文档视界 最新最全的文档下载
当前位置:文档视界 › 光谱分析实验讲义

光谱分析实验讲义

光谱分析实验讲义
光谱分析实验讲义

实验一火焰原子发射光谱法测定水样中的钠

一、实验目的

1. 了解火焰原子发射光谱仪的使用方法。

2. 学习利用火焰原子发射光谱测定水样中Na+含量的方法。

二、基本原理

原子发射光谱分析(atomic emission spectrosmetry, AES),是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。当试样在等离子体光源中被激发,待测元素会发射出特征波长的辐射,经过分光,并按波长顺序记录下来,根据特征波长谱线的存在情况可以进行定性分析,测量其强度可以进行定量分析。

原子吸收分光光度法测定的是占原子总数99%以上的基态原子,而原子发射光谱测定的是占原子总数不到1%的激发态原子,所以前者的灵敏度和准确度比后者高的多。但原子吸收光谱法适合分析微量、痕量元素,因此,火焰原子发射光谱法可以分析浓度高的样品。

三、仪器与试剂

1. GGX-9型原子吸收分光光度计(使用发射光谱检测功能)。

2. 空气压缩机(应备有除水、除油、除尘装置)。

3. 乙炔钢瓶。燃气流量:0.9~1.2 l/min

4. 容量瓶(50 mL,100 mL,l000 mL),移液管(5 mL),烧杯(100 mL,250 mL)。

5. 氯化钠(光谱纯)。

6. 浓硝酸(分析纯)。

四、实验步骤

1. 钠的标准溶液配制

(1)标准储备液配制

钠标准贮备液:称取光谱纯氯化钠11.7000 g (准确到0.0001 g),用60 mL硝酸溶液溶解,用去离子水准确稀释至1000 mL,摇匀。此溶液浓度为2 mg/mL(以Na计)。

(2)标准溶液配制

取Na标准贮备液(2 mg/mL)20 mL,移入100 mL容量瓶中,用去离子水稀释至刻度,摇匀备用,此溶液Na含量为400 μg/mL。

2. 工作曲线的绘制

分别移取钠的标准溶液0.00 mL,1.00 mL,3.00 mL,4.00 mL,5.00 mL于50 mL容量瓶中,用蒸馏水稀释至刻度,摇匀。以零号溶液为空白,乙炔压力为20 kPa的贫燃火焰,在589.0 nm的波长位置分别测量以上标准溶液的吸光度值。将测得的发射光强度值对纳溶液的质量浓度作图,绘出工作曲线。

3. 未知样的分析

水样采集后尽快通过0.45 μm滤膜过滤,取50mL在电炉上加热蒸至近干,然后立即加

1 mL浓硝酸消解,消解澄清后,继续加热将酸蒸至近干。用制作工作曲线的相同测量条件测定其吸光度值,然后由工作曲线查出未知溶液中钠的质量浓度(μg/mL)。在测定样品的同时,用去离子水代替试样做空白实验。

五、结果处理

1. 根据实验步骤2,以发射光强度为纵坐标,标准钠溶液的质量浓度为横坐标作图,绘制工作曲线。

2. 根据实验步骤3,由测得的未知样的发射光信号强度,在工作曲线查出未知溶液中Na的质量浓度(μg/mL),并计算出水样中Na的含量(μg/mL)。

六、思考题

1.火焰原子发射法测Na会存在哪些干扰,应如何消除?

实验二 原子吸收分光光度法测定湖水中铁的含量

一、实验目的

1. 了解GGX-9型原子吸收分光光度计的基本结构和使用方法。

2. 观察了解空心阴极灯电流、火焰高度、火焰状态等因素对吸光度的影响。

3. 掌握原子吸收分光光度法进行定量测定的方法。

二、实验原理

1. 原子吸收分光光度法定量原理

原子吸收分光光度法基于由基态跃迁至激发态时对辐射光吸收的测量。通过选择一定波长的辐射光源,使之满足某种原子由基态跃迁到激发态能级的能量要求,则辐射后基态的原子数减少,辐射吸收值与基态原子的数量有关,也即由吸收前后辐射光强度的变化可确定待测元素的浓度。因此从光源发出的待测元素的特征辐射通过样品蒸气时,被待测元素基态原子所吸收,从而由辐射的减弱程度求得样品中被测元素的含量。

在锐线光源条件下,光源的发射线通过一定厚度的原子蒸气,并被基态原子所吸收,吸光度与原子蒸气中待测元素的基态原子数间的关系遵循朗伯-比尔定律: lN I I κ==)lg(A 0

式中:A 为吸光度;I 0为入射光强度;I 为经过原子蒸气吸收后的透射光强度;κ为摩尔吸收系数;l 为光波所经过的原子蒸气的光程长度;N 为基态原子浓度。

在火焰温度低于3000 K 的条件下,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。在特定的实验条件下,原子总数与样品浓度门的比例是恒定的,所以,上式又可以写成:

B c A 'κ=

这就是原子吸收分光光度法的定量基础。常用的定量方法为标准曲线法和标准加入法等。

2. 原子吸收分光光度仪

原子吸收分光光度计的主要组成部分包括:光源、原子化器、分光系统和检测系统。其光路如图1-11所示。

图1-11 原子吸收分光光度计光路图

(1)光源:

光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度;辐射强度大、背景低,低于特征共振辐射强度的1%;稳定性好,30分钟之内漂移不超过1%;噪声小于0.1%;使用寿命长于5安培小时。

空心阴极放电灯是能满足上述各项要求的理想的锐线光源,应用最广。其一端由石英或玻璃制成光学窗口,两根钨棒封入管内,一根钨棒连有由钛、锆、钽等有吸气性能的金属制成的阳极,另一根上镶有一个圆筒形的空心阴极。筒内衬上或熔入被测元素,管内充有几百帕低压载气,常用氖或氦气。当在阴阳两极间加上电压时,气体发生电离,带正电荷的气体离子在电场作用下轰击阴极,使阴极表面的金属原子溅射出来,金属原子与电子、惰性气体的原子及离子碰撞激发而发出辐射。最后,金属原子又扩散回阴极表面而重新沉积下来。通常,改变空心阴极灯的电流可以改变灯的发射强度,在忽略自吸收的前提下,其经验公式为I=ai n。其中:a,n均为常数;i为电流。n与阴极材料、灯内所充气体及谱线的性质有关。对于Ne、Ar等气体,n值为2~3,由此可见,灯的发射强度受灯电流的影响较大,影响吸光度。

(2)原子化器:

将试样中的被测元素转化为基态原子的过程称为原子化过程,能完成这个转化的装置称原子化器,目前,使用较普遍的原子化器有两类,一类是火焰原子化器,另一类是由石墨炉原子化器。待测元素的原子化是整个原子吸收分析中最困难和最关键的环节,原子化效率的高低直接影响到测定的灵敏度,原子化效率的稳定性则直接决定了测定的精密度。

火焰原子化法中,常用的预混合型原子化器,这种原子化器由雾化器、混合室和燃烧器组成。雾化器是关键部件,其作用是将试液雾化,使之形成直径为微米级的气溶胶,作为一个性能良好的原子化装置要求其调节方便,单位时间内吸入的试液尽可能多地产生微细雾粒,并使雾珠尽可能地到达火焰进行原子化;混合室的作用是使较大的气溶胶在室内凝聚为大的溶珠沿室壁流入泄液管排走,使进入火焰的气溶胶在混合室内充分混合均匀以减少它们进入火焰时对火焰的扰动,并让气溶胶在室内部分蒸发脱溶;燃烧器最常用的是单缝燃烧器,其作用是产生火焰,使进入火焰的气溶胶蒸发和原子化。因此,原子吸收分析的火焰应有足够高的温度,能有效地蒸发和分解试样,并使被测元素原子化。此外,火焰应该稳定、背景发射和噪声低、燃烧安全。

原子吸收测定中最常用的火焰是乙炔-空气火焰。原子吸收测定中最常用的火焰是乙炔-空气火焰,此外,应用较多的是氢-空气火焰和乙炔-氧化亚氮高温火焰。乙炔-空气火焰燃烧稳定,重现性好,噪声低,燃烧速度不是很大,温度足够高(约2300℃),对大多数元素有足够的灵敏度。氢-空气火焰是氧化性火焰,燃烧速度较乙炔-空气火焰高,但温度较低(约2050℃),优点是背景发射较弱,透射性能好。乙炔-氧化亚氮火焰的特点是火焰温度高(约2955℃),而燃烧速度并不快,是目前应用较广泛的一种高温火焰,用它可测定70多种元素。

(3)分光器:

分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。分光器的关键部件是色散元件,现在商品仪器都是使用光栅。原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003、Ni231.603、Ni231.096nm为标准,后采用Mn279.5和279.8nm代替Ni三线来检定分辨率。光栅放置在原子化器之后,以

阻止来自原子化器内的所有不需要的辐射进入检测器。

(4)检测系统:

原子吸收光谱仪中广泛使用的检测器是光电倍增管,最近一些仪器也采用CCD(电荷耦合检测器)作为检测器。

三、仪器与试剂

1. GGX-9型原子吸收分光光度计,铁空心阴极灯一只。

2. 空气压缩机(应备有除水、除油、除尘装置)。

3. 乙炔钢瓶。

4. 容量瓶(50 mL,100 mL,l000 mL),移液管(5 mL),烧杯(100 mL,250 mL)。

5. 金属铁(光谱纯)。

6. 浓盐酸(分析纯)。

7. 浓硝酸(分析纯)。

四、实验步骤

1. 铁的标准溶液配制

(1)标准储备液配制

铁标准贮备液:称取光谱纯金属铁1.0000 g (准确到0.0001 g),用60 mL盐酸溶液溶解,用去离子水准确稀释至1000 mL,摇匀。此溶液浓度为1 mg/mL(以Fe计)。

(2)标准溶液配制

取Fe标准贮备液(1000 μg/mL)5mL,移入100mL容量瓶中,用去离子水稀释至刻度,摇匀备用,此溶液Fe含量为50 μg/mL。

2. 工作曲线的绘制

分别移取铁的标准溶液0.00 mL,1.00 mL,3.00 mL,4.00 mL,5.00 mL于50 mL容量瓶中,用蒸馏水稀释至刻度,摇匀。以零号溶液为空白,选择灯电流为2~5mA,乙炔压力为20 kPa的贫燃火焰,在248.3 nm的波长位置分别测量以上标准溶液的吸光度值。将测得的吸光度值对铁溶液的质量浓度作图,绘出工作曲线。

3. 未知样的分析

水样采集后尽快通过0.45 μm滤膜过滤,并立即加硝酸(1.42g/mL)酸化滤液,使pH为1~2。用制作工作曲线的相同测量条件测定其吸光度值,然后由工作曲线查出未知溶液中铁的质量浓度(μg/mL)。在测定样品的同时,用去离子水代替试样做空白实验。

五、结果处理

1. 根据实验步骤2,以吸光度值为纵坐标,标准铁溶液的质量浓度为横坐标作图,绘制工作曲线。

2. 根据实验步骤3,由测得的未知样的吸光度值,在工作曲线查出未知溶液中铁的质量浓度(μg/mL),并计算出水样中铁的含量(μg/mL)。

六、思考题

1. 在原子吸收光谱法中,为什么单色器位于样品室(火焰)之后,而不像紫外-可见分光光度计位于样品室之前?

2. 为保证分析的准确度和精密度,实验中应该注意哪些问题?

3. 何谓锐线光源?在原子吸收光谱分析中为什么要用锐线光源?

4. 谱线变宽的原因有哪些?有何特点?

参考文献

1 穆华荣. 仪器分析实验,第二版. 北京: 化学工业出版社. 2004, 63-66

2 徐家宁. 基础化学实验(下册,物理化学和仪器分析实验),北京:高等教育出版社. 2006, 223-224

实验三火焰原子吸收光谱法测定土壤中的铜(标准加入法)

一、实验目的

1. 掌握标准加入法测定元素含量的操作方法。

二、实验原理

原子吸收光谱法是一种相对测量法,必须采用校准的方法来获得未知样品中待测元素的浓度。校准方法是否准确,取决于待测元素在分析样品和校准溶液中是否具有完全相同的分析行为。一旦由于样品中的共存物影响了待测元素的分析行为,使之不同与校准溶液中该元素的行为,则可能使完全相同浓度的溶液给出不同的吸收值,引起干扰。如果对干扰不够重视,未采取相应的消除措施,往往使测定结果不准确。

在原子吸收光谱分析中,常采用标准加入法来抵消干扰,减少分析误差。因此,当试样组成复杂,配置的标准溶液与试样组成之间存在较大差别时;或试样的基体效应对测定有影响、干扰不易消除,分析样品数量少时,用标准加入法较好。

校准加入法是将不同量的标准溶液分别加入数份等体积的试样溶液之中,其中一份试样溶液不加标准,均稀释至相同体积后测定(并制备一个样品空白)。以测定溶液中外加标准物质的浓度为横坐标,以吸光度为纵坐标对应作图,然后将直线延长使之与浓度轴相交,交点对应的浓度值即为试样溶液中待测元素的浓度。标准加入法的曲线如图1-12所示。图中x的绝对值即为测定溶液中被测元素的浓度。

在原子吸收分析时,用标准加入法一般须满足三个条件:第一,待测元素浓度从零至最大加入标准浓度范围,必须与吸光度值具有线性关系,并且标准曲线通过坐标原点。第二,在测定溶液中的干扰物质浓度必须恒定。第三,加入标准物质产生的响应值与原样品中待测元素产生的响应值相同。

C

图1-12 标准加入法原理图

三、仪器与试剂

1. GGX-9型原子吸收分光光度计。

2. 空心阴极灯(铜灯一只)。

3. 空气压缩机。

4. 乙炔钢瓶。

5. 容量瓶(50 mL ,100 mL ,l000 mL),移液管(5 mL),烧杯(100 mL ,250 mL)。

6. 金属铜(光谱纯),浓盐酸(分析纯),高氯酸(分析纯),硝酸(分析纯),H 2O 2溶液(分析纯)。

四、实验步骤

1. 铜的标准溶液配制

(1)铜的标准储备液 准确称取1 g 金属铜(光谱纯)于250 mL 烧杯中,加浓盐酸3~5mL ,缓慢滴加H 2O 2溶液,使其全部溶解。置于小火上加热赶掉多余的H 2O 2。冷却后转移到1000 mL 容量瓶中,用蒸馏水稀释至刻度。所得的铜标准储备液质量浓度为1 mg·mL -1。 (2)铜的标准溶液 取铜的标准储备液5mL 于100 mL 容量瓶中,用蒸馏水稀释至刻度。所得的铜标准溶液质量浓度为50 μg·mL -1。

2. 未知样的处理

准确称取土壤样品1~2 g 于100 mL 高硬度玻璃烧杯中,加入少许水润湿,加王水10~20mL ,置于电炉上加热并保持微沸,加高氯酸2~10 mL ,继续加热直至冒白烟,然后强火加热,直至土样呈灰白色,小心赶去高氯酸(注意不要出现棕色烧结干块)。取下样品,用2%硝酸溶解,过滤于50 mL 容量瓶中,用蒸馏水稀释至刻度。

3. 测量溶液的配制

分别吸取10 mL 试样溶液5份于5个50mL 容量瓶中,各加入含量为50 μg/mL 的Cu 标准溶液0.00,1.00,2.00,3.00,4.00mL ,用去离子水稀释至刻度,摇匀。

4. 实验操作条件与步骤

(1)打开仪器并设定好仪器条件 (2)火焰:乙炔-空气

(3)乙炔流量:1.5L /min (4)空气流量:6L /min (5)空心阴极灯电流:5 mA (6)狭缝宽度:L 0.2 mm (7)燃烧器高度:8 mm (8)吸收线波长:324.7 nm

(9)待仪器稳定后,用去离子水作空白参比,将配制好的五份溶液由低浓度到高浓度依次测量吸光度值。

五、结果处理

1. 以吸光度为纵坐标,加入的铜元素浓度为横坐标,绘制铜的标准加入法曲线。

2. 将直线外推至与横坐标相交,由交点到原点的距离在横坐标上对应的浓度求出试样中铜的含量。再由下式计算土壤中铜的含量:

%100m 10C 506Cu Cu

???=-样

ω

六、思考题

1. 对加入法的标准溶液浓度大小有无要求?为什么?

2. 实验所得直线是否可任意延长?样品测定是否一定要在线性范围内?

3. 标准加入法可以消除哪些干扰?

参考文献

1 穆华荣. 仪器分析实验,第二版. 北京: 化学工业出版社. 2004, 63-66

2 徐家宁. 基础化学实验(下册,物理化学和仪器分析实验),北京: 高等教育出版社. 2006, 216-217

附录:GGX-9原子吸收分光光度计操作规程

一、仪器主要技术参数

1.工作波段:190--860nm

2.分辨率:优于0.2nm

3.波长准确性:<0.2nm

4.波长重复性:<0.2nm

5.代表元素灵敏度:Cu 0.02ug/ml

二、仪器主要特点

1.氘灯扣背景,可做火焰发射、氢化物

2.自动波长、自动狭缝,自动负高压、灯电流

3.光栅采用1800条/mm,焦距270mm

4.全塑料外壳,防腐蚀、防生锈

5.中文windows操作软件

三、仪器操作规程

1.启动计算机,进入windows界面,双击“GGX-9”图标打开工作站,出现“请打开主机电源”提示,此时打开主机电源,按“确认”。

2.仪器自检,约3分钟后出现“光零曲线”按“返回”,软件回到主窗口。

3.单击“工作条件最佳化”。

3.1单击“仪器条件”--元素选择(选择你要测定的元素)--设置灯电流(0.5),“确定”。

3.2单击“自动波长”,此时仪器自动寻找该元素能量最大的谱线。

3.3手动调节灯的位置,使HCL能量最大。

3.4单击“自动高压”--单击“自动波长”。

4.单击“分析条件”

4.1在“标准系列”中填入标准1~标准n的浓度值。

4.2选择分析单位(微克/升)、积分时间(3.0)、测量方式(标线)

4.3 “确认”后,打开乙炔气和助燃气,流量比1:5,用点火器点火。

4.4单击“自动高压”,在工作状态下再调灯能量到100。

5.单击“数据测量”

5.1清零→空白(此时吸样管插入去离子水中)→标准(从0号瓶到n号瓶)

5.2单击“标准曲线”出现标线图。

5.3单击“曲线处理”出现标准品相关信息和回归方程。

5.4单击“样品”(同时吸样管插入样品瓶中),仪器测定样品吸光度并根据标线算出样品浓度值。

5.5 “结果处理”--“测量结果打印”。

6. “仪器准备”--“测量结果存盘”。可将测量结果保存在建好的文件夹中。

7.样品测量完毕,把吸样管插入去离子水中,冲洗雾化器。

8.关闭主机乙炔气和助燃气开关。关闭仪器电源。关闭计算机。

9.关闭乙炔气总阀门。做好使用登记。

实验四 氢化物原子荧光法测定水中的铅

一、实验目的

1. 了解原子荧光光谱分析的基本原理、特点及应用

2. 掌握原子荧光光谱仪的基本结构及操作方法

二、基本原理

1. 原子荧光定量分析原理

在一定条件下,气态原子吸收辐射光后,本身被激发成激发态原子,处于激发态上的原子不稳定,跃迁到基态或低激发态时,以光子的形式释放出多余的能量,根据所产生的原子荧光的强度即可进行物质组成的测定。该方法称为原子荧光分析法(AFS )。

物质的基态原子受到光的激发后,会释放出具有特征波长的荧光,据此可对物质进行定性分析。物质的定量分析可通过测定原子荧光的强度来实现。

原子荧光定量分析的基本关系式为:

'

LN k I I v av fv ?= (1)

式中,I fv 为发射原子荧光强度;I av 为激发原子荧光(入射光)强度;?为原子荧光量子效率;k v 为吸收系数;N 0‘单位长度内基态原子数;L 为吸收光程。原子荧光光谱分析仅适用于低含量的测定。测定的灵敏度与峰值吸收系数k v 、吸收光程长度L 、量子效率?和入射光强度I av 有关。当仪器条件和测定条件固定时,待测样品浓度c 与N 0成正比。如各种参数都是恒定的,则原子荧光强度仅仅与待测样品中某元素的原子浓度呈简单的线性关系:

c

I f α= (2)

式中,α在固定条件下是一个常数。

2. 原子荧光分析的仪器装置

原子荧光光谱仪由激发光源、原子化器、分光系统、检测器、信号放大器和数据处理器等部分组成。

(1)激发光源

激发光源是原子荧光光谱仪的主要组成部分,其作用是提供激发待测元素原子的辐射能。一种理想的光源必须具备的条件是:强度大、无自吸、稳定性好、噪声小、辐射光谱重现性好、操作简便、价格低廉、使用寿命长,且各种元素均可制出此类型的灯。

激发光源可以是锐线光源,也可以是连续光源,常用光源有:空心阴极灯、无极放电灯、金属蒸气放电灯(目前已应用不多),电感耦合等离子焰、氙弧灯、二极管激光和可调谐染料激光等。其中目前应用较多的是空心阴极灯。可调谐染料激光是一种有发展前途的光源。

(2)原子化器

原子化器是提供待测自由原子蒸气的装置。原子荧光分析对原子化器的要求主要有:原子化效率高、猝灭性低、背景辐射弱、稳定性好和操作简便等。与原子吸收相类似,在原子荧光分析中采用的原子化器主要可分为火焰原子化器和电热原子化器两大类,如 火焰原子化器,高频电感耦合等离子焰(ICP )石墨炉、汞及可形成氢化物元素用原子化器等。

(3)分光系统

由于原子荧光光谱比较简单,因而方法对所采用的分光系统要求有较高集光本领,而对

色散率要求不高。由于在原子荧光测量中,激光光源与检测器不在同一光路上(避免激发光源等对原子荧光信号的影响),因而在特殊情况下也可以不用单色器。常用的分光器还是光栅和棱镜。

(4)检测系统

在原子荧光光谱仪中,目前普遍使用的检测器仍以光电倍增管为主,对于无色散系统的仪器来说,为了消除日光的影响,必须采用工作波长为160~320nm的日盲光电倍增管。此外,也有人用光电摄象管和光电二极阵列作检测器。

(5)显示系统

光电转换所得的电信号经锁定放大器放大后显示出来。由于近年来计算机技术的迅速发展,绝大多数的仪器均采用计算机来处理数据,基本上具有实时图象显示,曲线拟合,打印结果等自动功能,使分析工作更为快捷方便。

3. 氢化物发生法原理

在酸性条件下,铅和硼氢化钠与酸产生的新生态的氢反应,生成氢化物气体,以惰性气体(氩气) 为载体,将氢化物导入电热石英炉原子化器中进行原子化。以铅空心阴极灯作激发光源,使铅原子发出荧光,其荧光强度在一定范围内与铅的含量成正比。含铅、砷、锑、硒、锡和铋等的试样均可通过氢化物发生法将待测元素转变成气体后进入原子化器。该方法可以提高对这些元素的检测限10-100倍。

三、仪器与试剂

1. 仪器

AFS-2202E型双道原子荧光光度计。

2. 溶液配制

(1)硼氢化钾溶液(硼氢化钾(15g/L)中含2%K3Fe(CN)6):称取1g KOH溶于500ml 蒸馏水中,溶解后加入7.5g KBH4继续溶解,再加入10g K3Fe(CN)6,使其溶解完全,过滤后使用。宜现用现配。

(2)铅标准贮备溶液的配制:称取1.000g金属铅,溶于10ml HNO3,移入1000ml容量瓶中,再用水稀释至刻度,摇匀。此溶液为1mg/mL Pb。

四、实验步骤

1. 仪器工作条件

光电倍增管负高压270 V;原子化器高度7 mm;灯电流80 mA;载气流量400 ml/min;屏蔽气流量800 ml /min;读数时间7 s;延时1.5 s;测定波长283.3 nm;进样量1 mL。

2. 仪器测量程序设置:

步骤时间(S)泵速(转/分)

(1)采样8 100

(2)停 4 0

(3)注入(自动生成)100

(4)停 5 0

3. 标准系列的配制:吸取铅标准贮备液1mg/mL Pb,用1.5% HCl逐级稀释至1μg/mL Pb,用此溶液按下表配制标准系列。

4. 标准系列溶液测定

按浓度由低到高的顺序分别抽取5mL标准溶液放入氢化物发生器中,连续滴入配制好的硼氢化钾溶液,生成的氢化物PbH4,用氩气载入原子化器进行原子化,到出现最大峰值为止,并记录信号强度。

5. 样品测定

在相同实验条件下,对待测水样进行测定,记录样品的信号强度。在测定样品的同时,用去离子水代替试样做空白实验。

五、结果处理

以信号强度为纵坐标,铅标准溶液浓度为横坐标,绘制标准曲线,并求出待测水样中铅的含量(μg/mL)。

六、注意事项

1. 铅的氢化反应只有在氧化剂存在下才有较高的反应效率。铁氰化钾-盐酸是一种很有效的铅烷发生体系。但由于铁氰化钾溶液的不太稳定,将其加入在标准溶液中,放置时间稍长就会有靛蓝色沉淀生成,不仅会污染器皿, 而且还使燃烧发生效率降低。故本法将铁氰化钾加入硼氢化钾溶液中,然后与铅的酸性溶液进行氢化反应,能获得较好效果。

2. 含有铁氰化钾的硼氢化钾溶液与酸性溶液反应过程中,在气液分离器中废液还产生靛蓝色溶液,因此当测定完毕后应及时将两道泵管放入去离子水中冲洗。

3. 锥形瓶、容量瓶等玻璃器皿均应及时使用稀硝酸盥洗后冲净使用,防止污染。

4. Pb的氢化物发生条件要求比较苛刻,因此要特别注意严格按照建议条件操作。

5. 硼氢化钾是强还原剂,使用时注意勿接触皮肤和眼睛。

七、思考题

1. 比较原子吸收分光光度计和原子荧光光度计在结构上的异同点,并解释其原因。

2. 每次实验,氢化物发生器中各种溶液总体积是否要严格相同?为什么?

参考文献

1 武汉大学化学系. 仪器分析. 北京:高等教育出版社,2001, 65

2 张剑荣. 仪器分析实验. 北京:高等教育出版社,1999, 55-56

实验五分子荧光法测定罗丹明B的含量

一、实验目的

1、掌握荧光法测定罗丹明B含量的基本原理;

2、了解F-4500型分子荧光分光光度计的基本构造和原理,并能简单的操作。

二、实验原理

罗丹明B在水中是强的荧光物质,并且在低浓度时,荧光强度与罗丹明B浓度呈正比:

I f = k c

基此,测定一系列已知浓度的罗丹明B的荧光强度,然后以荧光强度对罗丹明B浓度作标准曲线,再测定未知浓度罗丹明B的荧光强度,把它代入标准曲线方程求出其浓度。

三、仪器与试剂

1、仪器F-4500型分子荧光分光光度计;1000 mL容量瓶2只,100 mL的容量瓶12只,1

mL的吸量管1支。

2、试剂(1)1×10-2 g/L的罗丹明B储备液:准确称取1.000 g罗丹明B,加用二次蒸馏

水定容至100 mL,将此溶液稀释100倍就得到10 -4 g/L的罗丹明B标准溶液。

四、实验步骤

1、系列标准溶液的配制取10只25 mL的容量瓶分别加入10 -4 g/L的罗丹明B的标准溶

液,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00 mL,用蒸馏水稀释至刻度,摇匀。

2、绘制激发光谱和发射光谱在300-600 nm范围内扫描激发光谱;在400-700 nm范围内扫

描荧光发射光谱。

3、绘制标准曲线将激发波长固定在556 nm,荧光发射波长固定在573 nm处,测定系列

标准溶液的荧光发射强度。

4、未知试样的测定准确移取一定量1×10 -4 g/L的罗丹明B标准溶液于50 mL的容量瓶

中,加蒸馏水稀释至刻度,配制成未知样品。在标准系列溶液同样条件下,测定未知样品的荧光发射强度。

5、绘制荧光强度I f对罗丹明B溶液浓度C的标准曲线,并由标准曲线求算未知试样的浓度。

五、数据处理

1.原始数据

2、标准曲线绘制和未知样品含量计算。

六、注意事项

1、罗丹明B的浓度不要太高。

2、实验结束后,检查仪器是否正常,关闭是否正确。

七、思考题

1、为什么罗丹明B会发荧光?

2、荧光分光光度计有哪些部件组成?

3、如何绘制激发光谱和荧光光谱?

4、哪些因素可能会对罗丹明B荧光产生影响?

主要是看200-400nm之间的光谱图

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

色谱分析实验讲义

实验一气相色谱的基本操作及进样练习 一、实验目的 (1) 了解气相色谱仪的主要结构组成和应用。 (2) 掌握仪器基本操作和调试程序,熟悉气路运行过程。 (3) 明确热导池检测器的操作注意事项。 (4) 掌握气相色谱进样操作要领,练习微量注射器的使用方法。 二、实验原理 通过实验了解气相色谱仪的结构与原理。气相色谱仪是实现气相色谱过程的仪器,按其使用目的可分为分析型、制备型和工艺过程控制型。但无论气相色谱仪的类型如何变化,构成色谱仪的5个基本组成部分皆是相同的,它们是载气系统、进样系统、分离系统(色谱柱)、检测系统及数据处理系统。 载气系统:载气是构成气相色谱过程中的重要一相——流动相,一般由高压钢瓶供气。 进样系统:汽化室是进样系统中不可缺少的组成部分,它的作用是把液体样品瞬间加热变成蒸汽,然后由载气带人色谱柱。 分离系统:色谱柱比作气相色谱仪的“心脏”,样品就是在此根据其性质的不同进行分离的。检测系统:检测器是气相色谱仪的关键部件。它的作用是将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定 和测量。 数据处理系统:数据处理系统目前多采用微机型色谱数据处理机和配备操作软件包的工作站,既可对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。 三、仪器与试剂 1.仪器 气相色谱仪(GC9790型);检测器(热导池TCD);色谱柱(邻苯二甲酸二壬酯DNP);微量进样器(1 μL)。 2.试剂 环己烷(AR);载气(氮气或氢气,含量99.99%以上)。 四、实验内容 1.开机操作步骤 (1)通气:首先连接好色谱柱,在检查气路密封良好的情况下,先逆时针旋转钢瓶总阀,调整减压阀输出压力0.4 ~ 0.5 Mpa,调节气相色谱仪上的载气稳压阀(总压),使其输出压力为0.3Mpa,调节柱前压1和2的稳流阀2~3圈,载气流量氮气约为30mL·min-1,氢气约为40 mL·min-1。 (2) 通电:检查仪器开关都应处于“关闭”位置后,开启气相色谱仪右侧的电源开关,仪器接通电源以后计算机首先进入仪器的自检程序,其状态显示为指示灯全部打开,直到屏幕出现“OK!”字样后表示仪器自检通过,可以进入正常操作程序,并且显示器自动切换到屏

仪器复习题答案)

复习题答案 1.分子光谱: 由分子的吸收或发光所形成的光谱称为分子光谱(molecular spectrum),分子光谱是带状光谱。 2.分子荧光分析: 某些物质被紫外光照射激发到单重激发态后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 3.气相干扰: 是指干扰发生在气相过程中(如电离干扰、激发干扰)以气相化学反应引起的干扰。 4.标记PCR(LP-PCR): 利用同位素、荧光素等对PCR引物进行标记,用以直观地检测目的基因。 5.毛细管电泳: 是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。 6.红外吸收光谱: 又称为分子振动—转动光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。 7.Fermi共振: 当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分。 8.荧光发射: 电子由第一激发单重态的最低振动能级→基态(多为S1→S0跃迁),发射波长为‘2的荧光;10-7~10 -9 s 。 9.原子光谱:原子的电子运动状态发生变化时发射或吸收的有特定频率的电磁频谱.原子光谱是一些线状光谱,发射谱是一些明亮的细线,吸收谱是一些暗线. 10.分子吸收光谱:分子对辐射选择性吸收使基态分子跃迁至更高能级的激发态而发出的特征光谱为分子吸收光谱. 11.内转化:处于相同的重态的两个离子间的非辐射跃迁. 12.宽带吸收: 是用紫外可见分光光度法测量溶液中分子或离子的吸收,吸收宽带宽从几纳米到几十纳米,是用的是连续光源,这种测量方法叫 13.塔板理论: 在每一块踏板上,被分离柱分在气液两相间瞬时达到一次分配平衡,然后随载气从一块踏板以脉动式迁移,经过多次分配平衡后,分配系数小的组分先离开精馏塔,分配系数大的后离开,从而使分配系数不同的组分分离。 14.高效液相色谱法:

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

气相色谱实验报告

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理 气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍 顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统”。其原理如下: 一个容积为V、装有体积为V o浓度为C o的液体样品的密封容器, 在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs, 则:平衡常数 K=Cs/Cg 相比β=Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 C o V o=CoVs=CsVs+CgVg= KCgVs + CgVg C o=KCg+CgVg/Vs=KCg+βCg=Cg(K+β) Cg=C o/(K+β)=K’C o 可见,在平衡状态下,气相组成与样品原组成为正比关系,根据这一关系我们可以进行定性和定量分析。 (2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接,它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比既可避免在除去溶剂时引起挥发物的损失,又可降低共提物引起的噪音,具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

GC-MS实验

实验七 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5%)混合而成,甲醇为溶剂,均为色谱纯。 实验条件

红外光谱分析复习资料

例、某化合物分子式C9H10O,试根据其红外光谱图,推测其结构

1.某化合物分子式为C6H10O3,其核磁共振谱图如下,试确定该化合物的结构。 解:不饱和度为2,说明分子中含有C=O或C=C。核磁共振 谱中化学位移5以上没有吸收峰,表明不存在烯氢。谱图中有4组峰,即有4类H。化学位移及峰的裂分数目为δ4.1ppm(四重峰),δ3.5ppm(单峰),2.2ppm(单峰),δ1.2ppm(三重峰),各组峰的积分高度比为2:2:3:3,这也是各组峰代表的质子数。从化学位移和峰的裂分数可见δ4.1ppm和δ1.2ppm是互相偶合,与强拉电子基团相连,表明分子中存在乙酯基(-COOCH2CH3),3.50ppm为CH2,δ2.2ppm为CH3,均不与其它质子偶合,根据化学位 移δ2.2ppm应于拉电子的羰基相连,即CH3-C=O。结构为 2.某化合物分子式为C9H12,其核磁共振谱图如下,试确定该化合物的结构。 解:从化合物分子式C9H12求得未知物的不饱和度为5,说明分子中含有苯环。NMR谱图中有4组峰,各组峰的积分高度比为5:2:2:3,这也是各 组峰代表的质子数。 3.推测结构 解:UN=4有苯环,峰积分高度比为2:2:2:3,δ值6-7之间的4个峰为苯环对位取代产生的伪4峰,δ3.2的2H为活泼质子,应有-NH2,δ2.1的3H 为Ar-CH3,其结构为 解:UN=1,1、2、3三组峰H的数目分别为3、2、

3、1、2峰高应为-CH2CH3且连接有电负性基团应为,3峰应为-OCH3, 例1正庚酮有三种异构体,某正庚酮的质谱如图所示。试确定羰基的位置。 酮易发生α裂解,生成的正离子稳定,强度很大,是鉴别羰基位置的有力证据。三种庚酮异构体的α裂解比较:图上m/z57为基峰,而且有m/z85峰,而无99及71峰。图上虽有m/z43峰,但太弱,不是离子而是由b裂解产生的C3H7+离子。因此证明该化合物是3-庚酮。 例2 某未知物经测定是只含C、H、O的有机化合物,红外光谱显示在3 100~3 600 cm?1之间无吸收,其质谱如图6.9,试推测其结构。 解:第一步解析分子离子区(1)分子离子峰较强,说明该样品分子离子结构稳定,可能具有苯环或共轭系统。分子量为136。(2)根据M+1/M=9%,可知该样品约含8个C原子,查贝农表(一般专著中都有此表),含C、H、O的只有下列四

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

色谱分析实验大纲

气相色谱法分析苯、甲苯、萘混合物 一、实验目的 1. 气相色谱图的分析。 2. 温度对保留时间的影响。 3. 保留因子、分离度的计算。 4. 标准曲线的建立。 二、实验原理 基本术语 基线(base line)--经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 噪音(noise)--基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 漂移(drift)--基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 色谱峰(peak)--组分流经检测器时响应的连续信号产生的曲线上的突起部分。正常色谱峰近似于对称形正态分布曲线(高斯Gauss曲线)。 峰高(peak height,h)-峰的最高点至峰底的距离。 峰宽(peak width,W)-峰两侧拐点处所作两条切线与基线的两个交点间的距离。 半峰宽(peak width at half-height,W h/2)-峰高一半处的峰宽。 峰面积(peak area,A)-峰与峰底所包围的面积。 死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。 保留时间(retention time,t R)--从进样开始到某个组分在柱后出现浓度极大值的时间。 保留因子: 分离度: 气相色谱中随着温度升高,目标物保留时间减少,分离度降低。 三、仪器与试剂 仪器:高效液相色谱仪;超声波清洗器;色谱柱(C18);微量注射器(20ul)。 试剂:甲醇(A.R.);苯(A.R.);甲苯(A.R.);萘(A.R.)。 四、实验步骤 1. 色谱条件为 气相色谱柱: 流动相:氮气 进样量:10.0ul

光谱分析复习和思考题

光谱分析复习和思考题 一、光谱法基础知识 1光谱法定义或者原理 答:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产 生的发射、吸收或散射电磁辐射的波长和强度进行分析的方法。 2、光谱法的分类 鏗壮光耆 螯沪可31光需1纣刊羞 皆子黄光览薔] 转子光羞 分子曦光光蔓」 代学廣处光着 二、原子发射光谱 1原子发射光谱是怎样产生的?为什么各种元素的原子都有其特征的谱线? 答:(1)当气态原子或离子的核外层电子获取足够的能量后, 就会从基态跃迁到各种激发态, 处于各种激发态不稳定的电子(寿命<10-8s)迅速回到低能态时,就要释放出能量,若以光辐一射的形式释放能量,即得到原子发射光谱。(2)因为各种元素原子的核外电子能级不同,所跃迁产生光谱线的波长也不同,所以各种元素的原子都有其特征的谱线。 2、影响原子发射光谱的谱线强度的因素是什么?产生谱线自吸及自蚀的原因是什么? g i旦 答:( 1 )谱线强度的基本公式:I i N0-gL e KT A i h i, g o N b —单位体积的基态原子数;gi ,g0 —激发态和基态的统计权重;Ei —激发电位; K —Boltzmann常数;T —温度/K ; Ai —为跃迁几率;u i —为发射谱线的频率。主要影 响因素为统计权重、跃迁几率;激发电位、激发温度;电离度、蒸发速率常数、逸出速率常 数。 (2)谱线自吸:某元素发射出的特征光由光源中心向外辐射过程中,会被处于光源边缘部 分的低能级的同种原子所吸收,使谱线中心发射强度减弱,这种现象叫自吸。(3)自蚀:在 自吸严重情况下,会使谱线中心强度减弱很多,使表现为一条的谱线变成双线形状,这种严

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

光谱分析考试题

光谱分析模拟试题 一、单项选择题(每小题1分,共20小题20分) 1.节日焰火有不同的颜色是由于: A,不同的物质在激发后会发射出不同波长的光; B,火药有不同的焰色; C,燃放的高度不同; D,温度的不同 2.下列辐射中,频率最高的是: A,X射线; B,远紫外; C,远红外; D,可见光 3.下列元素中,共振线波长最长的是: A,Cl; B,Mg; C,Rb; D,Si 4.当总角量子数L=1时,习惯上用哪个字母表示? A,S B,P C,D D,F 5.原子发射光谱定量分析成份复杂的废液时,应选哪种激发光源? A,火焰; B,电弧; C,等离子体; D,火花 6.原子发射光谱法中的三标准试样法的工作曲线的纵坐标-横坐标是: A,黑度差-浓度的对数; B,黑度差-浓度; C,相对强度的对数-浓度; D,黑度-浓度的对数 7.能够测量谱线黑度的仪器叫: A,阿贝比长仪; B,光谱投影仪; C,光栅摄谱仪; D,测微光度计 8.下列元素中,激发电位最低的是: A,Cs; B,Na; C,Fe; D,Cl 9.在下列激发光源中,电极头温度最高的是: A,直流电弧; B,交流电弧; C,火花; D,等离子体 10.用X射线荧光法分析下列元素时,灵敏度最高的可能是: A,C; B,Ag; C,K; D,Mg 11.为了增加火焰原子吸收中的试液提升量,可以: A,使用富燃焰; B,提高火焰温度; C,增加燃烧器高度; D,增大载气流量 12.引起谱线变宽最主要的因素是: A,自然宽度; B,同位素变宽; C,多谱勒变宽; D,自吸变宽. 13.当产生了1%吸收时,其吸收值为: A, 0.01; B,0.001; C,0.0044; D,0.44 14.为了使原子吸收的测量误差最小,试液中被测元素的浓度最好是特征浓度 的多少倍? A, 4; B, 10; C, 44; D, 100 15.原子吸收法中的物理干扰能用什么方法消除? A,加保护剂; B,加释放剂;

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

色谱分析实验教学大纲

《色谱分析》实验教学大纲 大纲制定(修订)时间:2017年6月 课程名称:《色谱分析》课程编码:080241006 课程类别:专业课课程性质:必修 适用专业:环境工程 课程总学时:32学时 实验(上机)计划学时:12学时 开课单位:环境与化学工程学院 一、大纲编写依据 1.环境工程专业2017版教学计划; 2.环境工程专业《色谱分析》理论教学大纲对实验环节的要求; 3.近年来《色谱分析》实验教学经验。 二、实验课程地位及相关课程的联系 色谱分析实验课程的建立有助于使学生加深对于理论课程的理解,是在色谱分析理论课基础上的综合实验能力训练,有助于对色谱分析课程的理解和掌握。 三、实验目的、性质和任务 1、了解色谱分析中常用的气相色谱、高效液相色谱、平面液相色谱的理论和方法。 2、训练学生综合运用所学理论和实验技能理解实验方案,完成实验操作,分析实验结果的能力。学生要学会使用气相色谱仪和高效液相色谱分析仪器。 四、实验基本要求 “气相色谱仪原理及应用”通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 “高效液相色谱原理及应用”学习高效液相色谱仪的构成和使用方法,及其在定性、定量分析中的应用。 “薄层色谱原理及应用”实验了解薄层色谱的基本原理和应用,掌握薄层色谱的操作技术。 五、实验内容和学时分配

光谱分析复习和思考题

光谱分析复习和思考题 (刘老师讲课内容) 答疑地点:材料楼217房间 一、光谱法基础知识 1. 光谱法定义或者原理 2. 光谱法的分类 二、原子发射光谱 1. 原子发射光谱是怎样产生的?为什么各种元素的原子都有其特征的谱线? 2. 产生谱线自吸及自蚀的原因是什么? 3. 解释下列名词: (1)激发电位和电离电位。 (2)共振线、原子线、离子线、灵敏线、最后线。 4. 摄谱仪的类型及分光原理 5. 发射光谱分析中,如何选择分析线和分析线对 三、原子吸收和原子荧光光谱 1. 原子吸收光谱和原子荧光光谱是如何产生的? 2. 解释下列名词:⑴谱线轮廓;⑵积分吸收;⑶峰值吸收;⑷锐线光源。 3. 表征谱线轮廓的物理量有哪些? 4. 原子吸收光谱仪与原子荧光光谱仪有何不同? 5. 标准加入法定量分析中,工作曲线的横纵坐标分别是什么? 6. 三种原子光谱的相互联系与区别及各自的应用特点? 7. 原子吸收光谱法的干扰效应及消除方法 四、紫外光谱 1. 紫外可见吸收光谱产生的原理? 2. 什么是生色团和助色团,并分别列举两个例子? 3. 紫外可见吸收光谱有哪些应用,特别是一些特殊的应用,如结构分析和物理化学参 数的测定。 4. 排出下列化合物的及的顺序:CH3CI;CH3Br;CH3I 5. 紫罗兰酮有两种异构体,α异构体的吸收峰在228nm(ε=14000),β异构体吸收峰在 296nm(ε=11000)。试指出这两种异构体分别属于下面的哪一种结构。 (Ⅰ) (Ⅱ)

答案: I为β,II为α。 五、红外光谱 1. 红外吸收光谱法产生的原理及产生红外吸收的条件? 2. 影响化学键伸缩振动频率的直接因素是什么? 3. 各官能团所在的红外吸收波长的范围? 4. 影响吸收强度的内外部因素是什么? 5. 不饱和度计算的公式?并说明公式中各量的含义?不饱和度为0、1、2或者4时代 表什么? 6. 指出下列振动是否具有红外活性? (1)中的C-C伸缩振动(2)中的C-C伸缩振动 (3) (4) (5) (6) (7) (8)

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图 “浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤

(1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前 实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm

最新仪器分析复习题及答案

仪器分析复习题 一、选择题: 1对于下列关于1.0 mol L-1 CuSO4溶液的陈述,哪些是正确的? A A. 改变入射光波长,ε亦改变 B. 向该溶液中通NH3时,ε不变 C. 该溶液的酸度不同时,ε相等 D. 改变入射光波长,ε不变 2分子光谱是由于 B 而产生的。 A. 电子的发射 B. 电子相对于原子核的运动以及核间相对位移引起的振动和转动 C. 质子的运动 D. 离子的运动 3在分光光度法中,运用朗伯-比尔定律进行定量分析时采用的入射光为 B A. 白光 B. 单色光 C. 可见光 D. 紫外光 4溶剂对电子光谱的影响较为复杂,改变溶剂的极性 B A. 不会引起吸收带形状的变化 B. 会使吸收带的最大吸收波长发生变化 C. 精细结构并不消失 D.对测定影响不大 5光学分析法中使用到电磁波谱,其中可见光的波长范围约为 B A. 10~400nm B. 400~750nm C. 0.75~2.5mm D. 0.1~100cm. 6共振线是具有 B 的谱线 A. 激发电位 B. 最低激发电位 C. 最高激发电位 D. 最高激发能量 7波数(σ)是指 A A. 每厘米内波的振动次数 B. 相邻两个波峰或波谷间的距离 C. 每秒钟内振动的次数 D. 一个电子通过1V电压降时具有的能量

8下列羰基化合物中C=O伸缩振动频率最高的是 C A. RCOR’ B. RCOCl C. RCOF D. RCOBr 9原子发射光谱法是一种成分分析方法,可对约70种元素(包括金属及非金属元素)进行分析,这种方法常用于 D A. 定性 B. 半定量 C. 定量 D. 定性、半定量及定量 10下面几种常用的激发光源中,激发温度最高的是 C A. 直流电弧 B. 交流电弧 C. 电火花 D. 高频电感耦合等离子体 11下面几种常用的激发光源中,分析的线性范围最大的是 D A. 直流电弧 B. 交流电弧 C. 电火花 D. 高频电感耦合等离子体 12当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是 D A. K B. Ca C. Zn D. Fe 13带光谱是由下列哪一种情况产生的? B A. 炽热的固体 B. 受激分子 C. 受激原子 D. 单原子离子 14下列哪种仪器可用于合金的定性、半定量全分析测定 B A. 折光仪 B. 原子发射光谱仪 C. 红外光谱仪 D. 电子显微镜 15原子发射光谱是由下列哪种跃迁产生的? D A. 辐射能使气态原子外层电子激发 B. 辐射能使气态原子内层电子激发 C. 电热能使气态原子内层电子激发 D. 电热能使气态原子外层电子激发 16H2O在红外光谱中出现的吸收峰数目为 A A. 3 B. 4 C. 5 D. 2

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

相关文档