文档视界 最新最全的文档下载
当前位置:文档视界 › 工程力学第十三章 压杆稳定

工程力学第十三章 压杆稳定

工程力学第十三章 压杆稳定
工程力学第十三章 压杆稳定

第十三章

压杆稳定

思考题

1 何谓失稳?何谓稳定平衡与不稳定平衡?

2 试判断以下两种说法对否?

(1)临界力是使压杆丧失稳定的最小荷载。

(2)临界力是压杆维持直线稳定平衡状态的最大荷载。

3 应用欧拉公式的条件是什么?

4 柔度λ的物理意义是什么?它与哪些量有关系,各个量如何确定

5 利用压杆的稳定条件可以解决哪些类型的问题?试说明步骤。

6 何谓稳定系数?它随哪些因素变化?为什么?

7 提高压杆的稳定性可以采取哪些措施?采用优质钢材对提高压杆稳定性的效果如何?

习题

1 图示四根压杆的材料及截面均相同,试判断哪一根杆最容易失稳?哪一根杆最不容易失稳?

2 图示压杆,材料为Q235钢,横截面有四种形式,但其面积均为3.2×103mm2。试计算它们的临界力,并进行比较。已知弹性模量E=200GPa,a=240MPa,b=0.00682MPa。

题1图题2图

3 图示压杆的横截面为矩形,h=60mm,b=40mm,杆长l=2.4m,材料为Q235钢,E=200GPa。杆端约束示意图为:在正视图(a)的平面内两端为铰支;在俯视图(b)的平面内,两端为固定。试求此杆的临界力。

4 已知柱的上端为铰支,下端为固定,外径D=200mm,内径d=100mm,柱长l =9m,材料为Q235钢,许用应力[σ]=160MPa。试求柱的许可荷载[F]。

题3图题4图

5 两端铰支工字钢受到轴向压力F=400kN的作用,杆长l=3m,许用应力[σ]=160MPa,试选择工字钢的型号。

6 压杆由两根∟140×12的等边角钢组成,如图示,杆长l=3m,许用应力[σ]=160MPa,两端固支。承受的轴向压力为F=850kN。试对压杆进行稳定性校核。

7 图示一简单托架,其撑杆AB为圆截面木杆,已知q=50kN/m,许用应力[σ]=11MPa,AB两端为柱形铰,试求撑杆所需的直径d。

题6图题7图

8 图示结构中,AB为刚性梁,A端为水平链杆,在B点和C点分别与直径d=40mm的钢圆杆铰接。已知q=35kN/m,圆杆材料为低碳钢,[σ]=170MPa。试问此结构是否安全?

9 图示结构中钢梁AC及柱BD分别由№22b工字钢和圆木构成,均布荷载集度q=8kN/m。梁的材料为Q235钢,许用应力[σ]=160MPa;柱的材料为杉木,直径d=160mm,[σ]=11MPa,两端铰支。试校核梁的强度和立柱的稳定性。

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

09工程力学答案-第11章---压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时 4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故 0.7 80.83 1.229 0.03 99.35 x P y z l l l l i μ λλ ? ===>> =→mm,

材料力学第9章压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π= 。 [习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动) 解:压杆能承受的临界压力为:2 2) .(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ

(f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2).2(l EI P cr π= 为什么并由此判断压杆长因数μ是否可能大于2。 螺旋千斤顶(图c )的底座对丝杆(起顶杆)的稳定性有无影响校核丝杆稳定性时,把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆是否偏于安全 解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的临界力计算公式不同。(b)为一端固定,一端自由的情况,它的长度因素2=μ,其临界力为:2 min 2).2(l EI P cr π= 。但是,(a) 为一端弹簧支座,一端自由的情况,它的长度因素 2≠μ,因此,不能用2 min 2) .2(l EI P cr π= 来计算临界力。 为了考察(a )情况下的临界力,我们不妨设下支座(B )的转动刚度l EI M C 20 ==? ,且无侧向位移,则: )()("w F x M EIw cr -=-=δ 令 2k EI F cr =,得: δ22"k w k w =+ 微分方程的通解为:δ++=kx B kx A w cos sin kx Bk kx Ak w sin cos ' -= 由边界条件:0=x ,0=w ,C F C M w cr δ?== =' ;l x =,δ=w 解得: Ck F A cr δ= ,δ-=B ,δδδ δ+-=kl kl Ck F cr cos sin 整理后得到稳定方程:20/tan == l EI C kl kl

第十一章压杆稳定

第十一章 压杆稳定 是非判断题 1 压杆失稳的主要原因是由于外界干扰力的影响。( ) 2 同种材料制成的压杆,其柔度愈大愈容易失稳。( ) 3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能保持平衡。( ) 4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( ) 5 压杆的临界应力值与材料的弹性模量成正比。( ) 6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。( ) 7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。( ) 8 压杆的临界应力必然随柔度系数值的增大而减小。( ) 9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。 ( ) 填空题 10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总是不可避免地存在 以及 等不利因素的影响。 11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式为 ;1 2λλλ≤≤的压杆称为 ,其临界应力计算公式为 ;2λλ≤的压杆称为 ,其临界应力计算公式为 。 12 理想压杆的条件是① ;② ;③ 。 13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在计算临界压力时,都采 用 的横截面面积A 和惯性矩I 。 14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = ,挠曲线位于 平 面内。 z C 题15图 15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷F cr = 。 16 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的 。 17 提高压杆稳定性的措施有 , ,以及 和 。 18 细长杆的临界力与材料的 有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济, 原因时 。 19 b 为细长杆,结构承载能力将 。 B P

材料力学习题册答案第9章 压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

材料力学_陈振中_习题第十四章压杆稳定

第十四章 压 杆 稳 定 14.1某型柴油机的挺杆长度l =25.7cm,圆形横截面的直径d =8mm,钢材的E=210Gpa,MPa p 240=σ。挺杆所受最大压力kN P 76.1=。规定的稳定安全系数 5~2=st n 。试校核挺杆的稳定性。 解:计算柔度,挺杆两端可认为较支,μ=1, 1294 /008.0257.01== =?i l μλ 而 9.926 9 22102401021014.31== = ???p E σπλ 1λλ 用欧拉公式计算临界压力,校核稳定性。 kN P L EI lj 30.62 644 )5108(14.3922 2 ) 257.01(1021014.3)(== = ?? ??-??μπ 58 .376.130 .6=== P P lj n 在2~5之间,安全。 14.4图中所示为某型飞机起落架中承受压力的斜撑杆。杆为空心圆管,外径D=52mm ,内径d =44mm,l =950mm.材料为30CrMnS i N i 2A, 试求斜撑杆的临界压力lj P 和临界应力 lj σ。(原图见教材P173.)(GPa E MPa MPa p b 210,1200,1600===σσ) 解:斜撑两端按铰支座处理, 5 .419 .55017.0044.0052.06 921012001021014.31017.095.01224 1224 1 == = ====+= += ????p E i l m d D i σπμλλ 1λλ ,可用拉欧公式计算 2 )044.0052.0(1040164 ) 044.0052.0(14.3) 95.01(1021014.3)(/665401224 3 4 49 222m MN kN P A P lj l EI lj lj == = =?= = -?-???π σμπ 14.5三根圆截面压杆,直径均为d=160mm,材料为A3钢,E=200Gpa,MPa s 240=σ.两端均为铰支,长度分别为l 1l 2和l 3,且m l l l 532321===。试求各杆的临界压力lj P 。 解:对于A3钢 1.57,10012 .1240 3042===≈--b a s σλλ 分别计算三杆的柔度 3 .31)3(5.62)2(125)1(4 /16.025.114/16.05.214/16.05 13 32 21 1== = ======???i l i l i l μμμλλλ

《材料力学》第9章压杆稳定习题解

第九章压杆稳定习题解 [ 习题9-1] 在§9-2 中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线 形状,导出了临界应力公式 2 EI P cr 。试分析当分别取图b,c,d 所示坐标系及挠曲线形2 l 状时,压杆在F作用下的挠曲线微分方程是否与图 a 情况下的相同,由此所得F cr 公式又cr 是否相同。 解:挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 " M x EIw ( ) 。(c)、(d) 的坐标系相同,它们具有相同的挠曲线微分方程: " M x EIw ( ),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: 2 EI P cr 。 2 l

1

[ 习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为: 2 EI P cr 。由这公式可知,对于材料和截面相同的压杆,2 ( .l) 它们能承受的压力与原压相的相当长度l 的平方成反比,其中,为与约束情况有关的长度系数。 (a)l 1 5 5m (b)l 0.7 7 4. 9m (c)l 0.5 9 4.5m (d)l 2 2 4m (e)l 1 8 8m (f )l 0.7 5 3.5m (下段);l 0.5 5 2. 5m (上段) 故图 e 所示杆F最小,图 f 所示杆F cr 最大。 cr [ 习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性 地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为P cr 2 EI min 2 ( 2.l ) ?为什么?并由此判断压杆长因数是否可能大于2。

第十三章-压杆稳定

第十三章 压杆稳定 1 基本概念及知识要点 1.1 基本概念 理想受压直杆、理想受压直杆稳定性 、屈曲、 临界压力。 1.2 临界压力 细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。 1.3 稳定计算 为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算: st cr n F F n ≥= -稳定条件 2 重点与难点及解析方法 2.1临界压力 临界压力与压杆的材料、截面尺寸、约束、长度有关,即和压杆的柔度有关。因此,计算临界压力之前应首先确定构件的柔度,由柔度值确定是用欧拉公式、经验公式还是强度公式计算临界压力。 2.2稳定计算 压杆的稳定计算是材料力学中的重要内容,是本课程学习的重点。 利用稳定条件可进行稳定校核,设计压杆截面尺寸,确定许用外载荷。 稳定计算要求掌握安全系数法。 解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。临界压力根据 柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。 3典型问题解析 3.1 临界压力

mm .h A I i min 55113 2===mm .a A I i 31632===例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm 2,截面尺寸分别为(1)、b=40mm 、(2)、a=56.5mm 、(3)、d=63.8mm 、(4)、D=89.3mm,d=62.5mm 。若已知材料的E =200GPa ,σs =235MPa ,σcr =304-1.12λ,λp =100,λs =61.4,试计算各杆的临界荷载。 [解] 压杆的临界压力,取决于压杆的柔度。应根据各压杆的柔度,由相应的公式计算压杆的临界压力。 (1)、两端固定的矩形截面压杆,当b=40mm 时 λ> λP 此压杆为大柔度杆,用欧拉公式计算其临界应力 (2)、两端固定的正方形截面压杆,当a=56.5mm 时 所以 9.12910 55.113 5.031=??==-i l μλkN 37521 21=?=?=A E A F cr cr λπ σ 0.7d 图13-1

工程力学第十三章 压杆稳定

第十三章 压杆稳定 思考题 1 何谓失稳?何谓稳定平衡与不稳定平衡? 2 试判断以下两种说法对否? (1)临界力是使压杆丧失稳定的最小荷载。 (2)临界力是压杆维持直线稳定平衡状态的最大荷载。 3 应用欧拉公式的条件是什么? 4 柔度λ的物理意义是什么?它与哪些量有关系,各个量如何确定 。 5 利用压杆的稳定条件可以解决哪些类型的问题?试说明步骤。 6 何谓稳定系数?它随哪些因素变化?为什么? 7 提高压杆的稳定性可以采取哪些措施?采用优质钢材对提高压杆稳定性的效果如何? 习题 1 图示四根压杆的材料及截面均相同,试判断哪一根杆最容易失稳?哪一根杆最不容易失稳? 2 图示压杆,材料为Q235钢,横截面有四种形式,但其面积均为3.2×103mm2。试计算它们的临界力,并进行比较。已知弹性模量E=200GPa,a=240MPa,b=0.00682MPa。 题1图题2图

3 图示压杆的横截面为矩形,h=60mm,b=40mm,杆长l=2.4m,材料为Q235钢,E=200GPa。杆端约束示意图为:在正视图(a)的平面内两端为铰支;在俯视图(b)的平面内,两端为固定。试求此杆的临界力。 4 已知柱的上端为铰支,下端为固定,外径D=200mm,内径d=100mm,柱长l =9m,材料为Q235钢,许用应力[σ]=160MPa。试求柱的许可荷载[F]。 题3图题4图 5 两端铰支工字钢受到轴向压力F=400kN的作用,杆长l=3m,许用应力[σ]=160MPa,试选择工字钢的型号。 6 压杆由两根∟140×12的等边角钢组成,如图示,杆长l=3m,许用应力[σ]=160MPa,两端固支。承受的轴向压力为F=850kN。试对压杆进行稳定性校核。 7 图示一简单托架,其撑杆AB为圆截面木杆,已知q=50kN/m,许用应力[σ]=11MPa,AB两端为柱形铰,试求撑杆所需的直径d。 题6图题7图 8 图示结构中,AB为刚性梁,A端为水平链杆,在B点和C点分别与直径d=40mm的钢圆杆铰接。已知q=35kN/m,圆杆材料为低碳钢,[σ]=170MPa。试问此结构是否安全? 9 图示结构中钢梁AC及柱BD分别由№22b工字钢和圆木构成,均布荷载集度q=8kN/m。梁的材料为Q235钢,许用应力[σ]=160MPa;柱的材料为杉木,直径d=160mm,[σ]=11MPa,两端铰支。试校核梁的强度和立柱的稳定性。

13-第十三章压杆稳定讲解

第十三章 压杆稳定 §13.1 压杆稳定的概念 构件受外力作用而处于平衡状态时,它的平衡可能是稳定的,也可能是不稳定的。 一、压杆稳定 直杆在压力作用下,保持原直线状态的性质。 二、失稳(屈曲) 压杆丧失其直线形状的平衡而过渡为曲线平衡。 三、临界压力 压杆保持其直线状态的最小压力,cr F 。 §13.2 两端铰支细长压杆的临界压力 在压杆稳定性问题中,若杆内的应力不超过材料的比例极限,称为线弹性稳定问题。 图示坐标系中,距原点为x 的任一截面的挠度为y , 则该截面得弯矩为:y F M(x)cr = 代入挠曲线近似微分方程,即EI M(x) -y d 2 2=dx 得: EI F k k dx cr y ,0y y d 2 22 2==+ 方程通解为:0cos Asin y =+=kx B kx 由杆端的边界条件:0y 0===时,和l x x 求得 : 0A s i n ,0==kx B 解得: ),2,1,0(????==n l n k π2 22F l EI n cr π= 除n=0外,无论n 取何值,都有对应的cr F ,1n =压杆失稳时的最小荷载是临界载荷 2 2F l EI cr π= 上式称为两端铰支细长压杆的临界荷载的欧拉公式。杆越细长,其临界载荷越小,即杆越容易失稳。对两端铰支细长压杆,欧拉公式中的惯性矩I 应是横截面最小的惯性矩,即形心主惯性矩中的做小值min I

§13.3其他支座条件下细长压杆的临界压力 几种常见约束方式的细长压杆的长度因数与临界载荷 例题:两端铰支压杆如图11-8所示,杆的直径20mm d =,长度800mm l =,材料为Q235钢,200GPa E =,200MPa p σ=。求压杆的临界载荷cr F 。 解:根据欧拉公式 239412 22 20010201024.2kN ()64(10.8)cr EI F l ππμ-????===?? 此时横截面上的正应力 3 cr P 26 424.21077MPa 2010 F A σσπ-??===≤?? 图 11-8

09工程力学答案 第11章 压杆稳定讲课教案

09工程力学答案第11章压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故

《材料力学》压杆稳定习题解

第九章压杆稳定习题解 [习题9-1]在§ 9-2中已对两端球形铰支的等截面细长压杆,按图a所示坐标系及挠度曲线 状时,压杆在F cr作用下的挠曲线微分方程是否与图a情况下的相同,由此所得F cr公式又是否相同。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 Elw" M(x)°( c)、(d)的坐标系相同,它们具有相同的挠曲线微分方程: Elw" M (x),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 形状,导出了临界应力公式P cr 2EI 。试分析当分别取图b,c,d所示坐标系及挠曲线形解:挠曲线微分方程与坐标系的y轴正向规定有关,与挠曲线的位置无关。 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: P er 2EI

?为什么?并由此判断压杆长因数 是否可能大于2。 [习题9-2]图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 所示杆在中间支承处不能转动)? 它们能承受的压力与原压相的相当长度 丨的平方成反比,其中,为与约束情况有关的长 度系数。 (a ) l 1 5 5m (b ) l 0.7 7 4.9m (e ) l 0.5 9 4.5m (d ) l 2 2 4m (e ) l 1 8 8m (f ) l 0.7 5 3.5m (下段); l 0.5 5 2.5m (上段) 故图e 所示杆F cr 最小,图f 所示杆F cr 最大。 [习题9-3]图a,b 所示的两细长杆均与基础刚性连接, 但第一根杆(图a )的基础放在弹性 解:压杆能承受的临界压力为: P er 2 EI (.l )2 由这公式可知, 对于材料和截面相同的压杆,

材料力学习题册答案-第9章压杆稳定

第九章压杆稳定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A、弯曲变形消失,恢复直线形状; B、弯曲变形减少,不能恢复直线形状; C、微弯状态不变; D、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C ) A、完全消失 B、有所缓和 C、保持不变 D、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A、长度 B、横截面尺寸 C、临界应力 D、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A、长度,约束条件,截面尺寸和形状; B、材料,长度和约束条件; C、材料,约束条件,截面尺寸和形状; D、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m,直径50mm。其柔度为 ( C ) ;;; 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A、弹性模量E越大或柔度λ越小; B、弹性模量E越大或柔度λ越大; C、弹性模量E越小或柔度λ越大; D、弹性模量E越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A、λ≤ 、λ≤ C、λ≥ D 、λ≥

10、在材料相同的条件下,随着柔度的增大( C ) A 、细长杆的临界应力是减小的,中长杆不是; B 、中长杆的临界应力是减小的,细长杆不是; C 、细长杆和中长杆的临界应力均是减小的; D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A ) A.?临界应力一定相等,临界压力不一定相等; B.?临界应力不一定相等,临界压力一定相等; C.?临界应力和临界压力一定相等; D. 临界应力和临界压力不一定相等; 12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。 A 、细长杆的σe 值与杆的材料无关; B 、中长杆的σe 值与杆的柔度无关; C 、中长杆的σe 值与杆的材料无关; D 、粗短杆的σe 值与杆的柔度无关; 13、细长杆承受轴向压力P 的作用,其临界压力与( C )无关。 A 、杆的材质 B 、杆的长度 C 、杆承受压力的大小 D 、杆的横截面形状和尺寸 二、计算题 1、 有一长l =300 mm ,截面宽b =6 mm 、高h =10 mm 的压杆。两端铰接,压杆材料为Q235钢,E =200 GPa ,试计算压杆的临界应力和临界力。 解:(1)求惯性半径i 对于矩形截面,如果失稳必在刚度较小的平面内产生,故应求最小惯性半径 mm 732.112 612 1 123min min == =?== b bh hb A I i (2)求柔度λ λ=μl /i ,μ=1, 故 λ=1×300/=519>λp =100 (3)用欧拉公式计算临界应力 () MPa 8.652.1731020ππ2 4 22 2cr =?= = λ σE (4)计算临界力 F cr =σcr ×A =×6×10=3948 N= kN 2、一根两端铰支钢杆,所受最大压力KN P 8.47=。其直径mm d 45=,长度mm l 703=。 钢材的E =210GPa ,p σ=280MPa ,2.432=λ。计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=λ(MPa)。 试 (1)判断此压杆的类型; (2)求此杆的临界压力;

新材料力学习题册答案-第9章 压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E πσ D 、λ≥s E π σ

第11章 压杆稳定

第十一章 压杆稳定 11-1 图示压杆在主视图a 所在平面内,两端为铰支,在俯视图b 所在平面内,两端为固定,材料的为Q235钢,弹性模量GPa 210=E 。试求此压杆的临界力。 (a ) (b ) 解: 在主视图所在平面内,如图(a)所示,压杆的柔度为 6.1386240 323212 13=?==?= =h l bh bh l i l a a a μλ 在俯视图所在平面内,如图(b)所示,压杆的柔度为 9.1034240 3312 5.03=?=== =b l bh hb l i l b b b μλ ∵ 100p ≈>>λλλb a ,∴为大柔度压杆,且失稳时在主视图平面内 失稳 故压杆的临界力为 kN 9.258N 40606.1381021023 222cr =????= =πλπA E F a 11-2 两端固定的矩形截面细长压杆,其横截面尺寸为 m m 60=h ,m m 30=b ,材料的比例极限MPa 200p =σ,弹性模量GP a 210=E 。试求此压杆的临界力适用于欧拉公式时的最小长度。 解: 由于杆端的约束在各个方向相同,因此,压杆将在惯性矩最小的平面内失稳,即压杆的横截面将绕其惯性矩为最小的形心主惯性轴转动。 3 2123 min min b bh hb A I i === 欧拉公式适用于max λp λ≥,即 m i n m a x i l μλ=p σπ E ≥ 由此得到 =≥P E i l σμπm i n m 76.1m 10 200102105 .0321030326 9 3p =?????= -π σμπE b 故此压杆适用于欧拉公式时的最小长度为1.76m 。

!第八章压杆稳定性要点

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

第十三章压杆稳定

第十三章压杆稳定 一、教学目标和教学内容 1.教学目标 深入理解弹性平衡稳定性的概念 熟练应用压杆的临界力公式,掌握杆端约束对临界力的影响 压杆的分类与临界应力曲线 掌握压杆稳定性校核的方法 2.教学内容 稳定的概念 两端铰支细长压杆的欧拉临界力 杆端约束的影响 临界应力曲线 压杆稳定性的校核 二、重点难点 重点:欧拉临界力公式、压杆的分类、压杆稳定性的校核 难点:欧拉临界力公式、压杆的分类、压杆稳定性的校核 三、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 6学时 五、讲课提纲 1、稳定的概念 1.1分叉点失稳 1.1.1三种平衡状态 (1)刚球的稳定性 如物体因受了干扰稍为偏离它原来的平衡位置,而在干扰消除后它能够回到原来位置的平衡状态,就说它原来位置的平衡状态是稳定的。若干扰消除后它不回到原来位置的平衡状态,就说原来位置的平衡状态不稳定。所以一个刚体的稳定性是指它维持其原有位置的平衡状态的能力。

图 13.1 在图13.l a中,刚体小球A、和C各在重力W与反力R作用下处于平衡状态。但是,A的平衡状态是稳定的,B和C的平衡状态却不稳定。因为若分别以微干扰力使三球稍微移动到其邻近位置又撤去干扰力之后,原在谷底A的球到了A',因反力不能平衡重力,必滚回谷底A,最终在A静平衡。原在峰顶B的球到了B',反力和重力的不平衡使它往低处滚,非滚到某一谷底不会停止.绝不可能回到原位置峰顶B去静平衡。原在C的球则在干扰力让它到达之处就地静止并平衡。因 R和W始终在一直线上. 图13.lb中几条线分别表示山谷、平原、和山峰。谷坡越陡,坡上的球越易回谷底平衡, 因而球在谷底的平衡越稳定.谷坡越平,稳定性越小,谷变为平地,球的平衡的稳定性降为 零。平地若变为峰,球在峰顶,其平衡就不稳定了。所以,球在平地的平衡,是稳定平衡与不稳定平衡的分界,并称为临界平衡或中性平衡。 (2)弹性压杆的稳定性 所谓弹性压杆的稳定性是指弹性压杆在中心压力作用下的直线位形的平衡状态的稳定性;又因弹性体受力后的任一平衡状态都对应着某个唯一的变形状态,所以也是指弹性压杆受压后的轴向缩短的变形状态的稳定性。 设有一两端球铰支座的弹性均质等直杆受毫无偏心的轴向压力作用(这就是所谓的理想压杆),杆呈轴向缩短变形状态,如图13.2a。现在要判断这种变形状态(或直线位置的平衡状态)是否稳定。要作这种判断,可加一微小干扰力Q,使杆轴到达一个微弯曲线位置,

相关文档
相关文档 最新文档