文档视界 最新最全的文档下载
当前位置:文档视界 › 影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动

影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动

影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动
影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动

影响齿轮工作平稳性的加工误差分析

影响齿轮传动工作平稳性的主要因素是齿轮的齿形误差△ff和基节偏差△fpb。齿形误差会引起每对齿轮啮合过程中传动比的瞬时变化;基节偏差会引起一对齿过渡到另一对齿啮合时传动比的突变。齿轮传动由于传动比瞬时变化和突变而产生噪声和振动,从而影响工作平稳性精度。

滚齿时,产生齿轮的基节偏差较小,而齿形误差通常较大。下面分别进行讨论。(1)齿形误差

齿形误差主要是由于齿轮滚刀的制造刃磨误差及滚刀的安装误差等原因造成的,因此在滚刀的每一转中都会反映到齿面上。常见的齿形误差有如图9-6所示的各种形式。图a为齿面出棱、图b为齿形不对称、图c为齿形角误差、图d为齿面上的周期性误差、图e为齿轮根切。

由于齿轮的齿面偏离了正确的渐开线,使齿轮传动中瞬时传动比不稳定,影响齿轮的工作平稳性。

(2)基节极限偏差滚齿时,齿轮的基节极限偏差主要受滚刀基节偏差的影响。滚刀基节的计算式为:

pb0=pn0cosα0=pt0cosλ0cosα0≈pt0cosα0

式中:pb0――滚刀基节;

pn0――滚刀法向齿距;

pt0――滚刀轴向齿距;

α0――滚刀法向齿形角;

λ0――滚刀分度圆螺旋升角,一般很小,因此cosλ0≈1。

由上式可见,为减少基节偏差,滚刀制造时应严格控制轴向齿距及齿形角误差,同时对影响齿形角误差和轴向齿距误差的刀齿前刀面的非径向性误差也要加以控制。

影响齿轮接触精度的加工误差分析

齿轮齿面的接触状况直接影响齿轮传动中载荷分布的均匀性。滚齿时,影响齿高方向的接触精度的主要原因是齿形公差△ff和基节极限偏差△fpb。影响齿宽方向的接触精度的主要原因是齿向公差△Fβ。产生齿向公差的主要原因:

(1)滚齿机刀架导轨相对于工作台回转轴线存在平行度误差。

(2)齿坯装夹歪斜由于心轴、齿坯基准端面跳动及垫圈两端面不平行等引起的齿坯安装歪斜,会产生齿向误差。

(3)滚切斜齿轮时,除上述影响因素外,机床差动挂轮计算的误差,也会影响齿轮的齿向误差。

谐波齿轮传动系统传动误差的精细分析

谐波齿轮传动系统传动误差的精细分析" 辛洪兵 摘要!分析输出刚轮切向综合误差和基节误差等多项重要误差源对传动误差的贡献及其频率,采用按随机过程理论得到的误差平均因子和单位换算系统,建立统一的较全面反映各种误差因素的单台具有杯形或环形柔轮的谐波齿轮传动装置的传动误差计算公式,按"!原则,导出一批谐波齿轮传动装置的传动精度统计公式。它们可分别应用于具有杯形或环形柔轮的谐波齿轮传动的精度评估,或应用于非线性动力学研究中传动误差环节的建模。 关键词:谐波齿轮传动!传动误差!传动精度!精细分析 中图分类号:#$%&’!文献标识码:(!文章编号:%")%—&%&&(’**+)*’—*%*,—*& $%&’(&()*+%+,-.(/0,&%12/%3’4/(&+0%++%,&’//,/ 5%&6,&78%&7 98+4/(14!(-./0121342562782-9:21.-;9<-36:=83:<-13<36.-1>:11:<-266<6<53.-?2-3:./9<>@<1:32266<6.-;=.12@:394266<6<5 <83@831@/:-2.-;<3426:>@<63.-3266<61<86921:-4.6><-:9;6:A2,34.3.62>:112;:-@62A:<81138;:21,.-;:-36<;8921-2B266<6C.AC 26.?25.93<6;26:A2;56<>13<94.13:9@6<9211342<60.-;8-:3C36.-15<6>.3:<-9<255:9:2-3,342-213.=/:14213428-:5<6>5<6>8/.5<6 36.-1>:11:<-266<69./98/.3:-?5<6<-2123<54.6><-:9;6:A2;2A:92,B423426<6-<3:3:-9/8;21.98@130/25/2D1@/:-2<6.6:-?130/2 5/2D1@/:-2,.-;=.12;<-342"!342<60,12318@34213.3:13:95<6>8/.<536.-1>:11:<-.9986.909./98/.3:-?5<6.18@@/0<54.6><-:9 ;6:A2E#425<6>8/.29.-=2812;:-4.6><-:9;6:A234.3.@@/:21.98@130/25/2D1@/:-2<6.6:-?130/25/2D1@/:-?,.-;812;:-342 -<-/:-2.6;0-.>:96212.6945<636.-1>:11:<-266<6><;2/:-?E :’*;,/2+:6(/0,&%12/%3’!

齿轮的误差及其分析

齿轮误差及其分析 第一节:渐开线圆柱齿轮精度和检测 对于齿轮精度,主要建立了下列几个方面的评定指标: 一.运动精度: 评定齿轮的运动精度,可采用下列指标: 1.切向综合总偏差F i′: 定义:被测齿轮与理想精确的测量齿轮单面啮合时在被测齿轮一转内,(实际转角与公称转角之差的总幅度值)被测齿轮的实际转角与理论转角的最大差值。切向 综合总偏差F i′。 (它反映了齿轮的几何偏心、运动偏心和基节偏差、齿形误差等综合结果。) Δ 2.齿距累积总偏差F p,齿距累积偏差F pk。 定义:齿轮同侧齿面任意弧段(k=1或k=z)内的最大齿距累积偏差。它表现为齿距累积偏差曲线的总幅值。——齿距累积总偏差。 在分度圆上,k个齿距的实际弧长与公称弧长之差的最大绝对值,称k个齿距累积误差ΔF pk。 k为2到小于Z/2的正数。 这两个误差定义虽然都是在分度圆上,但实际测量可在齿高中部进行。这项指标主

要反映齿轮的几何偏心、运动偏心。用ΔF p 评定不如ΔF i′全面。因为ΔF i是在连续切向综合误差曲线上取得的,而ΔF p不是连续的,它是折线。 ΔF i′= ΔF p+ Δf f 测量方法:一般用相对法,在齿轮测量机上测量。 3.齿圈径向跳动ΔF r与公法线长度变动ΔF w: ΔF r定义:在齿轮一转范围内,测头在齿槽内,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。 它只反映齿轮的几何偏心,不能反映其运动偏心。(用径跳仪测量检测。) 由于齿圈径跳ΔF r 只反映齿轮的几何偏心,不能反映其运动偏心。因此要增加另一项指标。公法线长度变动ΔF w。 ΔF w定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。 ΔF w=W max-W min 测量公法线长度实际是测量基圆弧长,它反映齿轮的运动偏心。 测量方法:用公法线千分尺测量。 4.径向综合误差ΔF i″和公法线长度变动ΔF w: 齿轮的几何偏心还可以用径向综合误差这一指标来评定。 ΔF i″定义:被测齿轮与理想精确的测量齿轮双面啮合时,在被测齿轮一转内,双啮中心距的最大变动量。 二.工作平稳性的评定指标: 1.齿切向综合误差Δf i′: 定义:被测齿轮与理想精确的测量齿轮单面啮合时,在被测齿轮一齿距角内,实际转角与公称转角之差的最大幅度值。以分度圆弧长计值。它反映出基节偏差 和齿形误差的综合结果。 测量方法:与ΔF i′同时测量出。 2.齿形误差Δf f与基节偏差Δf pb: 齿形误差Δf f 定义:在端截面上,齿形工作部分内(齿顶倒棱部分除外),包容实 际齿形且距离为最小的两条设计支形间的法向距离,称为齿

圆柱齿轮受力分析

轮齿的受力分析 1. 直齿圆柱齿轮受力分析 图为直齿圆柱齿轮受力情况,转矩T1由主动齿轮传给从动齿轮。若忽略齿面间的摩擦力,轮齿间法向力Fn的方向始终沿啮合线。法向力Fn在节点处可分解为两个相互垂直的分力:切于分度圆的圆周力Ft 和沿半径方向的径向力Fr 。 式中:T1-主动齿轮传递的名义转矩(N·mm),,Pl为主动齿轮传递的功率(Kw),n1为主动齿轮的转速(r/min); d1-主动齿轮分度圆直径(mm); α-分度圆压力角(o)。 对于角度变位齿轮传动应以节圆直径d`和啮合角α`分别代替式(9.44)中的d1 和α。 作用于主、从动轮上的各对力大小相等、方向相反。从动轮所受的圆周力是驱动力,其方向与从动轮转向相同;主动轮所受的圆周力是阻力,其方向与从动轮转向相反。径向力分别指向各轮中心(外啮合)。 2. 斜齿轮受力分析 图示为斜齿圆柱齿轮受力情况。一般计算,可忽略摩擦力,并将作用于齿面上的分布力用作用于齿宽中点的法向力Fn 代替。法向力Fn 可分解为三个相互垂直的分力,即圆周力Ft 、径向力Fr 及轴向力Fa 。它们之间的关系为

式中:αn-法向压力角(°); αt-端面压力角;(°) β-分度圆螺旋角(°); 作用于主、从动轮上的各对力大小相等、方向相反。圆周力Ft 和径向力Fr 方向的判断与直齿轮相同。轴向力Fa 的方向应沿轴线,指向该齿轮的受力齿面。通常用左右手法则判断:对于主动轮,左旋时用左手(右旋时用右手),四指顺着齿轮转动方向握住主动轮轴线,则拇指伸直的方向即为轴向力Fa1 的方向。 2 计算载荷和载荷系数 名义载荷上述所求得的各力是用齿轮传递的名义转矩求得的载荷。 计算载荷由于原动机及工作机的性能、齿轮制造及安装误差、齿轮及其支撑件变形等因素的影响,实际作用于齿轮上的载荷要比名义载荷大。因此,在计算齿轮传动的强度时,用载荷系数K对名义载荷进行修正,名义载荷与载荷系数的乘积称为计算载荷。

机械设计---齿轮作图题

1.图1所示蜗杆传动——斜齿圆柱齿轮传动组成的传动装置,蜗杆为主动件,若蜗杆1的转动方向如图中n1所示,蜗杆齿的螺旋线方向为右旋。 试分析: (1)为使中间轴I所受的轴向力能抵消一部分,确定蜗轮2、斜齿轮3和斜齿轮4的轮齿旋向; (2)在图1的主视图上,画出蜗轮2的圆周力F t2、径向力F r2和斜齿轮3的圆周力F t3、径向力F r3 2.在图6上直接改正轴系结构的错语。(轴端安装联轴器) 图 6 1.(1)蜗轮2、齿轮3、齿轮4的旋向………………(6分) (2)F a2、F a3的方向………………(4分) (3)F r2、F t2、F r3、F t3的方向………………(4分) 2.答案图。

①应画出垫片; ②应画出定位轴套,并将装齿轮的轴段长度缩短; ③应画出键; ④应降低轴肩高度,便于拆卸轴承; ⑤画出轴径变化,减小轴承装配长度; ⑥画出密封件; ⑦画出联轴器定位轴肩; ⑧键长应改为短于轮毂长度; 每改正1处错误 ………………(2分) (改正6处错误得满分) 3.图示为由圆锥齿轮和斜齿圆柱齿轮组成的传动系统。已知:Ⅰ轴为输入轴,转向如图所示。 (1)在下图中标出各轮转向。(2分) (2)为使2、3两轮的轴向力方向相反,确定并在图中标出3、4两轮的螺旋线方向。(2分) (3)在图中分别标出2、3两轮在啮合点处所受圆周力t F 、轴向力a F 和径向力r F 的方(4分) (1)各轴转向如图所示。 (2) 3轮左旋,4轮右旋。 (3) 2、3两轮的各分力方向下图所示。 F F r2 F r3t3 F a2 4. 图3中为一对圆锥滚子轴承支承的轴系,齿轮油润滑,轴承脂润滑,轴端装有联轴器。试指出图中的结构错误(在图中错误处写出序号并在下半部改正,按序号简要说明错误的内容)(每指出一处,并正确说明错误内容和改正的,得1分,总分为10分) ①键的位置应与齿轮处在同一直线上,而且结构不正确; ②轴承盖孔径应大于轴径,避免接触;

影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动

影响齿轮工作平稳性的加工误差分析 影响齿轮传动工作平稳性的主要因素是齿轮的齿形误差△ff和基节偏差△fpb。齿形误差会引起每对齿轮啮合过程中传动比的瞬时变化;基节偏差会引起一对齿过渡到另一对齿啮合时传动比的突变。齿轮传动由于传动比瞬时变化和突变而产生噪声和振动,从而影响工作平稳性精度。 滚齿时,产生齿轮的基节偏差较小,而齿形误差通常较大。下面分别进行讨论。(1)齿形误差 齿形误差主要是由于齿轮滚刀的制造刃磨误差及滚刀的安装误差等原因造成的,因此在滚刀的每一转中都会反映到齿面上。常见的齿形误差有如图9-6所示的各种形式。图a为齿面出棱、图b为齿形不对称、图c为齿形角误差、图d为齿面上的周期性误差、图e为齿轮根切。 由于齿轮的齿面偏离了正确的渐开线,使齿轮传动中瞬时传动比不稳定,影响齿轮的工作平稳性。 (2)基节极限偏差滚齿时,齿轮的基节极限偏差主要受滚刀基节偏差的影响。滚刀基节的计算式为: pb0=pn0cosα0=pt0cosλ0cosα0≈pt0cosα0 式中:pb0――滚刀基节; pn0――滚刀法向齿距; pt0――滚刀轴向齿距; α0――滚刀法向齿形角; λ0――滚刀分度圆螺旋升角,一般很小,因此cosλ0≈1。 由上式可见,为减少基节偏差,滚刀制造时应严格控制轴向齿距及齿形角误差,同时对影响齿形角误差和轴向齿距误差的刀齿前刀面的非径向性误差也要加以控制。 影响齿轮接触精度的加工误差分析 齿轮齿面的接触状况直接影响齿轮传动中载荷分布的均匀性。滚齿时,影响齿高方向的接触精度的主要原因是齿形公差△ff和基节极限偏差△fpb。影响齿宽方向的接触精度的主要原因是齿向公差△Fβ。产生齿向公差的主要原因: (1)滚齿机刀架导轨相对于工作台回转轴线存在平行度误差。 (2)齿坯装夹歪斜由于心轴、齿坯基准端面跳动及垫圈两端面不平行等引起的齿坯安装歪斜,会产生齿向误差。 (3)滚切斜齿轮时,除上述影响因素外,机床差动挂轮计算的误差,也会影响齿轮的齿向误差。

渐开线圆柱齿轮测量误差的分析与修正研究

编订:__________________ 审核:__________________ 单位:__________________ 渐开线圆柱齿轮测量误差的分析与修正研究Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5503-23 渐开线圆柱齿轮测量误差的分析与 修正研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 渐开线圆柱齿轮在工业生产中的应用十分广泛,齿轮测量的误差也一直受到人们的关注。通过描述渐开线圆柱齿轮测量误差的来源,分析了齿轮测量中误差的产生过程,并对当前齿轮测量中心误差的修正补偿方法进行了探讨。 渐开线圆柱齿轮是众多齿轮种类中最基本、应用最广泛的齿轮。在工业生产的机械装备中,最主要、最基本的零部件之一就是渐开线齿轮,那么渐开线齿轮的设计水平与加工精度直接影响工业产品的质量,而评价齿轮质量的重要方法就是测量齿轮偏差项。随着齿轮应用的日益广泛,齿轮制造误差对齿轮机构传动性能的影响逐渐显露,人们对于齿轮测量技术及其仪器的研究也愈发深入。

1.齿轮测量误差的来源分析 齿轮由于形状复杂,所以描述齿轮的参数很多,因此在测量中产生误差的原因也很多。不管是对齿轮的加工方法要求如何精确,也不管是对齿轮的加工精度要求如何,造成其仪器测量误差中的系统误差主要来源是测量主机稳定性、运动控制、测球半径和齿轮安装。 1.1.测量主机稳定性 测量主机是测量齿轮的主体,测量主机对齿轮测量误差的影响主要是主机工作台的基圆盘的回转精度对齿轮测量误差的影响。工作台的回转精度不高,就是上下顶尖的直线度和垂直度不好,也就是说运动中心线不稳定,这样基圆盘回转的同时被测齿轮也产生相同的运动。这样就会造成被测齿轮的回转与测球回转不同步,齿轮与测球的接触就不是连续接触,测量得出来的齿形不是刀具加工的渐开线齿形,带有测量误差。工作台基圆盘的回转精度是由仪器的传动部分决定的,它们的制造和装配误差在传递过程中必然要

齿轮传动的使用要求

齿轮传动的使用要求 1、传递运动的准确性: 影响因素:几何偏心、运动偏心。 检验参数: (1)切向综合总偏差F i’:被测齿轮与测量齿轮单面啮合时,被测齿轮一转内,齿轮分度园上实际圆周位移与理论圆周位移的最大差值。(2)齿距累积总偏差F p:齿轮同侧齿面任意弧段内的最大齿距累积偏差。(万能齿轮检查仪) (3)径向综合总偏差F i“”:产品齿轮的左右齿面同时与测量齿轮接触,并转过一整圈时出现的中心距最大值和最小值之差。 (4)径向跳动F r:齿轮轴线的最大和最小径向距离之差。(齿圈径向跳动检查仪) 2、传动的平稳性: 影响因素:两齿轮的基节不等和齿廓误差。 检验参数: (1)齿廓总偏差F α:在计算范围内,包容实际齿廓迹线的两条与平均齿廓迹线完全相同的曲线间的距离,且两条曲线与平均齿廓迹线的距离为常数。 (2)一齿切向综合偏差f i‘:在一个齿距的切向综合偏差,它能综合地反映基节偏差和齿形误差在转一齿过程中的速比影响。 (3)一齿径向综合偏差f i“”: (4)单个齿距偏差f pt:在端面上,在接近齿高中部的一个与齿轮轴

线同心园上,实际齿距与理论齿距的代数差。 (5)基园齿距偏差f pb 3、载荷分布均匀性 影响因素:主要是由机床刀架导轨与工作台回转轴线不平行,齿呸端面的跳动或心轴歪斜。 检验参数: 螺旋线总偏差F β:包容实际螺旋线迹线的两条螺旋线迹线的距离。 螺旋线形状f f β:包容实际螺旋迹线的两条与平均螺旋线迹线完全的曲线间的距离,且两条曲线与平均螺旋线迹线的距离为常数。 螺旋线倾斜偏差f H β:在计算范围内的两端与平均螺旋线迹线相交的设计螺旋线迹线间的距离。 4、齿侧间隙 影响因素:主要因素,齿厚偏差即实际齿厚与公称齿厚之差是影响齿侧间隙的主要因素。另外,两轮安装的中心距偏差。 检验参数 (1)齿厚偏差E sn:实际齿厚和公称齿厚之差。(测齿卡尺) (2)公法线长度偏差E bn:公法线长度实际值与公差值之差。(公法线千分尺) 测量步骤:计算模数m n==D e/(Z+2),确定跨齿数,n==Z/9+0.5

齿轮误差分析

1.1 齿圈径向跳动误差(即几何偏心) 齿圈径向跳动是指在齿轮一转范围内,测头在齿槽内或轮齿上,与齿高中部双面接触,测头相对于轮齿轴线的最大变动量。也是轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与工作台的回转中心安装不重合或偏差太大而引起。或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。 1.2公法线长度误差(即运动偏心) 滚齿是用展成法原理加工齿轮的,从刀具到齿坯间的分齿传动链要按一定的传动比关系保持运动的精确性。但是这些传动链是由一系列传动元件组成的。{HotTag}它们的制造和装配误差在传递运动过程中必然要集中反映到传动链的末端零件上,产生相对运动的不均匀性,影响轮齿的加工精度。公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机工作台蜗轮副回转精度不均匀造成的,还有滚齿机工作台圆形导轨磨损、分度蜗轮与工作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。 1.3齿形误差分析 齿形误差是指在齿形工作部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。在实际加工过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。齿轮的基圆是决定渐开线齿形的惟一参数,如果在滚齿加工时基圆产生误差,齿形势必也会有误差。基圆半径R= 滚刀移动速度/工作台回转角速度x cos ao (ao为滚刀原始齿形角),在滚齿加工过程中渐开线齿形主要靠滚刀与齿坯之间保持一定速比的分齿来保证,由此可见,齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。同时滚刀在安装中产生的径向跳动、轴向窜动(即安装误差)也对齿形误差有影响。常见的齿形误差有不对称、齿形角误差(齿顶变肥或变厚)、产生周期误差等。 1.4齿向误差分析 齿向误差是在分度圆柱面上,全齿宽范围内,包容实际齿向线的两条设计齿向线的端面距离。引起齿向误差的主要原因是机床、刀架的垂直进给方向与零件轴线有偏移,或上尾座顶尖中心与工作台回转中心不一致,还有滚切斜齿轮时,差动挂轮计算误差大,差动传动链齿轮制造和调整误差太大。另外夹具和齿坯制造、安装、调整精度低也会引起齿向误差。 1.5齿面粗糙度分析 齿面粗糙度不好一般有几种现象:发纹、啃齿、鱼磷、撕裂。 引起齿面粗糙度差的主要原因有以下几方面:机床、刀具、工件系统整体刚性不足、间隙大;滚刀和工件相对位置发生变化;滚刀刃磨不当、零件材质不均匀;切削参数选择不合适等。

(完整版)机械设计受力分析题

1.(10分) 如图4-1传动系统,要求轴Ⅱ、Ⅲ上的轴向力抵消一部分,试确定: 1)蜗轮6的转向; 2)斜齿轮3、4和蜗杆5、蜗轮6的旋向; 3)分别画出蜗杆5,蜗轮6啮合点的受力方向。 1.(12分)(1) 蜗轮6的转向为逆时针方向; (2分) (2)齿轮3左旋,齿轮4右旋,蜗杆5右旋,蜗轮6右旋;(4分) (3)蜗杆5啮合点受力方向如图(a);蜗轮6啮合点受力方向如图(b)。(6分) 图 4-1

2、传动力分析 如图所示为一蜗杆-圆柱斜齿轮-直齿圆锥齿轮三级传动。已知蜗杆为主动,且按图示方向转动。试在图中绘出: (1)各轮传向。(2.5分) (2)使II 、III 轴轴承所受轴向力较小时的斜齿轮轮齿的旋向。(2分) (3)各啮合点处所受诸分力t F 、r F 、a F 的方向。(5.5分) 3.(10分)如图4-1为圆柱齿轮—蜗杆传动。已知斜齿轮1的转动方向和斜齿轮2的轮齿旋向。 (1)在图中啮合处标出齿轮1和齿轮2所受轴向力F a1和F a2的方向。 (2)为使蜗杆轴上的齿轮2与蜗杆3所产生的轴向力相互抵消一部分,试确定并标出蜗杆3轮齿的螺旋线方向,并指出蜗轮4轮齿的螺旋线方向及其转动方向。 (3)在图中啮合处标出蜗杆和蜗轮所受各分力的方向。 (1)在图中啮合处齿轮1和齿轮2所受轴向力F a1和F a2的方向如图(2分)。 (2)蜗杆3轮齿的螺旋线方向,蜗轮4轮齿的螺旋线方向及其转动方向如图(2分)。 (3)蜗杆和蜗轮所受各分力的方向。(6分)

4.(15分) 解:本题求解步骤为; (1.)由I轴给定转向判定各轴转向; (2.)由锥齿轮4.5轴向力方向及Ⅲ、Ⅳ轴转向可定出3、6的螺旋方向; (3.)继而定1、2的螺旋方向; (4.)由蜗杆轴力Fa6判定Ft7,从而确定蜗杆转动方向; (5.)判别各力的方向。

齿轮传动链的运动精度与加工误差

1996—4目 次 ?人物专访? 走自己的路 创中国之“微软” k k 访青年机译专家陆肇雄博士左琼峰(插5)……?试验研究? 高强度高韧性高耐蚀性非晶合金  Fe-C r-B -P -Se 的研究白聿钦(1)………………变截面细长杆振动车削的试验研究祝锡晶等(3)………切屑折断过程及槽型CAD 专家  系统研究郑敏利等(4) (2) 1 4 C r-1M 材料切削 硬化规律的研究董丽华等(6)…………………………提高磁栅传感速度的研究段丽华等(7)…………………热管式换热器热工性能试验研究白奉臣等(9)…………谷物干燥机通风干燥工艺及参数 试验研究李景慧等(11)…………………………………圆周均布多轴头齿轮传动系统的 分析与研究隋秀凛等(13)……………………………新设计?新装置?新结构 镗床加工空间凸轮特殊装置的设计张碚等(14)………任意斜截圆柱面壳体的展开计算曹中生(16) …………整体镗床用可编程电控及变频  调速系统的设计熊新民(17) ……………………………YDX-1射孔弹生产线自动称药机  输料机的设计张永德等(19) …………………………工件以圆孔在心轴上定位误差的 分析和计算彭庚新(21)……………………………………变螺距螺旋的设计 王朝辉等(22) ………………………S 型深孔麻花钻张 霞(24) ………………………………筒体大开孔结构的应力分析设计法 徐 毅(26) ………一种新颖的轮毂联结结构分析陈龙厚(28)……………?实用技术? 编网机超越离合器的应用沈民光(29)……………………可编程控制器在变频调速供水 系统中的应用陈 涛等(30)………………………………磁性流体密封技术朱孝平等(32)…………………………小型转炉氧枪升降装置结构分析刘剑平(33)……………用解析法求解回转体的不平衡重量李克原等(34) ……预拉处理对链条疲劳强度的影响王严兴等(35) ……… ?工厂经验?传动链中心距测量仪 兰宏等(37) ………………………下穿横梁的铸造工艺吕烨等(38)…………………………聚氨脂橡胶模在应用中几个主要 问题的分析廖 江(40)……………………………………汽车交流发电机和调节器主要 故障诊断与排除王 兴(41)………………………………液压油缸球铰架制造新工艺于润海(42)…………………木工机械设备的选型佟小平等(43)………………………套类零件不停车加工内胀式定心  夹紧装置夏建中(44)……………………………………浅谈机械产品的艺术造型王 琨等(45)………………?标准化? 表面粗糙度代号及其注法新旧标准  对比分析李瑞芬等(46)…………………………………剖析米制锥螺纹的标准示例李 琦等(48)……………?理论探讨? 齿轮传动链的运动精度与加工误差程友联(49)…………脂润滑点接触弹流的数值分析蓝嘉铭等(51)……………连铸机预应力结构拉矫辊的设计思想张春宜等(53)…?企业管理? 企业公关形象的重要作用 韩晓萍等(55) ……………… 封面广告说明(56)…………………………………………封三广告说明(54)…………………………………………信息(18) ……………………………………………M a i n Top ic 4 1996D evel op le Ch ina’s M icro soft Docto r L u Zhaox i ong Specilist on tran slating m ach ine Zuo Q i ongfeng (插5) ………………………Study of H igh strength h igh ductility co rro si on resistan t a mo rphou sall oy Bai Yuqin (1)…………T est study on o scilating tu rn ing of irregu lar  BA R Zhu X ijing et al (3)………………………T est study of ch i p b reak ing p rocess and  sl o t CAD syste m Zheng M in li et al (4) ………Study of cu tting w o rk harden ing of 21 4C r -1M o Dong L ihua et al (6)………………… Study on sen so ring speed of m agnetic grid D uan L ihua et al (7) ………………………T est study on ther m al m ach in ical p roperties of p i pe heat exchanger Bai Fengchen et al (9)……T est study of grain drying p rocess and specificati on of drying m ach ine L i J inghu i et al (11)…………………………A nalysis and study of circum ference un ifo r m m u lti sp indle gearing Su i x iu lin et al (13)………D evel op ing calcu lati on of m iter cylinder  Cao Zhongsheng (16)……………………Su rvey of in tegral bo ring m ach ine PC frequency conversi on mon ito ring syste m X i ong X inm in (17) …………………………D esign of W eigh ing and conveying equ i pm en t in YDX-1ho le m ak ing bu llet p roducti on line Zhang Yongde et al (19)……………………D esign of V ari ouab le p itch scre w W ang Zhaohu i et al (22)…………………… S type t w ist drill Zhang X ia (24)…………… Stress an lysis design m ethod of cylinder w ith large dia m eter ho le Xu Y i (26)……………… Structu ral analysis of ne w hub coup ling chen L onghou (28) …………………………本期责任编辑:杨桂霞 机械工程师 1996年第4期(总第73期)  出版时间:1996年8月15日  地 址:哈尔滨市动力区文治头道街30号 电 话:2119234 邮政编码:150040 广告经营许可证:黑工商广字(哈动003) 订购处:全国各地邮局

齿轮传动例题

图示为一对锥齿轮与一对斜齿圆柱齿轮组成的二级减速器。已知:斜齿轮m =2mm, n z 3 F a3 2221210125019 T T???''' cos 22 解:

T P n 161163955109551070750 8913310=?=??=??...N mm d m z 113525806347576==?''' =n cos mm β.cos . F T t ??22891331013 .F a F r z 2=50, β=10?,齿轮3的参数m n =4mm ,z 3=20。求: 1)使II 轴所受轴向力最小时,齿轮3的螺旋线应是何旋向?在图上标出齿轮2、3的螺 23解: 123)F F a a32=,由F F a t =tan β得:F F t2t3tan tan ββ23= 由转矩平衡,T T 23=得:F d F d t2t3?=?2322 ,代入得 tan tan tan /cos /cos tan ββββββ323223322 2===F F d d m z m z t2t3n3n2 即sin sin sin .ββ3322420250 1001389==????=m z m z n3n2

β 分析图中斜齿圆柱齿轮传动的小齿轮受力,忽略摩擦损失。已知:小齿轮齿数z 1=18,大齿轮齿数z 2=59,法向模数m n =6mm ,中心距a =235mm ,传递功率P =100kW ,小齿轮转速n 1=960r/min ,小齿轮螺旋线方向左旋。求: 1)大齿轮螺旋角β的大小和方向; 2)小齿轮转矩T 1; 34 解: 齿轮螺旋角 586.10235 2)5918(6arccos 2)(arccos 21 n =?+?=+=a z z m β 小齿轮分度圆直径mm 069.109586.10cos 186cos 1n 1=?=?= βz m d 小齿轮转矩mm N 667.994791960 1001055.91055.96261?=??=?=n P T 切向力1 12d T F t ==N 5.18241069.109667.9947912=? 轴向力==βtan t a F F 18241.5cos10.586=17931N 径向力βαcos /tan n t r F F ==18241.5tan20=6639.4N

齿轮公差的计算及描述

2012—2013学年第一学期课程论文 论文题目:浅析精密机械齿轮传动中的误差及计算方法 课程名称:误差理论与数据处理 学院:机电学院 专业:机械工程 班级: 姓名: 学号: 2013年1月8日

目录 0 引言 (3) 1 齿轮误差来源 (3) 1.1 齿轮制造误差 (4) 1.1.1 几何偏心 e的影响 (4) r 1.1.2 运动偏心 e的影响 (5) k 1.1.3 齿形误差、周节偏差、齿向误差等因素的影响 (5) 1.2 齿轮装配误差 (6) 2 齿轮传动计算方法 (6) 2.1绝对值法 (6) 2.2概率法 (6) 3误差源的分布 (7) 4传动链精度计算 (8) 5结语 (9) 参考文献 (10)

浅析精密机械齿轮传动中的误差及计算方法 摘要:齿轮传动是机械传动中最重要的传动形式之一,在精密传动中的应用也很广泛。精密机械传动对传动精度要求很高,所以,在精密传动中,我们必须要充分考虑齿轮传动中的误差的影响。本文给出了误差来源、误差分布及相关计算方法。文中主要分析了传动误差,并给出了空程误差的计算式,没有考虑齿轮传动中的温度、受力变形的影响。计算方法采用了常用的概率法,这种方法简单,但算出的误差较大,具体计算时应结合实际情况,看此法是否能满足精密传动机械的精度要求。若不能满足,则需另寻他法。 关键词:齿轮传动精度传动误差

A Brief Analysis Of Error And Computing Method In Gear Transmission Of Precise Machinery Abstract: Gear transmission is one of the most important mechanical transmission in the form of transmission and is widespread in precision machinery. It requires a high transmission accuracy in Precision mechanical transmission[]1. To meet the requirements, we must fully consider the influence of gear transmission error in precise transmission. In this paper, it gives the source of error, error distribution and computing method. This paper mainly analyzes the transmission error and gives the error calculation of empty-range without considering the influence of temperature and stress deformation. We use the mostly-used probabilistic method to get the result[]2. This method is brief, but the error is too high. In the specific calculation, we should consider the actual situation to see whether this method can meet the demands of the transmission accuracy in precise machinery. If not, we have to look for other methods. Key words: gear transmission error analysis transmission accuracy.

机械设计试题集

机械设计试卷集 一.齿轮受力分析 1、.已知在一级蜗杆传动中,蜗杆为主动轮,蜗轮的螺旋线方向和转动方向如图所示。试将 蜗杆、蜗轮的轴向力、圆周力、蜗杆的螺旋线方向和转动方向标在图中。 2、已知图中螺旋锥齿轮1的旋转方向,在图中标出螺旋锥齿轮2和蜗轮的旋转方向,并说 明蜗杆的旋向。 3如图所示传动系统,主动齿轮1的转动方向n1和螺旋角旋向如图所示,为使Ⅱ轴所受的轴向力较小: (1)试安排齿轮2的螺旋角旋向和蜗杆3的导程角旋向(用文字说明旋向并在图中画出); (2)标出齿轮2和蜗杆3上的啮合点的三个分力的方向; (3)标出蜗轮的转向并说明蜗轮的螺旋角旋向。 答案如下:

4.已知在一对斜齿圆柱齿轮传动中,2轮为从动轮,其螺旋线方向为左旋,圆周力Ft2方向如图所示。试确定主动轮1的螺旋线方向、轴向力Fa1的方向,并在图上标出。(10分) 5图示为直齿圆锥齿轮和斜齿圆柱齿轮组成的两级传动,动力由轴Ⅰ输入,轴Ⅲ输出,轴Ⅲ的转向如图所示。 试分析: (1)在图中画出各轮的转向; (2)为使中间轴Ⅱ所受轴向力可以抵消一部分,确定斜齿轮3、4的螺旋方向; (3)画出圆锥齿轮2和斜齿轮3所受各分力的方向。(10分) 6已知在某一级蜗杆传动中,蜗杆为主动轮,转动 方向如题31图所示,蜗轮的螺旋线方向为左 旋。试将两轮的轴向力Fa1、Fa2,圆周力Ft1、 Ft2,蜗杆的螺旋线方向和蜗轮的转动方向标在图中。

7图示一蜗杆传动,已知主动蜗杆1的旋向和转向如图所示。试确定: (1)从动蜗轮2的转向和旋向,并在图上表示; (2)在图中标出蜗轮和蜗杆所受各分力(径向力Fr、圆周力Ft和轴向力Fa)的方向。

齿轮传动中可能的问题

一、空回和产生空回的因素 所谓空回,就是当主动轮反向转动时从动轮滞后的一种现象。滞后的转角即空回误差角。产生空回的主要原因是由于一对齿轮有侧隙存在。 从理论上来说,一对啮合齿轮可以是无侧隙的。但在某些情况下,侧隙对传动的正常工作是必要的.。由于侧隙的存在,可以避免由于零件的加工误差而使轮齿卡住;此外它还提供了贮存润滑油的空间,以及考虑由于温度变化而引起零件尺寸的变化等因素。但是,侧隙在反向传动中引起的空回误差,将直接影响传动精度。因此,必要时须对空回误差予以控制或设法消除其影响。 产生空回的主要因素是:就齿轮本身而言,如中心距变大、齿厚偏差、基圆偏心和齿形误差等。此外,齿轮装在轴上时的偏心、滚动轴承转动座圈的径向偏摆和固定座圈与壳体的配合间隙等也会对空回产生影响。 二、齿轮传动的失效形式 齿轮传动的失效形式主要是:轮齿的折断,齿面的点蚀、磨损和胶合等。 1.轮齿的折断 轮齿的折断一般发生在齿根部分,因为齿根处弯曲应力最大而且有应力集中。折断有两种:一种是在短期过载或受到冲击载荷时发生的突然折断;另一种是由于多次重复弯曲所引起的疲劳折断。这两种折断都起始于齿根受拉应力的一边。对于齿宽较小的直齿圆柱齿轮,齿根裂纹往往是从齿根沿着齿宽方向扩展,发生全齿折断。齿宽较大的直齿圆柱齿轮,容易因制造及安装的误差以及转轴等零件的弹性变形等因素,使载荷沿齿宽分布不均而使载荷集中于齿的一端,斜齿及人字齿轮因为接触线是倾斜的,载荷有时也作用在齿的一端的齿顶上,因此这些齿轮的齿根裂纹往往是从齿根沿着斜向齿顶的方向扩展,而发生轮齿的局部折断。增大齿根过渡曲线半径、降低表面粗糙度值、采用表面强化处理(如喷丸、辗压)等,都有利于提高轮齿的抗疲劳折断能力。 2.齿面的点蚀 润滑良好的闭式传动齿轮,当齿轮工作一段时期以后,常在轮齿的工作表面上出现疲劳点蚀。点蚀齿面的点蚀多出现在靠近节线的齿根表面上。在磨损严重的齿轮传动中,特别是在开式齿轮传动中见不到点蚀现象,这是因为表层的磨损速度比在表层上出现疲劳裂纹的速度要快得多。 出现点蚀的齿面,将失去正确的齿形。从而破坏了正确的啮合,使得传动精度下降,引起附加动载荷,产生噪声和振动,并加快齿面磨损和降低传动寿命。 提高齿面的硬度和降低表面粗糙度值,在许可范围内采用最大的移距系数和增大齿轮传动的综合曲率半径,以及增大润滑油粘度与减小动载荷等,都可提高齿面的接触疲劳强度。 3.齿面的磨损 当表面粗糙的硬齿与较软的轮齿相啮合时,由于相对滑动、软齿表面易被划伤而产生齿面磨损。外界硬屑落人啮合齿间也将产生磨损。磨损后,正确齿形遭到破坏,齿厚减薄,最后导致轮齿因强度不足而折断。 对于闭式传动,减轻或防止磨损的主要措施有:①提高齿面硬度;②降低齿面粗糙度值;③注意润滑油的清洁和定期更换;④采用角度变位齿轮传动,以减轻齿面滑动等。对于开式传动,应特别注意环境清洁,减少磨粒(硬屑)的侵入。 4.齿面的胶合

齿轮传动链误差分析

齿轮传动链误差分析 一传动误差的来源与分类 机床内联系传动链产生传动误差后, 将引起执行环节的角速度和线位移误差, 就不能保持精确、恒定的传动比, 而影响传动的准确性和均匀性。对于刀具和工件间要求有准确的传动比关系的机床应减小传动误差,提高传动精度, 如螺丝车床、螺纹磨床、滚齿机床等。 传动误差主要来源于四个方面。第一是传动件的布置误差。在设计传动链时, 由于传动件的位置不合理, 而使传动误差逐级扩大。第二是传动件的制造误差。如齿轮、蜗轮的齿形误差、周节偏差、切向一齿综合误差, 蜗杆、丝杠的导程误差以及导程累积误差等。第三是传动件的装配误差。如齿轮、蜗轮、蜗杆及丝杠因装配而产生的径向跳动和轴向窜动。第四是机床的热变形及传动件受交变的切削力、摩擦力和惯性力作用产生的传动误差。 传动误差按其性质分为原发性误差和再生性误差两类。原发性误差是指传动件布置误差、传动件制造误差、传 传动件装配误差。它是常位性误差, 机床一经制造好就存在着, 如果不人为地设置误差抵消或补偿装置, 此误差是不会消除的。再生性误差是指机床在动态(工作状态)过程中, 受力、受热后产生的误差。它是偶然性误差, 如果机床停止工作, 此误差逐渐消除。相比之下,往往原发性传动误差对内联系传动链的传动精度影响更大。本文着重讨论原发性误差。

二、传动误差的分析方法 通常分析传动误差大小的方法有动态多因素综合测试法和单因素分析法两种。动态多因素综合测试法是在机床动态下, 通过仪器实测出某些选定参数的大小,然后进行综合分析处理, 得到传动误差的定 量位。单因素分析法可以在静态或设计机床传动系统时对传动件布置误差、传动件制造误差, 进行定量的分析, 比较不同传动件如齿轮副、蜗轮副、螺母、丝杠等、传动件处于不同位置或传动件不同精度等级时传动误差的大小, 进而合理、正确的设计传动链, 以减少原发性误差位, 提高内联系传动链的精度。 三、单因素分析法的基本原理 (1)分析对象 由于在内联系传动链中,其主要传动件为齿轮副, 常选择齿轮副的布置制造误差为分析的对象。 (2)分析思路 首先应考虑到由传动件布置误差、制造误差引起的原发性误差最终将反映到执行环节上, 而误差经过转换, 以不同的传递比影响着执行环节, 传递比可能大于、小于或等于。其次传动件中的齿轮副对传动链精度影响较大的制造误差是齿轮切向一齿综合误差, 故应计算出各个齿轮的切向一齿综合误差。 (3)计算公式 第一,根据给定的齿轮精度等级, 查表确定齿轮周节极限偏差值

相关文档