文档视界 最新最全的文档下载
当前位置:文档视界 › 稠油外输化学降粘工艺技术研究

稠油外输化学降粘工艺技术研究

稠油外输化学降粘工艺技术研究
稠油外输化学降粘工艺技术研究

稠油外输化学降粘工艺技术研究

1.高粘问题。稠油中所含沥青质是问题的根源,沥青质的含量与组成对稠油触变假塑性特性的影响极大。沥青质的含量越高,稠油中作为分散相的沥青质微粒形成的结构强度越大,其屈服应力也越高;稠油中胶质的存在可起稳定沥青质微粒的作用。沥青质结构的显著变化将增大稠油粘度,并增强其弹性特征;稠油内部组织结构部分地建立在热物理作用基础之上,但是利用其热物理作用的可逆性可以改变稠油物理结构以利于其流动。

2.在稠油开采和输送过程中,任何热效应、力效应、电效应或其它物理化学因素的变化都可能引起重有机物的沉积。固相沉积将发生在原油流经的任何场所,如生产油管、输油管、分离器、油罐以及其它地面设施中,这大大降低了设备和设施的利用率以及生产油管和集输管道的流通能力,有时会引发设备故障或管道阻塞,甚至造成灾难性事故。针对稠油的特点和存在的技术难题,其集输工艺也在不断更新,主要包括以下几种:

2.1加热法:加热法是世界上实施最早、应用最广的集输工艺,目前也仍是国内外原油主要集输方法,但是其工艺复杂、基建投资大,能耗与操作费用高,占输量l%以上的原油被烧掉和损耗,经济损失大。对于特超稠油,必须加热到1000c左右才能满足其管输流动性要求,现有管道系统难以承受如此高的热负荷。

2.2稀释法:主要是通过在稠油中掺入适当的稀释剂(如轻质成品油、液化气或稀原油等),使管壁润湿减阻或稠油粘度因大分子

稠油降粘方法的作用机理及研究进展

龙源期刊网 https://www.docsj.com/doc/3618661198.html, 稠油降粘方法的作用机理及研究进展 作者:赵文学韩克江曾鹤施岩 来源:《当代化工》2015年第06期 摘要:综述了常用稠油降粘方法的作用机理及优缺点。目前常用的稠油降粘方法主要有 加热降粘,掺稀降粘,降凝降粘,加表面活性剂降粘,微生物降粘,改质降粘,油溶性降粘剂降粘,加碱降粘,催化降粘等。并对以上几种方法进行对比和应用前景的展望。 关键词:降粘;机理;应用前景 中图分类号:TE 624 文献标识码: A 文章编号: 1671-0460(2015)06-1365-03 Mechanisms and Research Progress of Heavy Oil Viscosity Reduction Methods ZHAO Wen-xue1, HAN Ke-jiang1, ZENG He2, SHI Yan2 ( 1. China Huanqiu Engineering Company, Beijing 100012, China; 2. Liaoning Shihua University, Liaoning Fushun113001, China) Abstract: Current common heavy oil viscosity reduction methods were reviewed as well as their mechanisms, advantages and disadvantages. The current common heavy oil viscosity reduction methods include heating method, mixing light oil method, mixing surfactant method, microbial method and so on. And above several methods were compared, and their application prospect in future was analyzed. Key words: Viscosity; Mechanism; Application prospect 稠油是指含有高胶质沥青质,高蜡,高硫等高粘度的原油。由于稀油消耗量的逐渐增加,难以满足当今社会的需求[1]。因此,稠油降粘技术是当各国的极大关注的问题。我国地大物 博物产丰富,稠油分布广泛,其中超稠油,重油主要分布在克拉玛依、新疆、辽河等油田,现在我国的主要任务是开采储量大、埋藏浅、粘度相对较低的油田[2]。目前,稠油降粘主要有 物理降粘和化学降粘法。物理降粘主要有掺稀油降粘,加热降粘等方法,化学降粘包括降凝降粘,油溶性降粘剂降粘、表面活性降粘、微生物降粘,改质降粘,加碱降粘,催化降粘[3]。 本文主要对各种降粘方法的优缺点进行了分析对比并综述了各个方法的发展前景。 1稠油降粘的机理 稠油一般不能以真溶液形式存在,而是以胶体形式存在,其中沥青质为分散相的核心,它周围的胶束为分散相,其轻质油馏分和部分胶质为分散介质[4]。胶束中胶质沥青质以氢键或π-π等作用力与胶质分子间缔合,稠油的高粘度就是由于胶质、沥青质等大分子之间的相互作

稠油开采技术的最新研究进展

《稠油开采技术的最新研究进展》 油工(2)2001 喻天龙 201013074 近年来,随着塔河油田开发规模的不断扩大,稠油开发的难度越来越高。其中,塔河12区超稠油井越来越多,超稠油油藏开发的形势越来越不容乐观。该厂尽管在稠油深抽、稠油降粘等稠油开采配套技术上不断下大功夫,但稠油井筒举升难的问题依然进度缓慢。根据多方论证和技术分析,其主要原因是12区原油粘度高,在油藏条件下具有较好的流动性。但是,在进入井筒后的垂直流动过程中,随着井筒温度的降低,原油粘度逐步增大,流动性逐渐变差。针对以上客观实际难题,该厂充分发挥地质技术人员攻关优势,紧跟开采开发形势,瞄准10区、12区超稠油举升、掺稀降粘、化学降粘技术难题,展开大胆探索和技术攻关,初步获得了突破性进展。 第一,根据油田快速上产发展要求,不断加大稠油开采工艺自主创新力度。今年以来,先后实施了两级接力举升、深抽减载装置、超深尾管深抽电泵、电加热杆等稠油新工艺,配套实施了18型游梁式抽油机、24型塔式抽油机、皮带式抽油机等配套工艺,试验取得较好效果。目前,已初步形成具有塔河特色的稠油开发采油技术模式。 第二,进一步加大油溶性、水溶性化学降粘剂评价、优选和试验力度。今年以来,筛选出两种水溶性化学降粘剂、三种油溶性化学降粘剂进入现场进行放大样试验。与去年相比较,化学降粘剂的应用效果得到很大提高,极大地缓解了稠油区块稀油紧缺的瓶颈问题,保证了新区稠油井正常投产需要。 第三,加大了中质油混配密度。目前,混配密度达到了0.898g/cm3,日增加中质油300吨。同时,加大掺稀生产井优化力度,分区块、分单元判定不同的掺稀优化目标,还采用低压自喷井提前转抽,提高混配效果等一系列措施,今年上半年,共计节约稀油11万余吨。 1、稠油油田开采历程及开采现状 欢喜岭采油厂稠油开采始于1982年5月。在当时勘探发现油层发育好、油层集中的锦89块、锦203块、锦8块等有效厚度大于10m的范围内布井118口,

文留油田稠油特性及降粘技术应用研究

文留油田稠油特性及降粘技术应用研究 文留油田稠油特性及降粘技术应用研究 摘要:文留油田稠油井分散,物性差异较大,依据粘度将其分为普通稠油、特稠油和超稠油,本文对这三类稠油的物理特性、开采方式进行了分析和研究。结合文16-45井,详细介绍了稠油开采和应用油基稠油降粘复合解堵工艺情况。 关键词:文留油田稠油特性降粘热洗解堵 文留油田随着老区滚动扩边及Ⅱ、Ⅲ类储层的不断开发,稠油井日益增多,但比较分散。不同稠油井之间,物理特性差异较大,50℃脱气原油粘度104~9100 mPa.s,平均粘度814.06 mPa.s;地面脱气原油密度0.8215~0.9350g/cm3,平均密度0.8678g/cm3。 一、文留油田稠油物理特性 按有关稠油分类标准,把文留油田稠油分为三类:普通稠油、特稠油和超稠油(见表1)。 说明:表中粘度取50℃时地面脱气原油粘度;分类以原油粘度为首要指标,相对密度为辅助指标,当两个指标发生矛盾时则按粘度进行分类。 1.普通稠油 普通稠油即50℃温度下脱气原油粘度在100~6000mPa.s之间,能用常规抽油泵生产,表现为粘滞阻力较大,功图肥大,电流较高。文留油田有普通稠油井32口,占稠油井总数的86.5%。其中11口井用常规降粘剂或定期热洗降粘后,能维持低能耗长检泵周期持续生产。有5口井用常规降粘剂降粘后,伴有粘滞力较大的重质油析出集聚,导致泵阀球失灵,常规热洗无效,需要进行作业检泵。有4口稠油井因粘度相对较低,通过选用或改进抽稠泵即可维持正常生产。有12口井常规降粘效果较差,频繁洗井扫线,长期高能耗生产;由于粘度降不下来,流动阻力大,泵效低,严重影响原油产量,但通过油套环空投加新型高效专用降粘剂也实现了正常生产。 2. 特稠油

小洼油田掺液降粘技术研究与试验

小洼油田掺液降粘技术研究与试验 小洼油田为特稠油油藏,主要采用蒸汽吞吐和蒸汽驱方式开发,井筒举升工艺应用了掺稀油和电加热两种工艺,但由于吞吐轮次增加,蒸汽吞吐效果逐渐变差,井筒举升成本逐年升高,制约了油田的开发,针对这个问题,开展了化学降粘技术的试验与应用,取得较好效果。 标签:掺液降粘;蒸汽吞吐;井筒举升 1 小洼油田降粘技术应用现状 1.1地质概况。 小洼油田构造上位于辽河断陷中央凸起南部倾没带的北端。原油性质具有高密度、高粘度、低含蜡量特性,属特稠油油藏。油藏埋深1150~1460m,50℃地面脱气原油粘度为5757~38700mPa·s,凝固点为13~18.24℃,含蜡量 1.85~2.20%,胶质+沥青质为32.27~33.56%, 1.2降粘技术应用情况。 (1)随着蒸汽吞吐轮次的增加,轻质组分被采出;蒸汽冷凝水与原油形成油包水乳化液;地下存水使蒸汽前缘的热水带加热温度低等原因导致地层原油粘度升高,流动性变差,井筒举升困难,增加掺稀油量。 (2)2012年,小洼油田年掺稀油量14.86万吨,每吨稀油差价损失1315元,年差价损失1.954亿元。 (3)现有的掺稀油工艺,为确保偏远采油站的稀油到站温度,防止稀油温度过低,结蜡堵塞输油管道,采用了过量输送的方式,输送量高于采油站的掺油需求,部分稀油并未进入井下与稠油混合,地面回掺油使稀油利用率降低。 2 井筒掺液降粘工艺技术 2.1化学降粘剂。 (1)降粘剂主剂的筛选。 降粘配方体系主剂是一种改性烷基糖苷,其合成方法采用一步法。 一步法是在酸性催化剂条件下,葡萄糖半缩醛羟基直接与脂肪醇羟基发生缩醛化反应,生成烷基糖苷和水,脱水后,加入一定量的环氧乙烷和环氧丙烷,形成带有聚氧丙烯和聚氧乙烯链的嵌段共聚型烷基糖苷。

有机硅稠油降粘剂成分分析配方开发降粘机理和技术工艺

有机硅稠油降粘剂配方技术开发,降粘机理及问题解决方案导读:本文详细介绍了有机硅类稠油降粘剂的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 有机硅类稠油降粘剂广泛应用于石油开采方面,禾川化学引进国外配方破译技术,专业从事有机硅类稠油降粘剂成分分析、配方还原、研发外包服务,为石油化工企业提供一整套配方技术解决方案。 一.背景 稠油因其密度大、粘度高、流动性差而不能用常规方法开采。稠油开采的关键是降粘、降摩阻、改善流变性。目前常用的稠油(包括特稠油和超稠油)降粘方法有:掺稀降粘、加热降粘、改质降粘及乳化降粘。掺稀降粘受稀油来源的限制;加热降粘能耗大;改质降粘存在催化剂筛选困难的缺点;乳化降粘因其使用范围宽(包括油层开采、井筒降粘、管道输送等领域) ,且工艺简单等优势而研究活跃。 有机硅降粘剂是由甲基三氯烷类做主要原材料,在有机溶剂条件下,经水解得到环状的、线性的和交联聚合物的混合物。再经过碱化处理而形成的一种淡黄色透明的液体,生成的产品相对稳定。分子结构中含有Si-C 键的化合物,以硅氧键(Si-O-Si)为骨架组成的聚硅氧烷,是有机硅化合物中数量最多,应用最广的一类。 有机硅分子中的≡Si—OH 键易与粘土上的≡Si—OH键缩聚成≡Si—O—Si≡键,在粘土表面形成一层甲基朝外的CH3-Si牢固化学吸附层,使粘土表面发生润湿反转,阻止和减缓粘土表面的水化作用,阻止泥页岩水化膨胀,坍塌。能够有效地控制钻井液高温增稠,防止高温聚结作用,形成端-端(E-E),端-面(E-F)

的结合,削弱和拆散了粘土颗粒的空间网架结构,并放出大量自由水,致使钻井液的粘度和切力下降,达到了稀释降粘的目的。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 稠油乳化降粘机理 乳化降粘机理的研究主要体现在原油乳状液理论和最佳密堆积理论。 原油乳状液理论表明:W/O(油包水)型乳状液粘度与油的粘度成正比,并随含水率的增加而呈指数增加,故含水原油乳状液的粘度远远超过不含水原油的粘度;O/W(水包油)型乳状液粘度与水的粘度成正比,与原油含水率的增加成反比,而水在50℃的粘度仅为mPa·s,远远低于原油的粘度,而且含水越高,原油乳状液粘度越小。若设法将W/O型乳状液转变成O/W型乳状液,则乳状液的粘度将大幅降低。 稠油乳化降粘剂不仅能形成稳定的O/W乳状液起到降粘的作用,而且也能借助氢键渗透、分散进入胶质和沥青质片状分子之间,拆散平面重叠堆砌而成的聚集体,形成片状分子无规则堆砌,有序程度降低,空间延伸度减少,聚集体中包含的胶质、沥青质分子数目减少,原油的内聚力降低,起到降粘的作用。

稠油化学降粘冷采技术在胜利油田的研究及应用

稠油化学降粘冷采技术在胜利油田的研究及应用 梁 伟 (1.中石化胜利油田分公司石油工程技术研究院;2.山东省稠油开采技术省级重点实验室,山东东营 257000) 摘 要:化学降粘能有效降低稠油粘度,提高油井产量,具有不动管柱、低成本生产等优点,是近年研究的热点。研制了新型水溶性降粘剂体系,对该体系的降粘性能、油砂洗油性能以及单管岩心驱油效果进行了室内评价。结果表明:降粘剂体系对胜利油田不同区块稠油的降粘率均在95%以上,且具有良好的油砂洗油性能,对不同油藏稠油的油砂洗油率达91%以上,可提高单管岩心驱替效率14.29%。稠油化学降粘冷采技术在胜利油田进行了规模化现场应用,取得了良好的效果。 关键词:稠油;降粘冷采;水溶性降粘剂体系;现场应用 中图分类号:TE357 文献标识码:A 文章编号:1006—7981(2019)04—0068—02 化学降粘可以较好地降低稠油粘度、稳定的分散性能和较好的洗油能力,具有提高油井产量、降低生产成本的特点,是近年来研究的热点[1~3]。化学降粘药剂主要有油溶性降粘剂和水溶性乳化降粘剂。油溶性降粘剂主要通过溶解、分散和渗透作用使稠油聚集体的结构发生变化,进而降低粘度;水溶性降粘剂通过分子间的作用力,破坏稠油大分子聚集体,使高粘稠油与水形成粘度很小的油水分散体系。由于油溶性降粘剂的使用条件苛刻,且用量大、成本高;而水溶性降粘剂的应用范围广、用量少、价格低,因此具有广阔的应用前景。 研制了新型水溶性降粘剂体系在油水界面具有很强的亲和性,体系穿插于原油表面,改变了原油表面特性,增强了原油的亲水性;体系吸附在矿物表面,在一定范围内,体系分子排列紧密,分子链彼此重叠,在矿物表面形成较为平滑的亲水性吸附膜;该体系水溶液将原油剥离成表面亲水的油珠,随着体系水溶液的流动富集于水相,形成“混合相”,由油水“两相流”变成“单相流”,在提高洗油效率的同时,扩大了波及体积,提高了驱替效果。 1 降粘剂体系对不同稠油降粘效果评价 实验考察水溶性降粘剂体系对胜利油田不同区块稠油油样的适应性,实验水浴温度50℃,搅拌速率250rpm,搅拌时间2min,然后用Brookfield DV-Ⅲ粘度仪测试原油粘度,加入的水溶性降粘剂体系浓度均为0.5%,计算降粘率。实验结果如表1所示。 表1 水溶性降粘剂体系对不同区块油样的降粘效果序号井号 50℃粘度 mPa·s 加入降粘剂后 的降粘率1CJC371-P22 11156 98.4% 2GOGDRN5 7953 97.8% 3DXX68X139 3632 96.4% 4CQC13-X908 12850 95.8% 5GD-2-33-527 4621 97.9% 6YMXI8-204 5231 98.4% 7SDB546-X41 13580 97.4% 由实验结果可以看出,水溶性降粘剂体系可以实现胜利油田不同稠油的有效降粘,降粘率均达95%以上。 2 降粘剂体系洗油效果评价 提高采收率主要取决于两个因素,即提高波及系数和洗油效率,因此洗油效率的提高对提高采收率具有重要意义。本实验对不同区块的四种稠油油样进行油砂清洗实验。 表2 水溶性降粘剂体系对不同稠油油砂洗油效率 序号井号体系浓度洗油效率 1CJC371-P22 0.5%92.2% 2GOGDRN5 0.5%99.3% 3DXX68X139 0.5%98.8% 4CQC13-X908 0.5%91.5% 8 6内蒙古石油化工 2019年第4期  收稿日期:2019-01-23 基金项目:中石化股份公司重大推广项目“活性高分子稠油降粘采油技术推广应用研究”(P18081)。 作者简介:梁伟(1985-),男,2010年获中国石油大学(华东)油气田开发工程硕士学位,现从事稠油开采提高采收率方面的研究工作。

稠油降粘方法概述

稠油降粘方法概述 文章结合稠油高粘本质特点,综述了稠油开发降粘稠油粘度的办法,其中包括蒸汽吞吐降粘、蒸汽驱降粘、井筒加热降粘、火烧油层降粘、稠油乳化降粘、掺稀油降粘、油溶性降粘剂降粘、微生物降粘、水热催化裂解降粘、超声波降粘、磁降粘等及其降粘机理,浅谈各种降粘方法的优势和不足,并总结降粘工艺特点。 标签:稠油;降粘;乳化 1 稠油粘度较高的根本原因 1.1 稠油体系作为一种胶体系统已经得到了普遍的认同,胶质是胶溶剂,而沥青质则是分散相,油质就是分散介质了。而导致稠油体系在高温下仍然具有很高粘度的根本原因就是其内部所含有的复杂超分子结构了。 1.2 在稠油体系中,这些超分子结构并不都是紧密相连的,一些低层次的分析结构会在力的作用下发生聚集的现象,这样就会形成排列很分散但复杂程度却很高的超分子结构,在此过程中就包裹了大量的液态油。 1.3 随着又有一种应用更加广泛的沥青胶体结构模型,当沥青质超分子结构受到被流体剪切的过程中,即使其与胶粒是不能看作是一个整体的,然而其与胶粒之间却还是有很强的吸附作用,因此其粘度也得到了一定程度的增加。 1.4 一般情况下,稠油体系中的蜡含量是不大于10%的,然而由于温度较低时蜡晶的析出,稠油的粘度也会增高,因此稠油在低温状态时是呈现出一定的非牛顿性的。 2 常规稠油降粘方法 2.1 热力降粘的方法 由于稠油体系中的重质组分含量很高,所以其流动性很差,粘度很高,并且其还具有较强温度敏感性,通常采油的热力降粘的方法有井筒加热、蒸汽驱、热水驱、单井蒸汽吞吐、热化学以及火烧油层等方法,而应用的较为广泛则是蒸汽驱和蒸汽吞吐这两种方法。 2.1.1 蒸汽吞吐降粘法。这种方法也叫做循环注蒸汽法或注蒸汽热激励法。其实质就是在很短的时间内将一定量的具有高温高压的湿饱和蒸汽注入到稠油体系中去,在油井周围的一定区域内进行加热,从而降低稠油体系的粘度。 这种方法具有响应速度快,油气高,可多次吞吐并且井间地层不需要连续等优点,然而随着油藏天然能量的不断减少以及吞吐时间的不断增加,近井地带含油饱和度会越来越低,束缚水就会逐渐饱和,蒸汽热效率降低,周期生产效果也

稠油化学降粘研究进展

Vo.l13,No.23精细与专用化学品第13卷第23期 Fi n e and Specia lty Che m icals2005年12月6日 稠油化学降粘研究进展 孙 慧* 张付生 (中国石油勘探开发研究院油田化学所,北京100083) 摘 要:分析了稠油的组成及稠油高粘度形成机理。综述了稠油化学降粘技术(乳化降粘、油溶性降粘剂降粘、井下水热催化裂化降粘、微生物法降粘等)的研究与应用,并对其降粘作用机理进行分析。探讨了油溶性降粘技术和乳化降粘技术存在的问题,指出油溶性降粘剂的研究思路:在降粘剂分子中引入稠环芳香基团、具有表面活性基团、含氟表面活性剂基团,以提高降粘效果。 关键词:稠油;化学降粘;乳化降粘剂;油溶性降粘剂;催化裂化 R esearch T rends on Reducing V iscosity of V iscous C rude O ils by Che m icalM ethods SU N H ui,Z HANG Fu-s heng (O il F ield Chem istry D epart m ent,R esearch Instit u te o f Petro leu m Exp l o ration and D evelop m ent,Be iji ng100083,Ch i na) Abstract:The co m po siti ons and the v i scos i ty for m i ng m echan i s m of v i scous crude o il s we re d i scussed.The research trends on reduc i ng v iscosity by che m i ca lm et hods i ncluding v iscosity reduc tion w ith e mu lsify i ng agents,o i-l solub l e v i sco sity reducers,cata l y ti c aquather m al crack i ng and v i scos i ty reducti on by m icrobe we re rev ie w ed.T he proble m s ex i sti ng i n v i s-cos it y reducti on by usi ng e mu lsify i ng v iscosity reducers and o il so l uble v iscosity reducers w ere discussed.It was po i nted out that research i dea of o i-l so l ub l e v iscosity reducers fo r v iscous crude o ilw as t o synt hesize ne w effective o i-l so l uble v i sco sity reducers w it h f used r i ng-arom ati c g roup,po l ar/acti ve surface group or fl uor i nated active surface group i n order to i ncrease the v iscosity reduc i ng effec t. K ey word s:v iscous crude o i;l chem ical v iscosity reduce r;e m ulsify i ng v i scos it y reducer;o il so l ub l e v iscosity reduc-er;cata l y ti c cracki ng 随着世界能源供应日趋紧张,储量丰富的稠油日益引起各国的重视。稠油富含胶质和沥青质,粘度高,密度大,流动性差,给其开采和集输带来很大困难。降低稠油粘度,改善稠油流动性,是解决稠油开采、集输和炼制问题的关键。 工业上常用的降粘方法有加热降粘、掺稀降粘、化学降粘(乳化降粘,油溶性降粘剂降粘等)等。近年来化学降粘技术越来越引起人们的重视。 化学降粘技术对我国稠油的开采和输送具有特别重要的意义。我国稠油储量丰富,但许多油藏因区块分散、含油面积小、油层薄等原因不能经济地用蒸汽吞吐或电热等方法开采;在沙漠和海底铺设输油管道时,传统的加热输送方法不能适应恶劣的环境要求;另外,西部新建管线长且地形复杂,人烟稀少,也不宜采用加热方法降粘。在这些情况下,化学降粘技术显示出了得天独厚的优势,值得大力推广。 1 稠油的组成及其高粘机理 1.1 组成与分类 原油是各种烃类(饱和烃、芳烃)与非烃类(胶质、沥青质)的混合物,当各种组分相对含量不同时,则原油物性不同。表1列出了部分稠油的组成和物性。 16 *收稿日期:2005-09-08 作者简介:孙慧(1982-),女,在读硕士研究生,主要从事稠油降凝降粘方面的研究工作。

稠油降粘技术

稠油降粘技术 目前常用的稠油(包括特稠油和超稠油)降粘方法(包括掺稀油降粘、加热降粘、稠油改质降粘、乳化降粘、微生物降粘技术等五种)的降粘原理及其优缺点。掺稀油降粘存在着稀油短缺及稠油与稀油间价格上的差异等不利因素;加热降粘则要消耗大量的热能,存在着较高的能量损耗和经济损失;改质降粘要求较为苛刻的反应条件,同时使用范围较窄;乳化降粘使用范围相对较宽(包括油层开采、井筒降粘、管道输送等领域),同时工艺简单,成本较低,易于实现。分析认为,采用化学降粘方法进行稠油降粘具有一定的优势,建议优先考虑。 一、掺稀降粘 掺稀降粘采油工艺是通过油管或油套环空向油井底部注入稀油,使稀油和地层产出的稠油充分混合,从而降低稠油粘度和稠油液柱压力及稠油流动阻力,增大井底生产压差,使油井恢复自喷或实现机械采油的条件。 掺稀油方式有空心抽油杆注入、单管柱注入、油管注入和套管注入4 种。 空心抽油杆注入: 稀油由空心抽油杆注入井下, 在泵筒内与地层稠油混合后由油管举升到地面(见图1) , 减小了流动阻力。 单管柱注入: 平行于油管下一条管柱, 将稀油注入到泵

下与地层液混合, 经油管将混合液采出(见图2)。 图1空心杆注稀油降粘示意图图2油管注稀油降粘示意图 套管注入: 稀油从油、套环形空间注入, 在泵下与地层稠油混合后经油管举升到地面(见图3)。 油管注入: 稀油从油管注入与地层液混合,经抽油泵上的带孔短节进入油、套环形空间被举升到地面(见图4)。 图3套管注稀油降粘示意图图4油管注稀油降粘示意图

一般来说,稠油与轻油的混合温度越低,降粘效果越好。混合温度应高于混合油的凝固点3—5℃,等于或低于混合油凝固点时,降粘效果反而变差。确定合理的掺油比应根据油井的原油粘度、温度、含水、含砂等情况而定。给稀油管输温度,是决定掺油量的重要因素。辽河金马公司通过多年摸索发现,当管输温度保持在50摄氏度左右时,稀油黏度降至最低,能够充分带动井内稠油举升至地面。为此,他们在偏远井站的稀油干线上增装了5座加热炉,保证了稀油入井温度在40摄氏度以上;同时对4座采油站的稀油干线进行了合并,减少了零散输送带来的热损失。通过这两项举措,日减掺稀油78吨。在保证油井正常生产的前提下,使油井产量、泵效最高,经济效益最好。 井筒掺稀油循环工艺不仅能提高产液的温度,还可以通过提高井筒混合液的含水量来降低粘度。在确定掺稀深度时,原油的拐点温度是个非常重要的量。原油在井筒中被举升的过程中,温度不断降低。当原油温度接近拐点温度时,其流动性明显变差时开始掺稀,所以确定掺稀深度实际上就是计算井筒的温度分布。由于稀油密度低,掺稀后混合液密度也降低,掺入深度越深,井筒流动阻力越小,井口压力越高。在井底掺稀时,不需要加封隔器,操作工艺相对简单,实际上一般在井底掺稀。不同类型稠油拐点温度测算公式为: T 0= 8.6lgμ+ 22.5 式中: T0为稠油拐点温度,μ为地面

稠油乳化降粘技术_刘国然

第2卷第1期特 种 油 气 藏1995年 稠油乳化降粘技术 刘国然 编译 (辽河石油勘探局钻采工艺研究院 辽宁 盘锦 124010) 前 言 世界上的稠油资源非常丰富,储量和产量都占很大比例。为了开发稠油资源,世界各产油国和地区都在致力于研究稠油的开采和集输问题。为了降低稠油的粘度,增加流动性,提高产量,一般采用热采法、稀释法、乳化降粘法等。其中乳化降粘技术具有方法简单、经济、所需能量少等优点。 化学降粘法及机理 1. 化学剂的分类 化学降粘剂分为降凝剂(或叫流动改进剂)和乳化剂(表面活性剂)。前者能大大降低含蜡原油的粘度、胶凝强度和凝点,而使原油流动性得到改善,后者使高粘原油形成低粘度的水包油(O/W)型乳化液,而使稠油粘度大大降低。 表面活性剂是一种化合物,其分子中有亲水原子团和疏水原子团,由于其少量的存在可使表面性质有显著变化。根据实用性质,表面活性剂又可分为洗净剂、乳化剂和湿润剂等。表面活性剂通常分为阴离子系、阳离子系、两性离子系及非离子系四大类。 2. 乳化降粘机理 稠油乳化降粘就是使一定浓度的表面活性剂水溶液,在一定温度下与井下稠油充分混合,使高粘原油以粗油滴系分散于活性水中,形成低粘度的水包油(O/W)型乳状液。这种乳状液降低了原油在井筒和管线中的运动阻力。 原油中加入亲水表面活性剂后,因亲水基表面活性很强,而替代油水界面上的疏水自然乳化剂而形成定向的吸附层,吸附层将强烈地改变着分子间相互作用和表面传递过程,致使原油粘度显著下降。实践证明,原油粘度越高使用表面活性剂降粘效果越好。 稠油乳化降粘开采和集输机理也可从两方面来理解:一是表面活性剂溶液与稠油接触能使油水界面张力下降,所以在一定温度下经过搅拌,油便呈颗粒状分散在表面活性剂水溶液中,形成极粗的水包油型乳状液。活性剂分子吸附于油珠周围,形成定向的单分子保护膜,防止了油珠重新聚合,可见乳状液流动能使液流对管壁的摩擦压力减弱(图1)。二是由于表面活性剂水溶液的湿润作用,使液流流动阻力显著减少,即在管壁上吸附了一层表面活性剂水溶液的

化学工程与工艺方向

化学工程与工艺方向 ——石油北京1108毕业论文批次具体题目 1、“新型液体燃料”——二甲醚在国内外的开发概况 2、1-丁烯共聚的研究进展 3、21世纪生物化工发展及对策 4、21世纪涂料工业发展趋势及对策 5、21世纪以煤和天然气为原料的C1化学 6、ABS树脂技术发展趋势 7、CO_2驱油提高采收率技术 8、PMMA超细粉体的发展与应用 9、TiO_2光催化反应体系中几个问题的探讨 10、ZSM-5分子筛用于汽油催化裂解制低碳烯烃性能研究 11、半导体光催化剂及其改性技术进展 12、铋系光催化剂研究进展 13、表面活性剂驱的驱油机理与应用 14、表面活性剂在三次采油中的应用与展望 15、表面活性剂在油田开采中的应用 16、柴油超深度脱硫技术研究 17、柴油低温流动改进剂综述 18、柴油机燃油添加剂的研究进展 19、柴油加氢脱硫催化剂研究进展 20、柴油降凝剂的发展现状及其研究热点 21、柴油降凝剂的合成方法及影响因素 22、柴油降凝剂的研究进展 23、柴油蜡晶分散剂的合成 24、柴油十六烷值改进剂研究综述 25、柴油添加剂的现状及发展趋势 26、柴油稳定剂的现状与开发动向 27、超高分子量聚乙烯复合材料的发展

28、超临界萃取技术的应用 29、超临界技术在化学工业中的应用 30、超临界技术在石油中的应用研究 31、超临界流体技术的开发及应用 32、超细粉体材料的制备与应用现状 33、超细粉体分级技术现状及进展 34、超硬材料薄膜涂层研究进展及应用 35、稠油化学降粘技术的研究进展 36、稠油乳化机的合成及应用 37、磁性催化剂的研究进展 38、从重油加氢脱硫废催化剂中回收钼和钒的研究 39、催化裂化汽油降烯烃技术的研究 40、电化学脱硫技术研究综述 41、丁香油—海藻酸钠可食性抗菌膜的研制 42、酚醛树脂应用研究综述 43、复合材料的发展和应用 44、甘油的生产应用现状及技术开发新进展 45、高触变性环氧树脂胶粘剂的研究 46、高含蜡原油降凝机理研究 47、高蜡原油复配降凝剂的研究进展 48、高蜡原油降凝剂的发展概况 49、高凝原油降凝剂的制备 50、高酸原油催化脱酸工艺研究 51、高吸水性树脂的性能及应用 52、高性能环氧型建筑结构胶粘剂的研制 53、工业废水处理技术研究综述 54、工艺条件对汽油催化裂化反应的影响 55、功能化聚炔的合成及其碳纳米管复合材料的制备 56、功能性纳米复合材料的开发与应用 57、国内外催化裂化催化剂技术新进展

冷采降粘工艺研究20110410

1国内稠油冷采技术现状 稠油热力开采应用了几十年,技术日臻成熟,但普遍存在投资偏高,对井下技术状况要求高,对薄层、互薄层油藏及边底水活跃油藏适应性差等问题。因此,从事稠油开发的技术人员已将注意力转移到稠油冷采的研究和应用上。 稠油化学降粘是指向原油中加入某种化学药剂,通过药剂的化学作用达到降低原油粘度的方法。根据原油的乳状液理论和最佳密堆积理论,冷采化学降粘就是添加一种表面活性剂或利用稠油中所含的有机酸与碱反应,生成表面活性剂,其活性大于原油中天然乳化剂的活性,使油包水型乳状液转变成水包油型乳状液,从而达到降粘的目的。因此,研制出一种具有良好性能的降粘剂是稠油化学降粘技术的关键。 化学降粘技术成功与否的另一个关键因素是:是否具有配套的工艺条件。在采用化学降粘采油工艺采出稠油时,现场需要增加配套的工艺包括地面配液加药、集输、保温,降粘液地面回收循环利用等,以利于化学降粘工艺技术的充分发挥,最大限度提高稠油产量 化学降粘一直没能在油田大面积推广应用,主要原因就在于降粘剂研究工作不系统,同时现场实施工艺不配套。这两方面的研究如果都有了较大的突破,化学降粘技术将完全可以替代掺稀油及电加热工艺技术。 1.1化学降粘工艺技术概述 1.1.1化学降粘技术概述 1.1.1.1化学降粘技术 化学降粘是指向原油中加入某种化学药剂,通过药剂的化学作用达到降低原油粘度的方法。目前,国内外化学降粘主要包括:表面活性剂降粘和碱液降粘。 表面活性剂降粘包括:乳化降粘、破乳降粘、吸附降粘。 (1)乳化降粘:在活性剂的作用下使油包水型乳状液反相成水包油型乳状液而降粘。 (2)破乳降粘:活性剂使油包水型乳状液破乳生成游离水,根据游离水量和流速,形成水套有心,悬浮油,水漂油而降粘。 (3)吸附降粘:活性剂分子吸附于管壁上或油层向而减少摩擦阻力。 这三种降粘机理往往同时存在,但不同活性剂和不同条件起主导作用的降粘

相关文档