin cos sin cos cos cos sin cos (sin cos cos sin cos )1cos ()cos 2cos sin cos (cos cos sin cos sin )1sin cos sin tan 2cos e e e dr V dt d V dt r d V dt r dV D g r dt d V L g V r dt V r d L V dt V r γθγψφφγψγωφγφγφψγσγωφψωφγφγψφψσγψφγ ====--+-??=+-+++??? ?=+-??2 (1)(tan cos cos sin )sin sin cos cos e e r V ωωγψφφψφφγ??? ??? ??? ??? ??????-+? ??? 上述动力学方程组中,有6个状态变量:[,,,,,]r V θφγψ。各状态变量的意义为:r :地球球心到飞行 器质心的距离;λ:经度;φ:纬度;V :相对地球速度;γ:速度倾角;ψ:速度方位角,0ψ=表示正北方向,从正北顺时针旋转为正。e ω为地球旋转角速度;,D L 分别为阻力加速度和升力加速度,可由下式给出: 221 1 (,)(,)(2)22ref D ref L D V S C Ma L V S C Ma m m ραρα= = ,D L C C 分别为飞行器的阻力系数和升力系数,它们是攻角α和马赫数的函数;ref S 为飞行器参考面积; ρ为大气密度。 首先按照配平攻角飞行,得到基准弹道。 2) 标称轨迹制导 倾侧角指令 (/)cos /c L D L D σ= 0(/)(/)(/)c L D L D L D =+?, 其中0(/)L D 为基准弹道升阻比,取为0.28; (/)L D ?为与以速度为自变量的基准弹道偏差引起的升阻比,由下式计算: 1234(/)x L D k n k R k h k R ?=?+?+?+? x n ?为切向过载偏差,R ?为航程偏差。 1234,,,k k k k 为系数,通过试验法自行确定。 倾侧角指令在轴向过载大于0.5的时候开始输出,在轴向过载小于0.5时,采用开环制导的方式,即常数10度。

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.docsj.com/doc/4417392993.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

高等飞行动力学试题解答

考试科目:高等飞行动力学课程编号:016011 说明:所有答案必须写在答题册上,否则无效。共20页第1页 目录 1.请推导飞机小扰动运动方程,并分析其使用条件。 (2) 2.什么是驾驶员操纵期望参数,分析其含义。 (13) 3.请列写敏捷性尺度并对其含义进行分析说明。 (14) 4.试说明评估飞机飞行性能的基本内容和基本方法。 (18)

考试科目:高等飞行动力学课程编号:016011 说明:所有答案必须写在答题册上,否则无效。共20页第2页 1.请推导飞机小扰动运动方程,并分析其使用条件。 一、小扰动法简介 (1)基本概念 研究飞行器的稳定性和操纵性问题时,一般把飞机运动分为基准 运动和扰动运动。基准运动(或称未扰动运动)是指在理想条件下, 飞行器不受任何外界干扰,按预定规律进行的运动,如定直平飞、定常盘旋等。基准运动参数用下标“*”表示,如 V、*α、*θ等。 * 由于各种干扰因素,使飞行器的运动参数偏离了基准运动参数, 因而运动不按预定的规律进行,这种运动称为扰动运动。受扰运动的参数,不附加任何特殊标记,例如V、α、θ等。与基准运动差别甚小的扰动运动称为小扰动运动。 (2)基本假设 在小扰动假设条件下,一般情况就能将飞行器运动方程进行线性 化。但为了便于将线性扰动运动方程组分离为彼此独立的两组,即纵 向和横侧小扰动方程组,以减少方程组阶次而解析求解,还需要做下 列假设: 1)飞行器具有对称平面(气动外形和质量分布均对称),且略去机体内转动部件的陀螺力矩效应。 2)在基准运动中,对称平面处于铅垂位置(即0 φ=),且运动所在平

考试科目:高等飞行动力学 课程编号:016011 说 明:所有答案必须写在答题册上,否则无效。 共20页 第 3页 面且运动所在平面与飞行器对称平面相重合(即0β=)。 在满足上述条件下,可以认为,在扰动运动中,纵向气动力和力矩只与纵向运动参数有关,而横侧向气动力和力矩也只与横侧运动参数有关。有了这些推论,就不难证明扰动运动方程可以分离为彼此独立的两组。其中一组只包含纵向参数,即飞行器在铅垂平面内作对称飞行时的运动参数,,,,,,,,,g g e p u w q x z αθγδδ等,称为纵向扰动运动方程组;另一组只包含横侧参数,即飞行器在非对称平面内的运动参数 ,,,,,,,,,,g a r v p r y βψχφμδδ等,称为横侧向扰动运动方程组。 (3)线性化方法 飞行器的任何一个运动方程可以表示成如下的一般形式: ()12,,,0n f x x x = (1.1) 式中变量(1,2,...,)i x i n =可以是运动参数或它们的导数。根据前述,运动参数可以表示成基准运动参数*i x 和偏离量i x ?之和: *i i i x x x =+? 于是方程式(1.1)可写成 ()1*12*2*,,,0n n f x x x x x x +?+?+?= (1.2) 在基准点()1*2**,,,n x x x 处展开成Taylor 级数,并根据小扰动假设,略去二阶及以上各阶小量,得到 ()1*2**1212*** ,,,...0n n n f f f f x x x x x x x x x ?????????+?+?++?= ? ? ?????????? (1.3) 显然,基准运动也应满足运动方程式(1.1),即

航天飞行动力学远程火箭弹道设计大作业-(1)

… 航天飞行动力学远程火箭弹道设计大作业 已知火箭纵向运动方程式如公式(1)所示。 ()0sin 1cos cos sin e e pr P v g m v P g m x v y v m m m t A ?θθαθθθα?θ?=+????=??+????=??=???=-???=?-? (1) 其中,0,,m ,,,,e v P x y θα分别为火箭飞行速度、发 动机推力、火箭初始质量、弹道倾角、攻角、水 平位移和飞行高度;A ?为角度增益系数,t 为火 箭飞行时间,m 为火箭质量。仿真初始条件如表1和表2所示。 表1初始状态 序号 变量名 ; 变量值 物理意义及单位 t 0 火箭飞行时间,s 1 θ # /2π 初始弹道倾角,弧度 2 v 0 火箭初始速度, /m s 4 x > 0 火箭在地面发射坐标系下的初始水平位置,m 5 y 0 火箭在地面发射坐标系下的初始高度,m 序号 《 变量名 变量值 物理意义及单位 0 0m 8000 起飞质量 kg 1 ~ m 单位时间燃料质量消耗, /kg s 2 g 重力加速度常数, 2/N s 3 、 A ? 35 角度增益系数 4 e P 200 发动机推力,KN 5 ~ w 7000 发动机排气速度,/m s 飞行程序角pr ?随火箭飞行时间的关系如公式(2):

12111221212312302222= =10s, 130, 150 s 60pr t t t t t t fig t t t t t t t fig t t t fig t t s t πππ?π ?≤

武汉理工大学《结构动力学》2013年期末试卷及标准答案

武汉理工大学《结构动力学》2013年期末试卷 一、填空题。(11分) 1、右图所示振动体系不计杆件的轴向变形,则 动力自由度数目是 。(3分) 2、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。( 3、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。(3分) 4、多自由度框架结构顶部刚度和质量突然变 时,自由振动中顶部位移很大的现象称 。(3分) 二、判断以下说法是否正确,对错误的说法加以改正。(6×3分=18分) 1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。( ) 2、超静定结构体系的动力自由度数目一定等于其超静定次数。( ) 3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。( ) 4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。( ) 5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。( ) 6、用瑞利法时若取重量作用下的静变形曲线为试函数,求得的基频的精度不高。( ) 三、选择题。(6×3分=18分) 1、对单自由度体系的自由振动,下列说法正确的是( ) A C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b A 、b a ωω< B 、∞→EA 时b a ωω≈ C 、0→EA 时b a ωω≈ D 、b a ωω= 3、(1)无阻尼的自由振动 (2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动 (3)有阻尼的自由振动 (4)突加荷载引起的无阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4) C 、(2)(3) D 、(1)(4)

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

直升机飞行力学复习题答案

Chapter One A helicopter of central articulated rotor makes a level flight with cruse speed. In this flight condition, the pitching attitude angle is 02?=-, longitudinal cyclic pitching angle is 017 B =, rotor longitudinal flapping angle is 013s a =-. Assuming the tilted angle of rotor shaft is 00δ=, please determining the following angles: Helicopter climb angle θ= Fuselage attack angle α= Rotor attack angle s α= Rotor flapping due to forward speed 10a = 中心铰式旋翼直升机以巡航速度前飞。俯仰角-2°,纵向周期变距7°,纵向挥舞角-3°,旋翼轴前倾角0° 平飞,爬升角0° 机身迎角-2° 桨盘平面迎角-2° 吹风挥舞4°

Chapter Two 1.For the main/tail rotor configuration helicopter, the pilot applies which stick or rudder to control what kind of surfaces and corresponding aerodynamic forces? 2.Why the gradient of control stick forces can’t be too large or small? 3.Co-axis, tandem and tilted-rotor helicopters have no tail rotor. How to change the direction in hover for these helicopters? 1.操纵——气动面——响应P13表2-1 前推/后拉杆——纵向周期变距,桨盘前倾/后倒——前飞/后飞,俯仰左推/右推杆——横向周期变距,桨盘侧倒——侧飞,滚转 油门/总距杆——改变总距——改变垂向速度 脚蹬——改变尾桨总距——改变航向 2.为什么杆力梯度不能太大也不能太小P16 太大时大操纵较吃力,太小了不易感觉当前位移量。杆力梯度适中有利于精确操纵。 3.共轴、纵列、倾转旋翼机如何悬停转弯? 共轴——上下旋翼总距差动 纵列——前后横向周期变距一个向左一个向右 倾转旋翼——一侧后倒一侧前倒

航天飞行动力学作业及答案(1)

航天飞行动力学作业(1) 1. 动坐标系矢量导数 已知火箭相对于地面坐标系的速度5500/v m s =,弹道倾角10θ=,并在纵向平面内运动,俯仰角速度为 1.5/s ω=,火箭俯仰角为30。整流罩质心距离火箭质心为20m ,质心整流罩分离时相对于火箭箭体的相对速度为2m/s r v =,速度倾角(与火箭纵轴夹角)为45,求整流罩相对于地面坐标系的速度矢量。 解答: c =+r r ρ,c r 为整流罩在地面坐标系下的矢径,r 为火箭质心在地面坐标系下的矢径,ρ为整流罩质心距离火箭质心距离。 c d d d dt dt dt =+r r ρ d dt t δδ=+?ρρωρ c d d dt dt t δδ=++?r r ρ ωρ 111111cx x rx x x cy y ry y y cz z rz z z v v v v v v v v v ωρωρωρ???????????????????? =++????????????????????????????? ?? 5500*cos102*cos 450205417.95500*sin102*sin 4500956.900 1.5/57.300cx cy cz v v v ????????????? ?? ?????????=++?=????????????????????????? ??????????? 2. 变质量质点动力学方程 设火箭发动机秒耗量100kg/s m =,相对喷气速度为3000m/s e μ=,俯仰角速度为 1.5/s ω=,转动惯量变化率1000kg m/s z I =?,喷口距离质心距离为10m ρ=,求火箭发动机工作产生的附件哥氏力、附加相对力,附加哥氏力矩,附加相对力矩。 解答: 附加哥氏力:0100221000052.3561.5/57.300k T e F m -?????? ??????'=-?=-???=?????? ????????????ωρ 附加相对力:30003000001000000rel e F m -????????'=-?=-?=???????????? μ 附加哥氏力矩: 00 00100100()00001000000001000 1.5/57.30 1.5/57.30287.96k T e T e M m t δδ--????????????????????????'=-?-??=--???=???????????? ????????????-???????????? I ωρωρ 附加相对力矩:0rel e e M m '=-?=ρμ 3. 引力和重力及其夹角 将地球视为标准椭球模型,编程求解地表处地心维度分别为=306090φ,,时的:(1)引力加速度,r g g φ;(2)重力加速,r k k φ;(3)离心惯性加速度,er e a a ?''; (4)引力加速度与地心矢径夹角1μ;(5)重力加速度与地 心矢径夹角μ;(6)地理纬度0B 。 地球椭球参数6378140m e a =, 6356755m e b =,1/298.257e =,7.292e-5e ω=, 3.986005e+14m f M μ==

结构动力学多自由度线性体系Wilson-θ法程序编写

多自由度线性体系Wilson -θ法程序编写 【摘要】本文主要介绍了通过使用Matlab 软件,Wilson-θ法编写多自由度线性 体系的程序的原理、流程图、具体算例以及使用注意事项。通过该程序可以得到剪切型结构在任意函数荷载作用下各质点的位移函数。 【关键词】Matlab ;多自由度;Wilson-θ法 1.wilson-θ法原理 wilson-θ法中最主要的步骤就是推导由t 时刻的状态求t t ?+时刻的状态的递推公 式,现推导如下: 对τ积分 解出 代入 整理,得 其中 本程序的核心就是对以上公式的循环使用。 {}{}{}{})(t t t t t y y t y y -?+=?++θτθτ t ?=θτ{}{}{}{}{})(22 t t t t t t y y t y y y -?++=?++θτθττ{}{}{}{}{}{})(623 2t t t t t t t y y t y y y y -?+++=?++θτ θτττ{}{}{}{}{})(21 t t t t t t t y y t y t y y -?+?+=?+?+θθθθ{}{}{}{}{})2(6 )(2 t t t t t t t y y t y t y y +?+?+=?+?+θθθθ{}{}{}{}{}t t t t t t t y y t y y t y 26 )()(62 -?--?=?+?+θθθθ{}{}{}{}{}t t t t t t t y t y y y t y 2 2)(3?---?=?+?+θθθθ[]{}[]{}[]{}{}t t t t t t t t P y k y C y m ?+?+?+?+=++θθθθ []{}[]{}[]{}{}P y k y C y m =++ []{}[] R y k t t =?+θ[] [][][] c t m t k k ?+?+ =θθ3 )(6 2 []{}{}{}[]{}{}{}[]{}{}{})223()26)(6()(2t t t t t t t t t t y t y y t c y y t y t m P P P R ?++?++?+?+-+=?+θθθθθ{}{}{}{}) (t t t t t t P P P P -+=?+?+θθ

空气动力学与飞行力学复习题10

】 《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 ( (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 — (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 > (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 , A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

航天飞行动力学远程火箭弹道设计大作业 (1)

航天飞行动力学远程火箭弹道设计大作业 已知火箭纵向运动方程式如公式(1)所示。 ()0sin 1cos cos sin e e pr P v g m v P g m x v y v m m m t A ?θθαθθθα?θ?=+????=??+????=??=???=-???=?-? (1) 其中,0,,m ,,,,e v P x y θα分别为火箭飞行速度、发 动机推力、火箭初始质量、弹道倾角、攻角、水 平位移和飞行高度;A ?为角度增益系数,t 为火 箭飞行时间,m 为火箭质量。仿真初始条件如表1和表2所示。 序号 变量名 变量值 物理意义及单位 0 t 0 火箭飞行时间,s 1 θ /2π 初始弹道倾角,弧度 2 v 0 火箭初始速度, /m s 4 x 0 火箭在地面发射坐标系下的初始水平位置,m 5 y 0 火箭在地面发射坐标系下的初始高度,m 表2 有关参数 序号 变量名 变量值 物理意义及单位 0 0m 8000 起飞质量 kg 1 m 28.57 单位时间燃料质量消耗, /kg s 2 g 9.8 重力加速度常数, 2/N s 3 A ? 35 角度增益系数 4 e P 200 发动机推力,KN 5 w 7000 发动机排气速度,/m s 飞行程序角pr ?随火箭飞行时间的关系如公式(2):

12111221212312302222= =10s, 130, 150 s 60pr t t t t t t fig t t t t t t t fig t t t fig t t s t πππ?π ?≤

空气动力学与飞行力学复习题10

《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。 20.理想流体的特征是 A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT。 21.静止液体中存在 A. 压应力;B. 压应力和拉应力;C. 压应力和切应力;D. 压应力、切应力和拉应力; 22.用U形水银差压计测量水管内A、B两点的压强差,水银面高差h p=10cm ,p A-p B为

相关文档
相关文档 最新文档