文档视界 最新最全的文档下载
当前位置:文档视界 › 储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备综述
储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备

摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。

关键词:储氢材料、性质、应用、发展、制备

1引言

当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。

2储氢材料的基本性质

储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属

→MHx+ΔH(生成热)。

氢化物(MHx):M+XH

2

2.1储氢材料应具备的基本条件

作为储存能量的材料,储氢材料应具备以下条件:

(1)易活化,氢的吸储量大;

(2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大;

(3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压;

(4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小;

、水分等的耐中毒能力强;

(5)对不纯物如氧、氮、CO、CO

2

(6)当氢反复吸储和释放时,微粉化少,性能不会劣化;

(7)金属氢化物的有效热导率大,储氢材料价廉;

(8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。

2.2影响储氢材料吸储能力的因素

(1)活化处理:制造储氢材料时,因表面被氧化物覆盖及吸附着水及气体等会影响氢化反应,因此,应先对材料进行表面活化处理;

(2)耐久性和中毒:当向储氢材料供给新的氢时,带入的氧、水分等不纯物在合金或氢化物粒子表面聚集,并形成氧化物等,从而导致吸储氢的能力下降;(3)储氢材料的导热性;

(4)粉末化:粉末化会使装置内的充填密度增高、传热效率降低、装置局部地方产生应力,造成阀门和管道阻塞;

(5)滞后现象与坪域;

(6)安全性储氢材料及其氢化物具有可燃性,着火点温度较低,当材料微粉化后,有粉尘爆炸的危险。

3储氢方法

3.1物理法储氢技术

3.1.1活性炭吸附储氢

活性炭具有较高的比表面积,尤其是优质活性炭的比表面积可达2000m2/g 以上,利用低温加压可吸附储氢。研究表明,储氢用于汽车内燃机燃料时,在行驶相同距离的条件下,吸附剂储氢体系的总质量为储油体系的2.5倍,储器体积比金属氢化物储氢体系稍大一些。

3.1.2深冷液化储氢

在常压和-253°C温度下,气态氢可液化为液态氢,液态的密度是气态的845倍。液氢是航天飞机和运载火箭的重要燃料,在航天工业上具有重要的应用。相比高压压缩储氢而言,采用深冷液化储氢,其体积能量密度高,储存容器体积小。

3.2化学法储氢技术

3.2.1金属氢化物储氢

某些金属或合金与氢反应后以金属氢化物形式吸氢,生成的金属氢化物加热后释放出氢气,利用这一特性就可有效地贮氢。金属氢化物贮氢,氢以原子状态贮存于合金中。重新释放出来时,经历扩散、相变、化合等过程。

3.2.2非金属氢化物储氢

氢可与某些非金属的元素或物质相作用,构成各种非金属氢化物。如碳氢化

合物CxHy,以CH

4或C

7

H

14

的形式寄存于其中,还有NH

3

、N

2

H

4

等氮氢化合物。

4储氢材料的功能及应用

储氢合金在吸收过程中伴随着十分可观的热效应、机械效应、电化学效应、磁性变化和明显的表面吸附效应和催化作用,因此在氢提纯、重氢分离、空调、热泵、压缩机、氢汽车、催化剂和镍金属氢化物电池等方面均有广阔的前景。

4.1储氢材料在电池上的应用

4.1.1镍金属氢化物电池

金属氢化物-镍电池是利用储氢材料的电化学吸附氢特性及电催化活性原理制作的。正极采用镍化合物,负极采用储氢合金M,正负极板和隔板都浸在氢氧化钾电解质溶液中构成电池。正向反应是充电过程,负极上不断析出氢气并被储氢合金吸收生成金属氢化物,即氢化物电极储氢,逆向反应是放电过程,氢化物释出的氢又在同一电极上进行阴极氧化,电子沿导线移向正极。当过充电时正极上生成氧,负极上消耗氧。过放电时正极上生成氢,负极上消耗氢。镍氢电池从正负极上的反应来看均属于固态相变,正负极都有较高的结构稳定性。其充放电过程可以看做只是氢原子从一个电极移到另一个电极的反复过程。

以氢化物电极为负极,Ni(OH)

2

电极为正极,KOH水溶液为电解质组成的Ni/MH 电池的反应如下:

正极:Ni(OH)

2+OH-≒NiOOH+H

2

O+e

负极:M+XH

2O+Xe≒MH

X

+XOH-

总的电极反应:M+X(NiOH)

2≒MH

X

+XNiOOH

4.1.2氢能汽车

对于使用现代内燃机的汽车,如稍加改造就可用氢做燃料,氢燃烧后生成的产物为水和极少量的氮氧化物,排污少。另外,氢发动机的热效率也比汽油机高,用氢气取代汽油做汽车燃料对环保十分有利。氢汽车是一种完全以氢气为燃料代替汽油的新型汽车,不存在环境污染问题,具有良好的发展前景,目前开发的氢能汽车主要有三种类型:利用储氢材料制成储氢罐,直接燃烧氢的储氢罐型;利用镍氢电池的电动型;一燃料电池为动力的燃料电池型。

4.1.3氢的贮存、净化和分离

储氢材料最基本的应用领域就是氢气的贮存及运输。主要的储氢方式有固定式储氢器和可移动式储氢器。适用液氢槽车贮罐和高压氢气瓶运输或存储氢,不仅昂贵,安全措施要求很高,而且由于蒸发和泄漏不宜长期储存。用储氢材料作介质,使氢气和储氢合金化合成固态金属氰化物来储存运输氢气,则可解决长期储存和安全运输的问题。

兼有储存和精华双重功能的储氢器与现行的氢气钢瓶,具有价格低、体积小、容量大、操作简便、不易损坏等优点,适用于电子、化工、冶金、气象等一切需要高纯氢的部门。

储氢合金的吸放氢压力随温度的升高成对数关系升高,在常温下吸入较低压力的普通氢气,在较高温度下则可释放出高压高纯度氢气。

4.1.4在能量转换中的应用

金属氢化物在高于平衡分解压力的氢压下,金属与氢的反应再生成氢化物的

同时,要放出相当于生成热的热量Q,如果向该反应提供相当于Q的热能,使其进行分解,则氢就会在相当于平衡分解压力的压力下释放出来,这一过程存在热-化学(氢)能变换,即为化学蓄热。利用这种特性,可以制成蓄热装置,贮存工业废热、地热、太阳能等热能。

储氢材料在相应的低温低压下制成的氢化物,一旦加热提高其温度,即可获得高压氢。用多种储氢材料与之匹配,还可制成多段式压缩机。它运动安静安静,无震动,易维修,设备结构紧凑,耗电少,可利用排出的废热,组装成多段高压压缩机。

4.1.5氢催化剂

储氢材料具有很高的活性,因此,它是加氢反应和脱氢反应的良好的催化剂。此外,储氢材料在合成氨、甲烷反应等反应中均有广泛的应用。

5储氢材料的发展和研究进展

随着氢能体系的出现,氢能的开发利用首先要解决的是廉价的氢源制取,其次是安全可靠的贮氢技术和输氢方法。目前利用太阳能分解水制氢的方法多种多样,分解的太阳能转变成了高度集中的清洁能源。就贮氢而言,方法有常压贮氢、高压贮氢、液氢贮氢、金属氢化物贮氢等。当今各种储氢材料的结构、性能、制备和应用等方面的研究均取得大量研究成果。

5.1镁基储氢材料

镁基储氢材料是非常具有应用前景的一类储氢材料,属于中温型储氢合金,吸、放氢动力学性能差,但由于其储氢量大、重量轻、资源丰富、价格便宜,被认为是最有前途的储氢合金材料,吸引了众多的科学家致力于开发新型镁基合金。目前的研究重点主要包括:(1)元素取代:通过元素取代来降低其分解温度,并同时保持较高的吸氢量;(2)与其它合金组成复配体系,以改善其吸放氢动力学和热力学性质;(3)表面处理:采用有机溶剂,酸或碱来处理合金表面,使之具有高的催化活性及抗腐蚀性,加快吸、放氢速度;(4)新的合成方法:探索传统冶金法以外的新合成方法。(5)提高在碱液中的耐蚀性。

5.2碳基储氢材料

碳质储氢材料是指碳材、玻璃微球等吸附储氢的材料,如碳纳米管、石墨纳米纤维等它们具有优良的吸、放氢性能,已引起了世界各国的广泛关注。在吸附储氢材料中,碳基材料由于对少量的气体杂质不敏感,且可反复使用,因而是一种非常好的储氢材料。碳基储氢材料主要包括超级活性炭、纳米结构碳材料、碳纤维、碳化物的衍生物等。

5.3纳米储氢材料

纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性。

纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高,具有更高的氢扩散系统,并具有优良的吸放氢动力学性能。

5.4稀土储氢材料

稀土元素位于元素周期表中的第三副族,其特殊的4f电子结构,使它具有了各种优异性能,并得到广泛应用。它的应用遍及了国民经济中的冶金、石油、化工、光学、磁学、电子、生物医疗和原子能工业的各大领域的30多个行业。目前已开发的合金主要由可与氢形成稳定氢化物的防热型金属(Mn、Ti、Zr、Mg、V)和难形成氢化物但具有催化活性的金属(Ni、Fe、Mn)按一定比例组成,从结构表面改性等角度进行综合改进获得可用的高性能储氢合金材料。

采用稀土储氢合金为负极材料的镍氢二次电池,与传统的镍镉电池相比较,镍氢电池具有能量密度高、耐过充、充放电能力强、无重金属镉污染等优点,广泛应用于汽车、摩托车、自行车等交通工具及笔记本电脑、传真机、数据录入器等信息化产业中。此外,稀土储氢合金在氢气的分离提纯回收运输、热泵、空调制冷、传感器及驱动器等方面也有大量应用,但作为镍氢电池负极材料的稀土储氢合金存在着比容量低的缺点。

6 储氢材料的制备方法

6.1 感应熔炼法

目前工业上最常用的方法是高频电磁感应熔炼法。感应电炉的熔炼工作原理是通过高频电流流经水冷铜线圈后,由于电磁感应使金属炉料内产生感应电流,感应电流在金属炉料中流动时产生热量,使金属炉料加热和熔化。

用熔炼法制取合金时,一般都在惰性气氛钟进行,由于电磁感应的搅拌作用,溶液顺磁力线方向不断翻滚,使熔体得到充分混合而均质地熔化,易于得到均质合金。

6.2 机械合金化

机械合金化是用具有很大动能的磨球,将不同粉末重复地挤压变形,经断裂、焊合,再挤压变形成中间复合体这种复合体在机械力的不断作用下,不断地产生新生原子面,并使形成的层状结构不断细化,从而缩短了固态粒子间的相互扩散距离,加速合金化过程。

这种方法与传统方法显著不同,它不用任何加热手段,只是利用机械能,在远低于材料熔点的温度下由固相反应制取合金,对于熔点相差很大或者密度相差很大的元素,机械合金化比熔炼法具有更独特的优点。

6.3 还原扩散法

还原扩散法是将元素的还原过程与元素间的反应扩散过程结合在同一操作过程中直接制取金属间化合物的方法。还原扩散法的产物取决于原料组成、还原剂用量、过程温度和保温时间等因素。

6.4 共沉淀还原法

共沉淀还原法是在还原扩散法的基础上发展起来的,是一种化学合成的方法。采取各组分的盐溶液,加沉淀剂进行共沉淀,即先制取出合金的化合物,灼烧成氧化物后,再用金属钙或CaH

2

还原而制储氢合金的一种方法。6.5 置换扩散法

由于镁是活泼金属,因而需用置换扩散法制备,即将污水盐NiCl

2

或CuCl 溶解在有机溶剂中,用过量镁粉进行置换,铜或镍平稳地沉积在镁上,取出洗净烘干,放入高温炉中在保护性气氛下以600°C进行热扩散使合金均匀

化,得到MgNi

2或MgCu

2

7 总结

储氢材料名义上是一种能够储存氢的材料,实际上它是必须在适当的温度、压力下大量可逆的吸收释放氢的材料。它在氢能系统中作为氢的存储与输送的载体是一种重要的候选材料。氢与储氢材料的组合,将是21世纪新能源--氢能的开发与利用的最佳搭档。储氢材料再高技术领域中占有日益重要的位置。因此,研究和开发储氢材料是当今社会的热门课题。

参考文献

[1]胡子龙.贮氢材料.化学工业出版社,2001

[2]孙东升,张昭良,李国勋.功能材料,1997,28(2):215~220

[3]温树林.现代功能材料导论.北京:科学出版社,1983

[4]文凡.金属功能材料,2000,2:43

[5]功能材料及其应用手册编写组.功能材料及其应用手册.北京:机械工业出版社,1991

[6]累泳圈,万群等.新能源材料.天津:天津大学出版社,2000

[7]周素芹等,储氢材料研究进展(A),材料科学与工程学报,2010

[8]张瑞英,稀土储氢材料的发展与应用(A),内蒙古石油化工,2010

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

金属氢化物贮氢技术研究与发展

作者:陈长聘王启东(浙江大学) 【摘要】氢的贮存与输送是氢能利用中的重要环节。石油化工、合成氨、冶金、电子、电力、医药、食品、玻璃生产、火箭燃料和科学实验等以氢作为原料气、还原气、冷却气或燃料。由于氢的易燃性、易扩散性和重量轻,因此其贮存与输送中的安全、高效和无泄漏损失是人们在实际应用中优先考虑的问题。原则上,氢可以以气体、液体、固体(氢化物)或化合物(如氨、甲醇等)的形式贮存与运输。 引言 氢的贮存与输送是氢能利用中的重要环节。石油化工、合成氨、冶金、电子、电力、医药、食品、玻璃生产、火箭燃料和科学实验等以氢作为原料气、还原气、冷却气或燃料。由于氢的易燃性、易扩散性和重量轻,因此其贮存与输送中的安全、高效和无泄漏损失是人们在实际应用中优先考虑的问题。原则上,氢可以以气体、液体、固体(氢化物)或化合物(如氨、甲醇等)的形式贮存与运输。工业实际应用中大致有五·种贮氢方法,即:(1)常压贮存,如湿式气柜、地下储仓;(D高压容器,如钢制压力容器和钢瓶;(3)液氢贮存(真空绝热贮槽和液化机组);(4)金属氢化物方式(可逆和不可逆氢化物);(5)吸附贮存,如低温吸附和高压吸附。除管道输送外1高压容器和液氢槽车也是目前工业上常规应用的氢气输送方法。表:列出了一些氢贮存介质的贮氢能力和贮氢密度比较。显然,液氢具有较高的单位体积贮氢能力,但是装料和绝热不完善造成的蒸发损失可达容器体积的4.5%,所以比较适用于快装快用的场合。高压容器贮氢,无论单位体积贮氢能力或能量密度均为最低,当然还有安全性差的问题。金属氢化物贮存和输送氢最大优点是其特有的安全佐和高的体积贮氢密度。利用金属氢化物贮运氢气涉及到贮氢材料、氢化物工程技术以及贮氢器的结构设计等多方面问题。本文在扼要回顾有关研究与发展状况的同时,将着重介绍该领域近年来所取得的新的进展。 1金属氢化物贮氢技术原理 称得上“贮氢合金”的材料应具有像海绵吸收水那样能可逆地吸放大量氢气的特性。原则上说,这种合金大都属金属氢化合物,其特征是由一种吸氢元素或与氢有很强亲和力的元素(A)和另一种吸氢量小或根本不吸氢的元素(B)共同组成。贮氢合金与氢接触首先形成含氢固溶体(MHx),其溶解度[H]M与固溶体平衡氢压PH2的平方根成正比,即 (1)其后,在一定的温度和压力条件下,固溶相MHx继续与氢反应生成金属氢化物,这

灌浆材料的发展现状与展望模板

灌浆材料的发展现状与展望 摘要:灌浆工法作为防渗补强加固的一种重要手段,其灌浆材料起着至关重要的作用。本文对灌浆材料的种类及其使用性能作了详细的描述,同时对今后浆材的发展方向提出了展望。 关键词:灌浆灌浆材料 注浆法出现于19世纪初,注浆工法在水利水电工程中多称灌浆法。采用灌浆技术以解决土建工程的有关技术难题,至今已有一个世纪的历史。浆液注入到地层中去的方式是该工法的关键。随着注浆技术的广泛应用,注浆材料得到了较大的发展。注浆材料从最早的石灰和黏土、水泥,发展到今天的水泥--水玻璃浆液、各种化学浆液。而注浆材料的开发与应用,又反过来推动了注浆工法在更广泛的领域内的应用。通常说的注浆材料是指浆液中的主剂。注浆材料必须是能固化的材料。习惯上把注浆原材料分为粒状材料和化学材料两个系统。而浆液是同主剂、固化剂,以及溶剂、助剂经混合后所配成的液体,分为溶液型和悬浊液型两大类。 1 灌浆材料的种类及其特点 1.1 溶液型浆材 溶液型浆材又叫化学浆材,可分为水玻璃类、木质素类灌浆材料、丙烯酰胺类灌浆材料、丙烯酸盐类灌浆材料、聚氨酯类灌浆材料、环氧树脂灌浆材料、甲基丙烯酸酯类灌浆材料、脲醛树脂类、其它类化学灌浆材料。1.1.1 水玻璃类灌浆材料 水玻璃(硅酸钠)是化学灌浆中最早使用的一种材料,水玻璃类浆液是由水玻璃溶液和相应的胶凝剂组成。其无机胶凝剂有氯化钙、铝酸钠、氟硅酸、磷酸、草酸、硫酸铝、混合钠剂等,有机胶凝剂有醋酸、酸性有机盐、有机酸酯、醛类(乙二醛类)、聚乙烯醇等。二氧化碳亦可与水玻璃溶液在被灌体内生成硅酸凝胶。 灌浆用水玻璃模数在2.4~3.4之间为宜,水玻璃溶液的浓度在35~45°Be'为宜。 水玻璃类浆材主要特点及性能: (1) 胶凝时间从瞬间~24小时不等; (2) 固砂体强度可达6MPa; (3) 粘度从1.2~200×10-3Pa·s; (4) 可灌性好,渗透系数可达10-5~10-6cm/s,可灌入 0.1mm以上的土层。 (5) 毒副作用小,造价低。 1.1.2 木质素类浆液 木质素类浆液由纸浆废液、胶凝剂和促凝剂等组成。木质素类浆液包括铬木素和硫木素浆液两种。铬木素浆液的固化剂是重铬酸钠。但重铬酸钠毒性大,难以大规模使用。硫木素浆液是在铬木素浆液的基础上发展起来的,是采用过硫酸铵完全代替重铬酸钠,使之成为低毒、无毒木质素浆液,是一种很有发展前途的注浆材料。

新型含能体能源:氢能与储氢技术的最新进展

论文关键词:氢能制氢技术储氢技术 论文摘要:氢能是21世纪解决化石能源危机和缓解环境污染问题的绿色能源。实现氢能的利用,氢的储运是目前要解决的关键问题。文章综述了氢气制备技术和储备技术的最新研究进展,并探讨了制氢与储氢技术的关键问题。最后对进一步的研究进展进行展望,提出了可供研究的课题方向。 0 引言 资源减少、能源短缺、环境污染日益严重。为了我国经济可持续发展的战略国策,寻找洁净的新能源和可再生能源来替代化石能源已经迫在眉睫。氢能以其热值高、无污染、来源丰富等优点,越来越受到人们的重视,被称为21世纪的理想能源。是人类能够从自然界获取的、储量非常丰富而且高效的含能体能源。 作为能源,氢能具有无可比拟的潜在开发价值:氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国外学者研究的热点[1、2、3、4]。 1国外氢能发展状况 2003年11月19-21日在美国首都华盛顿欧米尼·西海姆大酒店举行“国际氢能经济合作伙伴组织”[The International Partnership For The Hydrogen Economy( IPHE)]成立大会,共有澳大利亚、巴西、加拿大、中国、法国、德国、冰岛、印度、意大利、日本、国、俄罗斯、英国、美国和欧盟的政府代表团及工商业界代表数百人出席会议。IPHE是一种新的氢能国际合作关系,这种合作将支持未来的氢能和电动汽车技术,建设一个安全、有效和经济的世界围的氢能生产、储存、运输、分配和使用设施的大系统。氢能作为解决当前人类所面临困境的新能源而成为各国大力研究的对象。 氢能广泛应用的关键,在于研制出成本低的制氢技术。目前,氢能利用技术开发已在世界主要发达国家和发展中国家启动,并取得不同程度的成果。美国已研制成功世界上第一辆以氢为燃料的汽车,可将60%-80%的氢能转换成动能,其能量转换率比普通燃机高一倍。1989年,美国太平洋能源公司发明了能大量生产廉价氢燃料的新技术。可用于水分解的一种化学催化剂。用这种方法分解出来的氢成本很低,因而成为世界上最便宜的燃料[1-3,6]。 欧盟(EU)也加紧对氢能的开发利用。在2002-2006年欧盟第6个框架研究计划中,对氢能和燃料电池研究的投资为2,500万-3,000万欧元,比上一个框架计划提高了1倍。北欧国家2005年成立了“北欧能源研究机构”,通过生物制氢系统分析,提高生物生产氢能力。2005年7月,德国宝马( BMW)汽车公司推出了一款新型氢燃料汽车,充分利用了氢不会造

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

我国储氢技术发展

促进我国储氢技术发展的必要 氢气是一种易燃、易爆、易泄漏的危险化学介质。日益加重的能源危机和环境污染问题迫切要求人们开发新能源。氢能以其燃烧产物洁净、燃烧效率高、可再生等优点被认为是新世纪的重要二次能源。随着氢燃料电池和电动汽车的迅速发展与产业化,氢源技术及氢能基础设施的研究和建设已引起发达国家的高度关注 发展氢燃料电池汽车的确需要高效储氢技术,因为这是方便使用氢能源的必须. 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,而且还有爆炸的危险;另一种方法是储存液态氢,但液体储存箱非常庞大,需要极好的绝热装置来隔热。近年来,一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 研究证明,在一定的温度和压力条件下,一些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,称为储氢合金。其储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。储氢合金都是固体,需要用氢时通过加热或减压使储存于其中的氢释放出来,因此是一种极其简便易行的理想储氢方法。目前研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。 储氢合金还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。此外它还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。 储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。目前中国已研制成功了一种氢能汽车,它使用储氢材料90千克,可行驶40千米,时速超过50千米。今后,不但汽车会采用燃料电池,飞机、舰艇、宇宙飞船等运载工具也将使用燃料电池,作为其主要或辅助能源。 现在最常用的储氢手段 高压储氢是最常用和最直接的储氢方式。高压储氢可在常温下使用,通过阀门的调节就可以直接将氢气释放出来["],具有储氢罐结构简单、压缩氢气制备的能耗较少、充装速度快等优点,已成为现阶段氢能储运的主要方式 高压储氢缺点 高压氢气储罐不但有可能发生因强度不足(特别是高强钢脆化)引起的物理爆炸,而且有可能发生因氢气泄漏而引发的火灾、爆炸事故,且其风险程度随罐体容积增大、压力升高而加大。因此,如何降低高压储氢的风险程度,是加氢站建设十分关注的一个问题。 高压下运行的高压储氢罐,一旦发生破坏,罐内巨大的能量在瞬间释放,会产生冲击波、容器碎片猛然飞出和易燃、易爆氢气喷漏。冲击波的超压可以将建筑物破坏,也会直接危害在它所波及范围内的人身安全,冲击波后面的高速气流夹杂着碎片往往加重对人员的伤害。具

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

镁基复合材料的研究发展现状与展望

——颗粒增强镁基复合材料 课程名称:金属基复合材料 学生姓名: 学号: 班级: 日期:2010/12/26

——颗粒增强镁基复合材料 摘要:镁基复合材料具有很高的比强度、比刚度以及优良的阻尼减震性能,是汽车制造、航空航天等领域的理想材料之一。本文综述了颗粒增强镁基复合材料的研究概况,镁基复合材料常用的基体合金和常用的增强相。着重介绍了其制备方法、力学以及阻尼性能,并对它的发展趋势进行了展望。 关键词:镁基复合材料;制备方法;基体镁合金;颗粒增强体;性能 1.前言 与传统的金属材料相比,金属基复合材料具有高的比强度、比刚度、耐高温、耐磨损耐疲劳、热膨胀系数小、化学稳定性和尺寸稳定性好等优异性能。金属基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;由于镁的密度更低(1.74 g/cm3),仅为铝的2/3,具有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空、航天、汽车、机械及电子等高技术领域的重视.自20世纪8O年代至现在,镁基复合材料已成为金属基复合材料的研究热点之一。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易近终成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。 2.制备方法 2.1粉末冶金法 粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。 2.2熔体浸渗法 包括压力浸渗、无压浸渗和负压浸渗。压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。

先进能源技术概述

863计划先进能源技术领域 2006年度专题课题申请指南 前言 “十一五”期间,863计划先进能源技术领域以《国家中长期科学和技术发展规划纲要》、《国家“十一五”科学技术发展规划》和《863计划“十一五”发展纲要》为指导,立足当前,着眼未来,大力开发节能和能源清洁高效开发、转化和利用技术,积极发展新能源技术,促进能源多元化。攻克一批能源开发、利用和节能重大关键技术与装备,形成一批新兴能源产业生长点,掌握新能源、氢能和燃料电池等战略高技术,建立起能源科技持续创新平台,为经济、社会可持续发展提供清洁高效能源技术的支撑。 按照以上总体考虑,863计划先进能源技术领域将在项目和专题两个层次进行部署,设置“氢能与燃料电池技术”、“高效节能与分布式供能技术”、“洁净煤技术”和“可再生能源技术”四个专题。氢能与燃料电池技术专题重点是研究开发制氢、储氢和输氢、氢能安全及燃料电池技术,为氢能发展奠定技术基础。高效节能与分布式供能技术专题重点是研究开发工业和建筑等主要耗能领域的节能技术;研究开发分布式供能系统技术,提高能源系统的综合利用效率。洁净煤技术专题重点是开发煤炭的燃烧、加工与转化、污染控制、发电等洁净煤技术,整体提升我国洁净煤技术水平。可再生能源技术专题重点是研究开发风能、太阳能、海洋能和地热等技术,提高可再生能源在能源结构中比重。专题将分年度公开发布专题课题申请指南。以下为本领域2006年度专题课题申请指南。 专题一、氢能与燃料电池技术专题

一、指南说明 本专题根据氢能及燃料电池技术发展趋势,结合我国氢能及燃料电池技术发展现状和已有基础,将安排探索导向类和目标导向类研究课题。本专题主要围绕氢的制备、储存、输运、应用、燃料电池关键技术安排课题,主要研究内容为:制氢技术、储氢技术、输氢技术、燃料电池技术、氢安全技术以及技术规范标准等。通过专题的实施,提高我国在氢能及燃料电池技术领域的创新能力,获取一批自主知识产权的创新性成果,为我国氢能及燃料电池的发展提供技术储备;突破一批关键技术,提高氢能及燃料电池系统的能量转换效率、降低成本,推进氢能及燃料电池技术发展,为我国能源的多元化发展做出贡献。 此次发布的是本专题2006年度课题申请指南,年度经费预算为7500万元。拟支持的课题分两类,一类是探索导向类课题,重点为制氢技术、储氢和输氢技术及燃料电池技术等,课题支持强度为100万元以下,支持年限原则上不超过3年;一类是目标导向类课题,重点为新型储氢技术、加氢站系统技术、质子交换膜燃料电池技术、固体氧化物燃料电池技术等,课题支持强度为500万元以下,支持年限原则上不超过3年。 二、指南内容 (一)探索导向类课题 1.制氢技术 主要研究内容:可再生能源制氢新技术;化石能源制氢(包括副产氢纯化利用)新技术;化学氢化物水解制氢技术;制、储氢一体化技术;其它新型制氢技术等。 本方向2006年拟安排经费1000万元。 2.储氢和输氢技术

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.docsj.com/doc/387602875.html, 收稿日期:2009-01-13 33

(完整版)镁基储氢材料发展进展

Mg基储氢材料的进展 一、课题国内外现状 氢能作为一种资源丰富,能量高,干净无污染的二次能源已经引起了人们的极大兴趣[1],随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,氢能成为新世纪的重要二次能源已为科学界所广泛认同。 氢能的发展涉及到很多方面,如氢能技术、工程、生产、运输、储存、经济及利用等,其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储存方法中,金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操作,运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起极大的热潮。其中,由于Mg密度小(1.74 g/cm3)、储氢能力高(理论上可达到7.6 wt.%)、价格低、储量丰富而使之成为一种很有前途的储氢合金材料。在众多储氢合金中,Mg基储氢合金因其储氢量大且资源丰富,价格低廉,成为最具潜力的储氢材料[2]。 然而,镁及其合金作为储氢材料也存在吸放氢速度慢、温度高及反应动力学性能差等缺点,因而严重阻碍了其实用化的进程。研究表明,将Mg基合金与具有催化活性的添加剂(过渡金属、过渡金属化合物、AB5型储氢合金等)混合球磨制备Mg基合金复合材料是提高Mg基合金吸/放氢性能的有效途径之一。针对上述Mg基储氢复合材料的研究,科研工作人员围绕以下几个方面展开工作: (1) 镁与单质金属复合 在球磨过程中添加其它单质金属元素,特别是过渡金属元素对镁的吸放氢性能有明显的改善作用。用于镁基材料复合的单质金属元素主要包括Pd、Fe、Ni、V、Ti、Co、Mo等。 Milanese等[3]研究了Al、Cu、Fe、Mn、Mo、Sn、Ti、Zn、Zr对镁吸放氢性能的影响,发现A1、Cu、Zn有助于镁的吸放氢,只有Cu能降低MgH2的稳定性,从而使其放氢温度降至270 ℃。Kwon等[4]球磨Mgl0%Ni5%Fe5%Ti混合材料,复合后其在300 ℃、1.2 MPa H2条件下吸收氢,吸氢时间分别为5 min和1 h,吸氢量分别为5.31%(质量分数,下同)和5.51%。初始吸氢速率从200 ℃升到300 ℃时增长较快,但在350 ℃时开始下降,放氢速率从200 ℃升到350 ℃时速度快速增长。他们认为添加的Ni、Fe和Ti元素能够产生活性点,并降低颗粒粒度,从而减少氢原子的扩散距离,形成新的高活性表面。同时,Ni、Fe、Ti也起到活性基点的作用,并能在球磨过程中创造缺陷,这些缺陷可以起到活性基点的作用,产生裂缝并能降低颗粒粒度。Varin等[5]在镁中添加0.5%~2.0%的纳米镍粉进行球磨储氢,结果表明,球磨70 h后,MgH2的粒径只有11~12 nm,当镍的添加量增加到2%时,储氢速率明显加快,球磨15 h,储氢密度就可达到6.0%以上;与MgH2相比,放

新材料产业发展现状及趋势

新材料产业发展现状及趋势 “十五”期间,在我国新材料产业发展过程中,国家给予了大力支持,初步形成了比较完整的新材料产业体系。“十五”期间发布的《国家计委关于组织实施新材料高技术产业化专项公告》,通过100多个产业化专项的实施.有力地推动了我国具有自主知识产权的新材料产业的发展,在电子信息材料、先进金属材料、电池材料、磁性材料、新型高分子材料、商性能陶瓷材料和复合材料等方面形成了一批高技术新材料核心产业。“十一五”期间又进一步加大了支持力度。按我国目前经济发展趋势预计,新材料需求增长速度将高于经济增长速度,按10%的增长速度计算,到2010年我国新材料市场可达6500亿元。新材料产业也已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志。 我国新材料产业的发展现状 当前,我国的新材料产业在国际产业布局中正处于由低级向高级发展的阶段,随着对外开放和与全球业界的广泛交流合作,我国新材料产业正呈现快速健康发展的良好状态,在一些重点、关键新材料的制备技术、工艺技术、新产品开发及节能、环保和资源综合利用等方面取得了明显成效,促进了一批新材料产业的形成与发展。 1.新一代钢铁结构材料 迄今为止,钢铁结构材料依然是国民经济各支柱产业和国防工业的重要支撑材料和应用范围最宽、使用量最大的材料,其生产和应用过程对全球资源、能源和人类生存环境有着不可忽视的影响,以去年为例: 2007年生产钢材46719.3万吨,比去年增长16.2%。同时,高技术含量、高附加值品种钢材产量大幅度增长。全年生产冷轧薄宽钢带1740.27万吨,同比增长31.8%;冷轧薄板1563.83万吨,同比增长25.2%;镀层板(带)1754.58万吨,同比增长37.9%;涂层板(带)317.21万吨,同比增长36.1%;电工钢板(带)415.57万吨。同比增长23.5%。以上5个品种钢材合计生产5791.487吨,比上年增长31.28%,高于钢材生产总量增幅8.59个百分点。全年生产不锈钢720.6万吨,比上年增加190.6万吨,增长35.96%,居世界第一位。其中,世界一流工艺装备的生产量达到70%,国内市场占有率达到75%,实现了重大的突破。全行业已基本形成以企业为主体、市场为导向、产学研相结合的技术创新和新产品研发体系,形成了科研基础设施建设加强、科技投入增加的良好格局。全行业在高效采选技术、钢铁冶炼技术、轧钢新技术、高端产品开发、大型冶金成套装备技术集成、节能节水和废弃物综合利用新技术等方面,都取得了新的成果和进步。 2007年宝钢试制成功X120管线钢,实现电镀锌机组全面无铬化生产,年产150万吨生铁的COREX3000熔融还原工艺装置投产;鞍钢继续完善冷连轧自主集成成套工艺技术,开发成功一批具有自主知识产权的核心技术,并在相关企业投入使用;武钢新一代取向硅钢、高效电机硅钢的研发和装备技术集成,高强度桥梁钢生产技术提高;太钢建成世界一流的现代化不锈钢生产基地;攀钢转炉铁水提钒和半钢炼钢连续工业性试生产成品钒渣等均取得了工艺技术的新突破。 2007年在研发和扩大生产市场需求的短缺产品方面,船用高强度宽厚板、高强度海洋结构用钢板、高档汽车用板和汽车零部件用钢、工程机械和高层建筑用高强度厚钢板、X80以上高等级管线钢板、百米在线热处理钢轨和时速350公里高速铁路钢轨、高速动车组用钢、高端压

氢能产业的发展关键--氢气存储技术

氢能产业的发展关键--氢气存储技术 当前,全球正经历从化石能源向氢能等非化石能源过渡的第三次能源体系重大转换期。作为最为环保的“终极能源”,氢能将在发电、供热和交通方面逐步广泛应用,在我国终端能源体系中的占比将达到10%。氢的储存和运输是氢能产业链中的重要一环,高度依赖技术进步和基础设施建设,是产业发展的难点。未来,发展安全、高效、廉价的储运氢技术是实现氢能商业化应用的关键。 不同的储氢方式,其储氢密度差别很大。氢能的存储方式主要包括低温液态储氢、高压气态储氢、固态储氢和有机液态储氢等,不同的储氢方式具有不同的储氢密度,其中气态储氢方式的储氢密度最小,金属氢化物储氢方式的储氢密度最大,液态储氢将是未来主要的储氢方式。 高压气态储氢技术成熟,但容量偏小。高压气态储氢是目前最常用并且比较成熟的储氢方式,其储存方式是采用高压将氢气压缩到一个耐高压的容器里。目前最常用的高压气态储氢容器是钢瓶,其优点是结构简单、压缩氢气制备能耗低、充装和排放速度快;缺点是存在泄漏爆炸隐患、安全性能较差及体积比容量低。长管气瓶组及长管拖车也在中国成功制造,已经在一些制氢工厂、用氢的企业、加氢站安装并运行。目前国内已建和在建加氢站,一般都采用该储氢设备。 低温液态储氢成本高。工业氢气的规模化廉价生产和储运是实现氢能实用化利用的基础。液态氢的密度是气态氢的845倍,氢气液化的费用昂贵,耗能较高(4~10千瓦时/千克),约占液氢制取成本的1/3。此外,液态氢的储存容器需要极好的绝热装置来隔热,避免沸腾汽化。如果氢能以液态形式储运,且价格低廉,其替换传统能源将指日可待。当前,液态氢主要作为航天火箭推进器燃料,其储罐和拖车已在我国航天等领域应用。针对人类太空研究计划的需要,液态氢的储存容器趋于大型化。目前已能建造储存量超过1000立方米容积的大型液态氢绝热储槽。 固态储氢密度大,技术尚未成熟。固态储氢方式能有效克服高压气态和低温液态两种储氢方式的不足,且储氢体积密度大、操作容易、运输方便、成本低、安全等,特别适合对体积要求较严格的场合,如在燃料电池汽车上的使用,是最具发展潜力的一种储氢方式。固态储氢材料种类非常多,主要可分为物理吸附储氢和化学氢化物储氢。其中化学氢化物储氢中的金属氢化物是未来储氢技术发展方向金属氢化物储氢工艺简单,与压缩气体和低温液化形成鲜明的对比,只要选择一种适合的金属氢化物,就能使氢在室温和不太高的压力下储存于金属氢化物中。用金属氢化物储氢的突出优点在于安全,氢是处于低压下与另一种物质(储氢合金)结合成准化合物态而存在,不需要高压和低温。 金属氢化物储氢具有储氢密度高、纯度高(从氢化物中加热释放出的氢具有极高的纯度,通常可以达到99.999%以上)的特点。但目前真正将金属氢化物储氢用于大规模工业生产的少见,主要有四个方面的原因:一是储氢合金价格昂贵。二是结构复杂,由于储氢过程中有大量热量释放出来,储存器内必须增加换热设备。三是氢化物自身很不稳定,易受有害杂质组分的毒害,多次使用之后,性能明显

金属储氢材料研究进展

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

相关文档
相关文档 最新文档