文档视界 最新最全的文档下载
当前位置:文档视界 › 基于云平台的远程控制系统虚拟实验

基于云平台的远程控制系统虚拟实验

基于云平台的远程控制系统虚拟实验
基于云平台的远程控制系统虚拟实验

Modeling and Simulation 建模与仿真, 2019, 8(3), 95-101

Published Online August 2019 in Hans. https://www.docsj.com/doc/3511608052.html,/journal/mos

https://https://www.docsj.com/doc/3511608052.html,/10.12677/mos.2019.83012

Remote Virtual Laboratory of Control

System Based on Cloud Platform

Huazhong Wang1, Tao Liu1, Jun Yao2, Hua Cheng2

1Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,

East China University of Science and Technology, Shanghai

2School of Modern Distance Education, East China University of Science and Technology, Shanghai

Received: Aug. 2nd, 2019; accepted: Aug. 19th, 2019; published: Aug. 26th, 2019

Abstract

To overcome the shortcomings of the existing remote-control virtual experimental platform in terms of flexibility and applicability, a remote-control virtual experiment scheme based on the cloud platform and the experimental module that can be configured by the user is proposed. The Django network framework based on Python is chosen to build a remote experimental platform.

The experimental modules that constitute the components of the closed-loop control system are developed. Users can configure the control system according to the experimental requirements.

The experimental management system executes simulation, procedures control, online help and evaluation of the virtual experiments. The experimental system is deployed and tested in Ali Cloud.

The teaching practice shows that the remote virtual control system experimental platform enables users to complete a series of motion control experiments through the browser, which is conducive to cultivating students’ practical ability.

Keywords

Virtual Laboratory, Python, Cloud Platform, Control System

基于云平台的远程控制系统虚拟实验

王华忠1,刘涛1,姚俊2,程华2

1华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海

2华东理工大学网络教育学院,上海

收稿日期:2019年8月2日;录用日期:2019年8月19日;发布日期:2019年8月26日

王华忠 等

摘 要

针对现有的远程控制系统虚拟实验在灵活性和适用性方面的不足,提出了一种基于云平台的、实验模块可由用户组态的远程控制虚拟实验方案。选择了基于Python 语言的Django 网络框架构建远程实验平台,开发了构成闭环控制系统各组件的实验模块,用户可以根据实验教学要求进行组态。实验管理系统自动进行虚拟实验仿真、实验流程控制、在线指导和实验评估等。实验系统在阿里云进行了部署测试,结果表明,该远程虚拟控制实验平台支持用户通过浏览器来完成一系列控制系统实验,有利于培养学生的实践能力。

关键词

虚拟实验,Python 语言,云平台,控制系统

Copyright ? 2019 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.docsj.com/doc/3511608052.html,/licenses/by/4.0/

1. 引言

我国是制造业大国,迫切需要大量的、各层次的工程技术人员。远程工程教育在我国工程教育中发挥了重要作用,培养了大量社会急需的人才。然而,实践能力的培养一直是现有的远程工程教育的薄弱环节。实践环节的不足,不仅制约了学生对理解理论知识的理解掌握,更制约了学生实践能力的提高。为了加强工程教育的实践教学,大量虚拟实验[1]和远程控制实验系统[2]被开发并投入到教学环节。对于自动化、电气工程、测控技术与仪器、机械电子工程等专业学生来说,自动控制原理、控制工程类课程是这些专业的核心课程,该类课程以理论为主,内容有一定的抽象性,为了帮助学生更好掌握理论知识,该课程多会辅以仿真实验以达到更全面的教学效果[3] [4] [5] [6]。国内外众多研究团体也相应开发出了功能形式多样的实验仿真系统[7] [8] [9] [10],然而这类实验系统绝大多数由于存在实验系统通用性不足、缺乏技术标准等问题导致系统扩展性低,可移植性差[11]。另一方面,常用的支持自主配置进行实验的仿真软件,如Matlab 、LabVIEW 等由于软件使用配置较复杂,多运行于实验室本地机器上,且还存在软件授权等问题,导致远程教育学生很难采取这种方式开展实验。此外,现有的远程实验系统多数部署在学校的实验室,学生的访问受到一定的限制。

本文基于云平台搭建技术与Python 语言,设计了基于数学仿真的虚拟运动控制实验并提供了自由组态实验环境。系统具备完善的实验设定与实验评价体系,支持学生利用基本模块自行独立设计控制系统的各个环节及系统结构。由各个模块组成的闭环控制系统的仿真运算全部用Python 语言开发,并把实验系统部署在阿里云上。测试表明,该系统可以开展一系列控制类仿真实验,且在云平台的运行架构下,系统具有共享性高、接入方便、使用灵活等特点,较好地满足了学生自主开展远程虚拟实验的教学要求。

2 远程虚拟实验系统结构设计与开发工具选择

2.1. 远程实验系统结构与功能

基于云平台的远程虚拟运动控制实验系统结构如图1所示。系统主要包括实验用户端、接入端、实

Open Access

王华忠等

验云服务器3个部分。其中实验用户端和接入点主要是学生通过Internet接入到实验系统,以支持学生开展远程实验操作。实验云端主要包括用HTML5开发的页面模块,用Python语言开发的云后台实验任务处理、各类虚拟实验的创建和仿真管理等。实验云端是该系统的核心部分。它面向远程用户的实验访问,

王华忠等

el-View-Controller)构造思想,具有易于模块化、独立化开发的特性[12][13],并在此基础上发展为MVT (Model-View-Template)设计模式,使得开发维护更为简洁高效。在本系统设计中,用户在页面上涉及的实验操作指令经由用户端将相应的实验操作指令参数提交给云服务器后端,后端的业务逻辑视图层(View 层)根据模型层(Model层)的数据,进行数据正确性合法性的审核,并进行计算处理后转化为适用于通信的数据内容,经由通信操作模块进行远程实验环境的访问,并将访问与数据处理结果结合模板表现层(Template层)返回给用户浏览器侧,具体处理流程如图2所示。

Figure 2.The processing flow of the network architecture

图2.云平台网络框架处理流程

3. 可组态的远程虚拟控制系统实验开发

3.1. 控制系统实验内容与原理介绍

本远程虚拟实验系统面向广大控制类学生,设计了多种控制与仿真的教学实验内容,以满足对该类课程的实验教学需求,提高对理论知识的理解。这些实验内容包括:

1) 过程控制类仿真实验,包括简单控制系统仿真、串级控制系统、比例控制系统等。

2) 运动控制类仿真实验,包括当闭环调速、双闭环调试等。

3) 控制原理类实验。

以双闭环调速实验[14]为例,为了开展这类实验,学生需要设置两个反馈,分别称为电流环与转速环。

学生在开展实验时,需要给出相应的电机参数,如额定电流、额定转速、过载倍数等,实验前和实验中,学生需要用工程设计方法进行控制器参数的设计与验证,使被控制系统输出能够满足相应的性能指标要求,如超调量、调节时间、峰值时间等。

实验平台设计了各类开展这些实验的组件,学生可以自由选择这些组件,设置不同组件的参数,设置这些组件的组合方式,以构成期望的控制系统。这些操作类似于在Matlab的Simulink图形化编程环境进行仿真实验。例如,在双闭环调速实验中,学生可以改变各种参数,了解这些参数变化对控制系统性能的影响,从而加深对控制理论的认识。

3.2. 可组态实验平台功能需求

本实验系统的核心模块是各类传递函数构建及用户实验组态。在系统设计时,系统仅对最基本的功

能单元进行封装,而将处理顺序逻辑的安排完全交给用户。用户通过选取需要的功能块并输入参数值,

王华忠等

即可如操作Matlab中的Simulink模块一样实现仿真。这样的实验优势还在于不需要学校的硬件实验平和以及安装任何实验软件或插件,完全由云平台提供计算。

根据控制类实验的教学要求分析,可以知道这类可组态实验平台的基本功能需求:

1) 提供常用传递函数的计算功能块,如积分环节、比例环节、惯性环节等。

2) 可以自由添加与删除功能块。不同功能块可由规定方式进行关联,如并联、串联、反馈等,从而构成各类简单控制、复杂控制系统。

3) 教师可以指定实验内容,考察学生完成指定实验的能力。

4) 用户(学生)可以自主的控制整个实验流程,如实验组态、实验启动、实验停止、实验数据分析等。

5) 实验过程中,系统能自动根据实验进展进行必要的实验评核。

6) 与实验相关的所有数据在云端进行仿真后都能即时送到实验操作前端。学生在前端的操作也能即时送到云端仿真系统中。

3.3. 可组态实验模块的前后端交互及处理计算

为了提高用户操作的灵活性和实验过程的交互性,本实验系统精心设计了平台前端以及后端之间的任务分配和关联。主要分为三个部分,分别为前端的页面操作部分、交互处理部分以及后端的计算部分。其交互流程如图3所示。在该交互流程中,利用java script编写的交互处理部分实现了数据的传递以及页面效果的动态调度,用户的页面操作可以得到即时高效的反馈,同时系统对于实验结果数据则实现了动态可视化。

Figure 3. Self-built transfer function experiment interaction process

图3.传递函数自搭建实验前后端交互流程

用户通过页面操作触发js相应函数实现html页面各标签元素的添加、删除、样式控制以及数据的提交与响应。用户完成系统搭建与参数输入并确认实验开始后,前端将所有数据整合为一个数据集,该数据集由后端计算逻辑根据特定方式进行分割与解析后分为三个部分的数据,包括了块类型数据、参数数据以及计算与处理辅助信息数据。

块类型数据在用户调用生成功能块时自动产生,参数数据、计算与处理辅助信息数据由用户输入产生并由js进行整合排列。参数数据用于为后端提供函数块模型中的参数信息,如时间常数、增益等,计算与处理辅助信息数据则用于确定系统结构与计算流程,主要包括了块的计算端口、计算循环次数等信息。

在计算过程中,除了前端提交的数据信息外,还包含了根据计算端口号而进行分配生成的计算层信

息、计算过程中产生的历史输入输出信息、反馈信息等。计算过程中,数据根据计算端口确定流向,而

计算层则根据计算端口的分配情况生成并用于实现串联、并联等计算结构,从而实现复杂系统的搭建。

王华忠 等

另外,由于积分、微分等环节的计算特性,计算过程中将对每一次循环产生的块输入输出进行暂存以满足之后的计算需要,每个计算循环完成后,相应计算环节暂存列则被新的数据所替换,同时由于反馈结构的特殊性,该结构的产生的数据则会额外被分配一个反馈暂存列。最后完成全部计算后,后端每一次计算结果输出值等数据组成的结果数据集进行返回,提供给前端用于产生图表的js 函数进行解析。

4. 实验平台部署与验证

用户可登录实验平台首页http://47.101.194.89/,以授权账号登录并进入实验中心,选择进入需要的实验模块进行操作实验(图4)。以双闭环调速系统为例,系统提供了具有完整配置与评价机制的实验流程,同时学生可以利用传递函数自搭建部分实现组态搭建,自行进行系统设计与调试,二者结合从而帮助学生加深对控制运行流程的理解与掌握(图5)。

Figure 4. Self-built transfer function experiment interface

图4. 传递函数自搭建界面

Figure 5. Double closed-loop speed control system experiment interface

图5. 双闭环调速系统实验结果界面

王华忠等5. 结束语

针对目前控制类远程实验存在的灵活性与可用性等方面的不足,以及结合以及云平台在存储、计算与服务上的优势,采用Python语言开发了用户可以自由组态的远程虚拟控制实验系统。现场测试表明,由于整个实验系统部署在云端,可以提供24*7*365全天候的跨时空实验服务,符合接受远程教育学生的学习特点,能更好满足远程控制类实验教学需求,有利于提高学生的实践能力,促进对理论知识的理解。同时,该解决方案还能有效提高实验资源的利用率,减少实验投入。

基金项目

华东理工大学网络教育教学项目,继续教育学院教学研究项目。

参考文献

[1]胡今鸿, 李鸿飞, 黄涛. 高校虚拟仿真实验教学资源开放共享机制探究[J]. 实验室研究与探索, 2015, 34(2):

140-144, 201.

[2]刘婷, 钱扬义, 彭豪. 基于网络的远程实验室研究: 国内13年研究回顾[J]. 远程教育杂志, 2013, 31(2): 107-112.

[3]杜一宁. 虚拟实验的研究现状以及在教学中的意义[J]. 浙江海洋学院学报(自然科学版), 2010, 29(4): 390-393.

[4]Lin, Y., Wang, S., Wu, Q.D., et al. (2019) Key Technologies and Solutions of Remote Distributed Virtual Laboratory

for E-Learning and E-Education. Mobile Networks and Applications, 24, 18-24.

https://https://www.docsj.com/doc/3511608052.html,/10.1007/s11036-018-1130-z

[5]Mitchell, M.W. (2013) Education Online: The Virtual Lab. Nature News, 499, 268-270.

https://https://www.docsj.com/doc/3511608052.html,/10.1038/499268a

[6]Potkonjak, V., Gardner, M., Callaghan, V., et al. (2016) Virtual Laboratories for Education in Science, Technology,

and Engineering: A Review. Computers & Education, 95, 309-327.https://https://www.docsj.com/doc/3511608052.html,/10.1016/https://www.docsj.com/doc/3511608052.html,pedu.2016.02.002

[7]张智焕, 张惠娣. 机械工程控制的虚拟仿真实验教学实践[J]. 实验技术与管理, 2014, 31(7): 102-103, 111.

[8]Bistak, P., Halas, M. and Huba, M. (2017) Modern Control Systems via Virtual and Remote Laboratory Based on

Matlab. IFAC-PapersOnLine, 50, 13498-13503.https://https://www.docsj.com/doc/3511608052.html,/10.1016/j.ifacol.2017.08.2335

[9]雷振伍, 吴秀冰, 孙德辉, 等. 基于PCS7和Simulink的过程控制虚拟仿真实验平台开发[J]. 实验技术与管理,

2016, 33(1): 135-139.

[10]García-Guzmán, J., Villa, L.F.H., Ramírez-Ramírez, A., et al. (2012) Virtual Environment for Remote Access and Au-

tomation of an AC Motor in a Web-Based Laboratory. Procedia Technology, 3, 224-234.

https://https://www.docsj.com/doc/3511608052.html,/10.1016/j.protcy.2012.03.024

[11]田夏, 孟佳. 基于CiteSpace的我国虚拟实验研究现状与趋势[J]. 实验室研究与探索, 2017, 36(9): 97-101, 106.

[12]Chen, S., Zornig, J., Chester, N., et al. (2012) VLPC: A HTML5 Pharmacology Virtual Laboratory. In: 9th Interna-

tional Conference on Remote Engineering and Virtual Instrumentation, IEEE Press, Piscataway, 1-4.

https://https://www.docsj.com/doc/3511608052.html,/10.1109/REV.2012.6293114

[13]Ma, Q. and Yu, Y.L. (2011) The Design and Implementation of Web-Based Virtual Experiment Platform for Control

Courses. In: IEEE International Symposium on IT in Medicine and Education, IEEE Press, Piscataway, 625-628. [14]阮毅, 陈伯时. 电力拖动自动控制系统[M]. 北京: 机械工业出版社, 2010.

知网检索的两种方式:

1. 打开知网首页:https://www.docsj.com/doc/3511608052.html,/,点击页面中“外文资源总库CNKI SCHOLAR”,跳转至:https://www.docsj.com/doc/3511608052.html,/new,

搜索框内直接输入文章标题,即可查询;

或点击“高级检索”,下拉列表框选择:[ISSN],输入期刊ISSN:2324-8696,即可查询。

2. 通过知网首页https://www.docsj.com/doc/3511608052.html,/顶部“旧版入口”进入知网旧版:https://www.docsj.com/doc/3511608052.html,/old/,左侧选择“国际文献总库”

进入,搜索框直接输入文章标题,即可查询。

投稿请点击:https://www.docsj.com/doc/3511608052.html,/Submission.aspx

期刊邮箱:mos@https://www.docsj.com/doc/3511608052.html,

机械故障诊断虚拟仿真教学实验系统

机械故障诊断虚拟仿真教学实验系统 一、实验教学系统简介 机械故障诊断技术具有保障生产正常进行,防止突发事故,节约维修费用等特点,在现代化大生产中发挥着重要作用,而且随着科学技术的发展,机械设备的故障诊断技术越来越受到重视。因此,许多高校都开设了相应的研究方向和课程。 然而,目前的“机械故障诊断”教学主要是采用理论教学的方式将机械系统的故障机理、故障类型和相应的故障诊断方法灌输给学生,因为没有相应的实验课程,学生很难将理论知识和实际工程相结合起来,很多学生学习了这门课程后并没有真正地掌握相关的故障诊断方法,因而更谈不上将所学的理论方法应用于实际工程。 实际上可以开设实验课程,使学生在使用机械故障诊断系统的同时理解消化相关的理论方法。虽然目前很多高校和科研院所都开发了各种各样的机械故障诊断系统,但是,这些故障诊断系统除传感器和信号调理器之外,还需多种、多台测试仪器,以及个人计算机及其外设等,这使得整个诊断系统不但体积、重量庞大,价格昂贵,操作复杂,最主要的是这些机械故障诊断系统都是针对企业开发的,不适合用于教学,因此迫切需要一套能适用于教学的机械故障诊断系统。 本项目开发一套用于教学的机械故障诊断虚拟仿真教学实验系统。所有的测量仪器主要功能可由数据采集、数据测试和分析、结果输出显示等三大部分组成,其中数据分析、结果输出完全可由基于计算机的软件系统来完成。 本系统充分利用虚拟仪器的“软件集成测试”功能,将多种测试仪器功能、多种故障诊断方法集成于一个“诊断功能软件库”中,使得学生能从理论到实践全面地掌握相关的机械系统的故障机理和故障诊断方法。同时该系统还具有开放性,学生可以自己修改、补充程序,使得故障诊断系统的功能更加完善。 二、实验教学系统功能

XX公司远程视频监控方案

XX燃气远程视频监控 设 计 方 案

书 设计单位: 设计人: 前言 本方案针对新澳燃气监控子系统的具体要求,我们特向用户推荐具有强大本地录像、检索和远程监控功能的,基于压缩格式的DS-7800系列硬盘录像机数字监控系统。产品采用稳定的嵌入式平台,用户界面友好。系统实时采集音视频信号(PAL制或NTSC制)压缩成标准的文件,并可在多个硬盘上实现循环录像。同时可存贮多个通道的音视频信号,并保证音视频的同步。支持各种网络传输介质,能在internet上做实时流畅传输,完全满足客户需求。 一、系统设计依据 1. GB50198-94(民用闭路监视电视系统工程技术规范)。 2. GA/T75-94(安全防范工程程序和要求)

3. GA/T70-94(安全防范工程费用概预算编制办法)。 4. GA/T74-94GA(安全防范系统通用图形符号) 5. GB50054-95(低压配电设计规范) 6. 中华人民共和国<<社会公共安全标准汇编1、2>> 7. 中华人民共和国<<国家电气工程施工规范汇编>> 8. GA/T27-1992<<中华人民共和国公安部行业标准>> 9. GA/T75-1994<<安全防范工程程序与要求>> 10. QB/T50198-1994<<民用闭路电视监控系统工程技术规范>> 11. QB/T9813-2000<<微型计算机通用规范>> 12. QB15207-1994<<视频入侵报警其标准汇编>> 13. 甲方的实际需求。 二、系统设计原则 本套监控系统的设计须严格按照甲方的要求且遵守以下原则: 先进性:本监控系统采用国际上技术先进、性能优良、工作稳定的监控设备,使整个系统的应用在相当长的一段时间内保持领先的水平。 可靠性:系统的可靠性原则应贯穿于系统设计、设备选型、软硬件配置到系统施工的全过程。只有可靠的系统,才能发挥有效的作用。 方便性:监控系统的操作应具有灵活简便,人机界面友好,易于掌握的特点,操作人员能够方便物进行使用及维护,使整个系统的功能得以最大实现。 扩展性:系统设计留有充分的余地,以便日后比较方便地进行系统扩充。为此,设备采用模块式结构,在需要时可随时补充。增加视频及其它控制模块,使系统具备灵活的扩展性。 三、集中监控系统需求分析: 随着网络通讯技术的发展,对监控管理系统提出了新的要求,集中监控的目标是充分利用现有的网络平台,在较小的投资下,实现监控系统的集中管理。完善原有的本地化安全防范手段,强化本地监控和远程管理中心两层安全防范机制,便于最大化的调动所有资源,处理突发事件,提高处警效率,规范下属网点日常工作。因此我们特向新澳燃气有限公司推荐

远程集中监控管理系统

冠易诚远程集中监控管理系统 一、项目背景 经过调查发现,当前监控行业监控管理系统遇到了如下几个问题: 1) 用户投入成本居高不下、将中小项目拒之门外; 2) 传统的CCTV厂商在视频处理技术、网络传输、交换、控制、存储、服务器等方面的技术开发与应用经验比较匮乏,无法适应目前数字化、网络化、集成化和专业化的平台软件的需求趋势; 3) 用户学习系统、适应系统,而非系统适应用户需求与习惯,在大型项目的实施过程中,系统操作与部署异常繁琐; 4) 监而不控,项目实施后并没有表现出良好的业务效果; 5) 无长期规划的封闭独立式的软件架构,在不同的行业应用以及系统维护升级等方面已难以快速适应市场需求; 二、系统概述 冠易诚集中监控管理系统是在结合多年丰富的视频处理、应用与网络技术而研发出的一套“监、管、控”系统,该系统充分考虑了监控行业市场的发展趋势和用户需求,应用了多种先进技术包括P2P、微内核、插件、门户技术、流缓冲技术、服务器集群技术等,同时采用分布式组件化结构和三层设计思想(应用层、逻辑层、数据层),从而使系统在灵活性、稳定性、安全性、易扩展性等方面具有明显的行业优势。 系统意示图 三、系统功能 1.服务器心跳功能:在整个项目中,各服务器(中心服务、存储服务、转发服 务、代理服务等服务器)会实时检测自身运行状态,并及时向上级汇报信息。 2.屏蔽windows:以避免人为或意外的病毒进入与操作系统的干净稳定,进而保障监控服务器系统的安全。 3.报警管理中心:可按探头报警、移动侦测、视频丢失、设备网络中断、存储空间等触发条件进行联动布防策略,可触发录像、抓拍、调用预置位、报警输出(声/光/电)、视频放大弹出、电子地图显示。4.当前的主机信息备份与恢复:降低系统部署的繁琐与不可抗性的灾难恢复。 5.报警信息显示区::应急处理,强化报警信息提示与处警意识。 6.高度灵活、人性化、易于操作的可定制用户界面。 7.先进的加密技术:用户登录时,在网络中传输的用户名和密码信息经过128位DES加密处理,他人无

远程视频监控系统设计方案

目录 1前言 (2) 2系统的组成 (3) 2.1前端设备 (3) 2.2图像的传输。 (3) 2.3控制中心 (4) 2.3.1图像的控制。 (4) 2.3.2图像的显示设备。 (4) 2.3.3图像的记录设备。 (4) 2.4系统结构图 (5) 3系统功能介绍 (6) 4系统配置 (10) 5费用说明 (11)

远程视频监控系统方案 1前言 当今视频是一个高速发展、日新月异的社会,社会安全生产问题也是日益复杂、多种多样,对安全生产的监管工作也要求与时俱进,采用新技术、新方法、新系统来进行合理有效的监管和指导。现在的建筑工地开工面积大、地域分布广,对监管巡查工作带来很大难度,对生产安全问题不能及时有效的控制。对目前的工作难点和经后工作的长远发展,特采用《远程视频监控系统》对施工工地进行监管。 远程视频监控系统是一门被人们日益重视的新兴专业,就目前发展看,应用普及越来越广,科技含量越来越高。几乎所有高新科技都可促进其发展,尤其是信息时代的来临,更为该专业发展提供新动力。远程视频监控系统可不间断,全方位的对施工工地进行远程监控和记录,可实现无人值守的全天候监控。可让施工工地长期有效的得到监督和指导,同时也可以减少人为因素对监管工作的影响。 远程视频监控系统在国防、公安、消防等众多领域得到广泛应用,也取得了很好的实用效果,对各领域的监管工作起到了很大的促进作用,也对监管工作的高效、创新起较大的推动作用。在工程建筑行业的安全生产监管工作中采用此技术是一个新的创举,也是发展的必然。

2系统的组成 远程视频监控系统由前端设备、图像的传输、控制中心、三部分组成。 2.1前端设备 这部分是系统的前沿部分,是整个系统的"眼睛"。它布置在被监控场所的某一位置上,其视场角能覆盖整个被监控场所。当被监控场所面积较大时,为了节省摄像机的数量、简化传输系统及控制与显示系统,在摄像机上加装电动的(可遥控的)可变焦距(变倍)镜头,使摄像机能观察的距离更远、观察得更清楚;有时还把摄像机安装在电动云台上,通过控制台的控制,可以使云台带动摄像机进行水平和垂直方向的转动,从而使摄像机能覆盖的角度更广、面积更大。总之,摄像机就像整个系统的眼睛一样,它把监控的容变为图像信号,传送到控制中心的监视器上。摄像装置主要包含摄像机、镜头、云台、解码器箱、报警探头、紧急按钮等。 2.2图像的传输。 传输部分就是系统的图像信号通路。一般来说,传输部分指的是传输图像信号。但是,由于某些系统除要求传输图像外,还要求传输声音信号,同时。由于需要在控制中心通过控制台对摄像机、镜头、云台、防护罩等进行控制,因而在传输系统中还包含有控制信号的传输,所以这里所讲的传输部分,通常是指由所有要传输的信号形成的传输系统的总和。传输部分的传输介质主要包括视频电缆、控制信号传输电缆、光缆等。如果采用数字摄像机,则需要利用互联网来传送信号,传输线路就是综合布线系统的双绞线。

国内最佳云计算虚拟化平台软件产品介绍

EASTED V5.0云计算虚拟化平台软件 北京易讯通科技有限公司 2011-11

目录 1、虚拟化改革的必要性 (3) 2、EASTED V5.0 (4) 2.1 应用虚拟化平台EASTED ThinApp (9) 2.2 桌面虚拟化平台EASTED View (10) 2.3 ECloud云计算数据中心建设解决方案 (12) 3、EASTED V5.0云计算虚拟化平台典型案例 (17) 教育典型案例 (17) 医疗典型案例 (20) 政府典型案例 (22) 企业典型案例 (23) 4、技术服务 (25) 5、关于易讯通 (26)

1、虚拟化改革的必要性 1)传统的网络状况及存在问题: ?服务器能力不足及网络存储容量不够服务器和应用系统剧增,很难有效管理 ?IT环境复杂,无法快速部署新系统。网管人员不能及时准确了解网络的运行状态,出现问题和故障不能迅速定位和排除,不能及时有效保障网络的正常运行。 ?缺乏高水平的安全保障。内网的机器比较容易受到来自网络黑客及病毒的攻击。尤其是服务器,一旦遭受攻击或中木马等,将会造成系统瘫痪甚至数据丢失等严重后果。?设备增加对机房环境需求迅速提升(电力,制冷,空间)成本上升。 ?硬件发展速度越来越快,单一应用无法充分利用服务器资源。 ?带宽不足及无出口流量控制设备,导致大部分上网用户感觉上网速度较慢。 ?由于系统的复杂性和多样性,应用实际上线通常会延时。 2)虚拟化变革后的优势: ?桌面和应用全部运行在数据中心,可更灵活、高效、集中部署维护;数据更加安全。?通过策略及其他技术手段,可以严格禁止涉密数据下载或保存到本地的客户端设备,有效保护用户知识产权,科研成果,机密文件,专利技术信息。 ?可从任何分支机构或任何节点远程访问桌面和应用,实现移动商务和移动办公。 ?运行在高性能的服务器上可以使桌面和应用的性能得到大幅提升而不受任何终端的性能限制,前端桌面可使用各种终端及瘦客户端。 ?可迅速部署最新的应用软件;C/S架构软件无需修改即可转化为B/S架构;还可适应不同类型用户的需求,如内部用户和公众用户,涉密终端和非涉密终端等。 ?降低维护桌面及软件的费用;延长原有硬件设备的生命周期,减低硬件采购成本IT 总投资成本(TCO)有效降低75%。 ?提供接近于本地应用的最终客户体验,并且最大限度保持原有的用户使用习惯。 ?大型软件在10KB/S的超低带宽下实现流畅运行。 ?通过流量监控分析系统帮助用户了解网络流量构成,使用情况,带宽占用,协议分布以及用户的行为;实现主动监控,控制。 ?通过视频及文件审计及上网行为管理等扩展功能综合实现高效监控管理及有效查实,大幅提升体系内安全级别,管理级别,工作效率及竞争力。 ?方案的可扩展性强,在业务规模增大时,可快速扩容部署,总体造价合理。

远程监控系统

远程监控系统 1 题义分析及解决方案 1.1 题义需求分析 用STAR ES598PCI单板开发机,设计一个远程监控系统,并编程实现其功能:采用串口调试助手,通过串口进行控制,输入0001时,蜂鸣器鸣叫,输入0002,LED灯亮,输入0003LED 灯灭,输入0004后,再输入想要在LED灯上显示的数字或字母,控制LED显示器显示输入的数据。 问题归纳: 1)接口问题,选用何种芯片。这是关键的一步,这将直接影响到整个功能的实现; 2)如何通过串口助手控制蜂鸣器鸣叫; 3)如何通过串口助手控制继电器常开端闭合,常闭端开合; 4)如何通过串口助手控制LED显示数据; 1.2 解决问题方法及思路 1.2.1 硬件部分: 本程序用8251芯片提供串行接口输入和输出,采用8255芯片来提供并行接口的输入和输出,由8253芯片来提供8251的收发时钟,利用串口调试助手模拟上位机,从键盘接收命令由8251传送给上位机,经由程序体分析后将命令传给8255,即由8255相应的连接线路执行相应的命令实现功能。在8255芯片的应用中,PC0口连接蜂鸣器,PC7口连接继电器,PA口连接LED位选,PB口用于控制LED的段选,硬件部分连接结束,其控制处理部分由程序来实现。 1.2.2 软件部分: 对8253的初始化(定时器0,方式3,BCD码计数,CLK0/26),对8251初始化(波特率系数为16,8个数据位,一个停止位,偶校验),对于8255芯片,主要用于将CPU的命令输出,故PA、PB、PC三口均设置为方式0状态下工作。由PA0~PA7来控制LED灯的位选,由PB0~PB7口来控制LED灯的段选。当PC0口为低电平时蜂鸣器鸣叫,为高电平时蜂鸣器禁止鸣叫,PC7口对继电器的控制也同理。从下位机的键盘键入命令字,通过命令字的判断,执行相应的功能,反复测试串口的接收,若有数据输入,判断并执行,如此反复循环下去。 2 硬件设计 2.1 芯片(1)--8255A 2.1.1芯片(1)在本设计中的作用 通过8255接收上位机处理后传来的命令,由PA0~PA7来控制LED灯的位选,由PB0~PB7口来

基于虚拟化技术的云服务平台的构建与管理

龙源期刊网 https://www.docsj.com/doc/3511608052.html, 基于虚拟化技术的云服务平台的构建与管理作者:何国民王代君 来源:《电脑知识与技术》2016年第23期 摘要:本文主要采用云计算虚拟化技术在开放式操作系统Linux下,就虚拟化平台基础服务端、虚拟化连接管理中间件和Web管理平台这三个主要组成部分的设计和配置,设计和构建一个针对高校实验室私有云服务平台,能动态分配实验室计算资源,高效率满足实验教学、开发、测试、管理等不同需求。 关键词:云计算;虚拟化技术;Linux;私有云 中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)23-0199-02 云计算是计算机科学和互联网技术发展的产物,也是引领未来信息产业创新的关键战略性技术和手段。它将带来工作方式和商业模式的根本性改变,对我国发展高新技术产业具有重要的战略意义。 虚拟化技术是实现云计算的关键技术,它是一种调配计算资源的方法,它将不同层面——硬件、软件、数据、网络、存储——隔离开来。它的运行完全像一台物理服务器一样,并在同一台物理服务器上运行多台虚拟机,可以节省硬件、存储空间以及能耗。近年来,云计算技术发展如火如荼,国外的亚马逊AWS云计算服务平台、微软的Microsoft Azure云以及Google 的Cloud Platform引领着云计算技术的先锋和浪潮。国内的各个互联网企业也纷纷推出各自的云服务,如阿里巴巴的阿里云,新浪的SAE平台,百度的BAE平台等。在计算机业界,云计算可以说是现阶段最热门的技术之一。整个社会已经进入到了互联网+时代。 本文是基于Linux内核虚拟化技术和Libvirt开源管理中间件以及Python语言开发,实现了在实验室机房环境中搭建私有云计算服务平台,从而实现服务器的硬件虚拟化,提供多台虚拟机给不同用户以运行不同的服务,给实验教学、资源的共享等带来了极为方便的应用场景。 1 虚拟化云服务器平台的主要功能设计 云服务平台的虚拟化环境构建采用基于Linux内核的QEMU-KVM虚拟化技术,服务平台的Web管理端使用Python编程语言和Django框架来开发,对于实验室云计算服务平台环境的搭建,主要完成以下的功能: 1)创建虚拟机,在创建时分配虚拟机的CPU、内存、磁盘、网络配置。 2)虚拟机的启动与关闭。在虚拟机系统出错无法正常关机的时候,能够对虚拟机的进行强制关闭。

库云设备远程监控平台使用手册V1.1

库云设备远程监控平台 说明书 苏州库德莱兹自动化技术有限公司 2016.1

目录 第一章平台介绍 (3) 第二章准备工作 (3) 2.1运行环境 (3) 2.2下载客户端 (3) 第三章功能详解 (4) 3.1进入平台 (4) 3.2登录界面 (4) 3.3进入【平台总览】 (5) 3.4实时监控 (6) 3.5图表趋势 (8) 3.6报表统计 (11) 3.7设备管理 (12) 3.8告警管理 (12) 3.9售后管理 (15) 3.10权限管理 (16) 第四章附录 (18)

第一章平台介绍 库云平台具有灵活的可配置性、线性可扩展性及海量数据监控等技术优势,实时获取和监控设备的运行状态和海量数据。即时发现、诊断和修复设备,确保各生产设备及其子系统处于最佳运行状态,解决其对设备的远程监控和维修维护问题。通过本系统,设备厂家可以对所售出的设备进行全面有效的信息采集、监控、维护和升级。本系统也可与ERP、PDM 等系统做对接,提升数据传输的时效性和信息系统的集成化。 第二章准备工作 2.1运行环境 ●操作系统: Windows XP/Vista/7/8/Server 2008/Server 2012 Ubuntu Linux 12.04+ Mac OS X 以及其他正常运行Java SE 6+的系统 ●JAVA运行环境:由于平台需要JAVA运行环境支持,在进入演示平台之前请 根据自身电脑操作系统环境,选择安装JRE(Java Runtime Environment,即Java运行环境)。本文第四章附录有Windows 32位及64位JRE安装包,用户可自行选择安装。 2.2下载客户端 客户端链接位于本文第四章附录中,点击即可下载。我们采用JNLP技术,您只需下载1Kb的瘦客户端即可。无需繁琐的安装、调试。

远程视频监控方案说明

远程视频监控系统 设 计 方 案

书 XXX公司 年月日 目录 1方案概述 (4) 1.1设计原则 (5) 1.2设计要求及技术指标 (7) 2.基本要求与配置 (7) 2.1基本要求 (7) 2.2设备配置 (8) 3.系统结构组成 (8) 3.1方案结构图 (9) 3.2工程描述 (9) 4.产品说明 (10) 4.1摄像产品介绍 (10)

4.1.1技术特点 (10) 4.1.2技术参数 (12) 4.2网络视频服务器(DS-96000N-H24) (13) 4.2.1主要特点 (14) 4.2.2技术指标: (15) 4.3 iVMS-8600智能综合管控平台 (18) 4.3.1运行环境要求 (19) 4.3.2各模块功能说明 (20) 4.3.3、客户端软件 (23) 5.系统网络要求 (26)

1方案概述 视频监控行业的快速发展源于用户对视频监控需求的不断变换。过去,视频监控只是为了满足基本监控需求,譬如监视、控制、录像、回放、报警等;随着互联网的普及,视频监控需要满足联网监控一般需求,譬如远程监视、控制,远程录像、检索,远程报警、管理;如今,人们对视频监控又有了新需求,譬如更高清晰度、与用户业务的结合(非安防需求)、让视频创造价值等。远程监控是新安防时代视频监控建设的重点,本文主要解析远程监控系统的主要要素。 网络视频远程监控系统以综合管理软件为核心,并结合DVR、NVR、网络摄像机、视频服务器、交换机、路由器等架设公网(互联网)访问的工作原理,实现了基于网络的点对点、点对多点、多点对多点的远程实时现场监视、远程遥控摄像机以及录像、报警处理等,

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

城市消防远程监控管理系统

城市消防物联网远程监控管理方案 广东安警技术-伍锦雄 一、行业概述 1、行业发展趋势 消防控制室是建筑消防设施的心脏,也是单位日常消防工作管理的中枢核心,发生火灾后还是灭火、救援的应急指挥中心。近年来,一些单位由于消防控制室无人值班,值班操作人员玩忽职守或将火灾自动报警系统人为设置在手动状态而导致小火酿成大灾,教训十分深刻。因此,保障消防控制室的可靠运行和有效管理,意义十分重大。 目前的消防远程监控系统基本上都是各单位独立选购安装、独立工作,很容易导致火灾信息漏报、迟报,报警设备出现故障没有及时恢复开通,对设备的故障更是无法评判、预测。 因此,打造信息化和智能化的消防远程监控系统,已成为行业发展趋势。 2、行业应用价值 城市消防远程监控系统采用消防自动报警系统已有的各种感知设备、视频采集设备等,将感知和采集到的大量现场信息,借助消防物联网网络层传输到消防指挥中心,再通过消防指挥中心的信息平台整理后进行辅助决策,通过消防指挥中心下发指令及时对灾情的消防处置,并结合消防应急预案组织救援力量、救援物资及救援装备的部署。 系统架构图:

二、城市消防联网远程监控管理方案 1、建筑消防物联网系统架构 广东安警持技术的消防物联网,是指通过使用物联网技术实现消防远程监控系统可以24小时工作,并且变的“耳聪目明”。在此基础上搭建的消防信息数据平台,将传统消防工作提升到“智能联网消防”时代。通过消防安全信息中心的搭建,主要依靠“视频远程监控”,“值班员管理”,“紧急远程对讲”为核心技术。整个系统可分为感知层、网络层和应用层。如图:

2、城市消防远程监控管理物联网特点 广东安警持技术基于物联网技术的消防远程管控系统,通过物联网传输终端、物联智能终端实现物联网监控中心、消防相关人员与各地消防设施的沟通与对话,这种将消防领域的人与物、物与物联系起来的网络就形成了消防物联网。 广东安警持技术提供集“安装—检查—快速查询—实时监控”一体化的消防产品设备信息化作业链,将消防主管、产品用户、工程维保商三大建筑消防产品设施关联角色的职能融入到系统中,把对建筑消防产品设施的重视提到日常工作上,加强消防监督管理力度。

我国虚拟实验教学系统发展现状综述

我国虚拟实验教学系统发展现状综述 洪慧婷 (浙江师范大学教育技术学,浙江金华 321000) 摘要:作为信息技术发展的产物,虚拟实验具有透明性、共享性、互动性、自主性及可扩展性等特点,能为目前实验教学中迫切需要解决的问题提供策略和方法,因此越来越受到专家学者的关注。通过数量统计法和内容分析法,基于对CNKI网上近10年的相关文献进行研究,该文探讨了本领域的研究重心、研究内容,浅析存在的问题并提出建议,期望为虚拟实验教育应用的进一步研究提供参考和借鉴,为今后开发出设计合理、功能全面的虚拟实验教学系统奠定理论基础。 关键词:虚拟实验教学系统;虚拟实验;发展现状 一、研究背景 教学实验是教学过程的重要组成部分,是学生验证知识、探究客观现实规律不可缺少的途径。近年来,随着学校规模的扩大,学生数量不断增加,传统的实验模式已经不能满足教学的要求,这主要表现在学校实验经费不足、实验设备严重缺乏、学校实验场地空间有限等。而且随着现代远程教育的不断发展,网络远程教育中的实验教学已经成为一个新的难题。改变传统的实验教学模式已经迫在眉睫,采用计算机技术构建的各种虚拟实验室,为实验教学提供了一个新的解决方法[1]。 通过对2001年到2010年间发表的有关虚拟实验教育应用文献的收集与查阅,分析了虚拟实验教育应用的发展现状,提出了研究过程中存在的一些问题,为虚拟实验教育应用的进一步研究提供参考和借鉴,并为今后开发出设计合理、功能全面的虚拟实验教学系统奠定基础。 二、虚拟实验教育应用文献分析 (一)概念界定 1999年5月,美国爱荷华州立大学举行的虚拟实验室专家会议上采用如下定义:虚拟实验室是为研究和创新活动提供远程协作和实验的一个电子平台。这主要从实验在远程教学中的应用角度描述,虚拟实验作为远程教学的组成部分,为远程学习者提供实验教学,成为学习者新的学习方式,同时改变教师的教学方法[1]。 (二)文章数量统计 以“虚拟实验教学”为精确主题在CNKI 网上搜索,根据题目筛选出与本研究相关的文章,统计出每年文章发表数量的情况,统计出每年文章发表数量的情况。(见表1)表 1 文章数量统计(2001年~2010年) 时 间 中国 期刊 全文 数据 库 中国 优秀 硕士 学位 论文 全文 数据 库 中国 重要 会议 论文 全文 数据 库 中国 博士 学位 论文 全文 数据 库 总 计 2010 55 6 2 0 63 2009 34 7 2 0 43 2008 26 16 3 0 45 2007 21 7 0 0 28 2006 15 4 1 0 20 2005 16 5 1 1 23 2004 20 1 0 0 21 2003 7 1 0 0 8 2002 2 1 0 0 3 2001 2 0 0 0 2 总计198 48 9 1 256 (三)文章研究内容的分类 教育技术94定义中,确定了教育技术的五个范畴,即设计、开发、运用、管理和评价。通过对256篇文章内容的纵览,将文

视频监控管理平台软件

视频监控管理平台软件 视频监控管理平台应充分考虑用户的应用需求,能在同一系统同时兼容主流高清网络摄像机和视频服务器等,实现基于计算机网络技术的视频监控和管理;基于中间件技术、面向业务的四层体系架构模式,可确保新需求的增加无需改变软件核心模块;系统各接口应满足用户应用开发的要求,无偿提供接口开发包,配合用户调用相关安防视频数据满足应用需求。本系统所提供的产品需具有相当成熟的系统设计,保证产品能与采购人正在运行的视频监控管理系统的连、报警系统等的连接。 本系统承诺产品可在今后使用过程中无条件按采购人的实际应用需求修改;确保产品具备各种类信息标准接口,保证产品在今后使用中能与不同品牌的各种类型硬件设备实现无缝接合。本次安防视频监控系统主要用于安全管理工作,包括周界及各区域的视频监控等。 视频监控系统招标内容主要包括:前端摄像机及其编码器设备、网络系统及设备、后台视频管理和存储设备、视频数字解码设备、显示设备、室内外摄像机安装平台、实现视频监控功能的其他相关设备以及配套的线缆敷设等安装工作。 所有监控点在网络接入上采用M-JPEG、MPEG-4、H.264等压缩方式压缩传输,视频质量达到CIF、2CIF、4CIF或D1、720P、1080i及其以上高清效果,实现实时预览、按需录像;室外安装智能高速球,具有自动定位、自动巡航、设置预置位、设置巡航轨迹等功能,具有低照度功能,借助灯光或附近的辅助照明,实现24小时监控、高速巡航。 采用基于IP网络的数字化编码设备,可以兼容硬盘录像机模式兼容目前市场上主流数字压缩卡,主流嵌入式DVR,DVS,网络摄像机等设备,考虑到未来系统扩容和设备更换等因素,为了有效的保护长期投资,系统平台的选择必须可以同时支持10个以上国际和国内知名厂商的产品(),以便于业主可以不受某一单一厂商的控制,能够根据性价比最优的原则采购硬件设备;这样可以满足以后的系统扩容和其他厂家产品的接入。 利用单位之间的IP网络平台构建数字化视频监控系统;系统能够将摄像机根据监管需要任意分配给领导或者其它相关用户,这些用户可以共享或者独立拥有某个摄像机的监视和控制权。系统能够将同一个摄像机的图像保存在多个录像服务器上,需要独立保存录像资源,因此系统需要支持对同一摄像机进行多重录像的能力。 为了确保系统稳定可靠,视频编码器及网络摄像机等设备应该采用国际知名品牌产品,选用的产品必须在环境大致相同有过成功应用,能够经受住恶劣环境的考验;考虑到模拟摄像机大多在国内设有学校,用户可以选择国内生产的国际知名品牌产品; 系统应该支持目前市场上各种存储系统,包括DAS、NAS、IP-SAN、FC-SAN等,以便为用户在建设项目时可以不受限制地选择最优的存储设备; 为了使系统的日常操作灵活方便,系统应该支持用户使用模拟监视器或者数字显示器显示图像,支持采用鼠标、计算机键盘及模拟CCTV键盘等多种操作终端进行摄像机控制和切换显示操作; 功能介绍: A. 基本功能: 通过采用数字化编码设备,对监控现场等进行实时、有效的监控、显示和记录。采用先进的编解码、存储和网络传输技术,实现远程监控、图像传输、联网报警、智能调控、设备巡检、历史资料查询等功能。

EMCP云平台手机APP远程监控MCGS触摸屏

EMCP 云平台 ——手机App 远程监控MCGS 触摸屏 一,实现目的。 MCGS 触摸屏广泛应于工业控制领域,是一款性能高,运行稳定的人机交互设备。此次我们要把MCGS 的TPC7062系列触摸屏连接到EMCP 设备管理云平台,实现电脑Web 页面和手机APP 对MCGSTPC7062系列触摸屏的远程监控。 二,准备工作。 1. 在对接前我们需准备如下物品; 1) MCGS TPC7062KT 触摸屏一台(或电脑仿真运行)。 2) 河北蓝蜂科技的GM10-DTU 模块一台。 3) 联网电脑一台(WinXP/Win7/Win8操作系统) 4) USB 转232数据线一颗(如果电脑主机有串口那就可以免去此线)。 5) 9针DP 头一个。 6) 电工工具一套。 7) 导线若干。 2. GM10-DTU 准备工作 此处参考GM10-DTU 说明书进行操作,我们需要对GM10连接天线、插上SIM 卡(移动/联通无欠费电话卡)、连接12V/24V 电源、连接232调试线到电脑串口(或USB 转232串口线)。 3. 触摸屏准备工作。 触摸屏连接24VDC 电源,准备一颗9针串口头(如上图),用两颗导线分别焊接的7和8引脚(MCGS 触摸屏说明书有介绍,7和8引脚为485通讯口) 。 注意:如果我们的触摸屏485通讯口已被占用,这里我们可以使用2、3、5引脚(232串口)经232-485连接器转成485方式。 4. 连接MCGS 触摸和触摸屏。 EMCP 云平台 ——手机App 远程监控MCGS 触摸屏 乐可集团GB 2015-8-22

将上面触摸屏接好的通讯线连接到GM10-DTU端子上,引脚7对应GM10模块的485A端子,引脚8对应GM10模块的485B端子。 5.上电检查 连接好所有的线后检查是否接线牢靠,接线是否正确。一切无误后我们给两台设备进行通电。通电后触摸屏点亮,GM10模块SYS灯点亮。 三,MCGS触摸屏设置。 1.新建一个MCGS工程,在设备窗口中添加“通用串口父设备”和“Modbus串口数据转发设备” 2.设置“通用串口父设备” 3.设置“Modbus串口数据转发设备”,这里我们需要设置Modbus串口转发设备的属性,如下图右 下框。还要添加连接变量,我们添加Date1-Date8共8个Modbus地址4区的16位整形变量为EMCP平台定时读取TPC触摸屏数据,Control_1和Control_2为EMCP平台对触摸屏进行读写操作。 4.添加用户窗口,在用户串口中添加10个输入框,对应内容为上面设定的Date1-Date8定时读取 变量,Control_1和Control_2两个远程读写变量。 四,GM10-DTU模块设置。 1,在对模块进行配置时,具体操作请参照《DTU配置软件使用手册》,打开“DTU配置软件”选择连接的串口号,选择菜单“系统设置”点击“参数获取”读取连接模块的当前配置。 2,选择菜单“高级设置”,设置“模块密码”(和平台密码要一致)。设置“数据串口”参数和触摸屏的“通用串口父设备”设置一致。点击选项“MODBUS设置”按下图设置。设置完成后点击上图中的“参数写入”将我们配置好的数据写入到GM10模块里面。此时模块配置完成。 五,EMCP平台设置。 用管理员身份登录平台,对EMCP设备管理云平台进行设置。具体操作参照《EMCP设备管理平台用户使用手册》 1.新增模块,选择菜单“管理”-> “模块管理”新建一个模块,该模块是我们触摸屏连接的模块, 对新建模块进行如下设置。设置完成后点击“保存”。这里“SN编号”为模块上的编号(注意:SN码必须和模块一直)。模块密码为DTU配置软件中设置的模块密码(密码必须和模块设置的密码一致)。“SIM卡号”我们可随意设置为11为的数字。“地址”我们可以通过右面的“地图”按钮进行地图选点。设置完成后点击保存。 2.新建规则,选择菜单“管理”-> “信号规则管理”新建一个规则命名为“ABC001” ,“适用设 备型号”我们写“ABC_1”,然后新建8个信号,此信号要和上面触摸屏设置的8个定时读数据相匹配,具体的设置可参照《EMCP设备管理平台用户使用手册》进行设置,对数据地址进行设置时要参考上面我们对触摸屏进行设置的地址,两者地址必须一一对应。 3.新建“设备”, 选择菜单“管理”-> “设备管理”新建一个设备。我们需要选择设备的图片, 点击“选择文件”按钮选择我们想要上传的图片,选中后点击“上传”。“从站编号”为上面我 “设备名称”我们可随意输入,这里我们输入TPC7062。 们触摸屏Modbus串口转发设备的从站地址。 “所属模块”选择上面我们配置的模块“TEST_MODEL”模块。“数据规则”选择上面配置的“ABC001” 规则。“地址”输入所安装地的城市名。“摄像头”为视频监控用的,输入网络摄像头的序列号就可将摄像头加载在EMCP设备管理云平台。如果设备需要进行远程控制,可在下面进行控制名利的添加,这里我们新建两个控制命令(要和触摸屏上的控制地址相对应(地址减一处理))。六,实验效果。 1,TPC7062在线仿真实况。 2,EMCP设备管理云平台在线显示实况。 3,手机APP在线显示实况。

虚拟仿真实验教学中心安全管理制度

虚拟仿真实验教学中心安全管理制度 一、实验室是教学、科研重要基地,为了确保教学、科研工作的顺利进行,保障实验室的安全和正常运行,特制定本制度。 二、实验室安全工作实行岗位责任制,实验室主任负责把每个实验室房间的安全工作落实到人,做到每个房间都有专人管理,专人负责。随时消除事故隐患,配备必要的消防器材。 三、保持实验室走道畅通,设备器材摆放整齐,排列有序,未经保卫部门同意,严禁走廊堆放杂物和在走廊打隔段,阻挡安全通道。 四、实验室房屋是学校的固定资产,无论其建设经费来源,均属学校资产。实验室房屋结构不得破坏。任何人不得随意在实验室内打隔断,毁坏结构、毁坏电路,如因教学、科研需要改造的,必须落实经费然后向有关部门提出申请。 五、实验室是教学科研的场所,室内严禁吸烟。特别是有易燃易瀑的实验室绝对禁止烟火,严禁吸烟动用明火。因工作需要少量存储易燃易爆物品,必须符合安全存放要求。 六、学生必须在教师或实验室技术人员的技术指导下,按操作规程进行实验,毕业设计学生和研究生的实验由导师负责,环境封闭的实验室不得单人操作电器设备,危险性的实验必须有安全防护措施并要有人监护。 七、未经管理人员的许可,任何人不得随意动用实验室内的仪器设备。因不听指挥或违反操作规程而导致仪器设备损坏者,要追究责任,并赔偿损失。 八、大型精密仪器要有专人维修和使用,要严格遵守操作规程,设备运行时,操作人员必须坚守岗位,不得随意离去。非专职操作人员使用大型精密仪器,必须经过培训合格后才能上机。 九、大型精密仪器不得带病工作,发现仪器设备不能正常工作,出现漏水、漏油、漏气、漏电,以及仪器使用时声音的变化等现象,仪器设备负责人应及停用该仪器,并及时报请学院维修。 十、使用易燃气体,如乙炔、氢气、氧气、煤气等必须遵守操作规程。要有安全措施。严格按照使用要求的条件去工作。 十一、电源、电闸下禁止摆放易燃物品和仪器设备。防止电源打火引起火灾,出现问题及时关掉电源。安装电源、电闸要到指定的电力管理部门,不得私自乱

机房远程监控系统

机房远程监控系统

1 概述 通过使用该系统,可实现集中方式对机房设备和环境及电力进行集中监控,从而保证通信网络设备的安全运行,实现基本无人值守。 2解决方案 2.1系统结构示意图 图2.1 远程监控系统结构示意图 系统监控内容分为两大部分,环境及电力系统的监测与控制。可对辖内的各个设备及机房环境进行遥测、遥控、遥调、遥信,记录和处理相关数据,及时检测故障,自动通知相关人员处理,从而实现少人或无人值守。

2.2结构简介 2.2.1现场监控装置与作用 1)门禁监测:探测门、窗等是否被非法打开,或非法人员进入; 2)UPS蓄电池电压监测:实时监测机房内备用电源电压; 3)温湿度监测:检测机房内温湿度参数,实时反馈到监控中心; 4)烟感探测器:消防监控,实时检测烟感传感器状态,一旦发生火灾,及时向监控中心报警; 5)漏水监测:当机房进水时,想监控中心报警; 6)风机与空调控制:当温度或湿度异常时,可自动或手动启动空调和风机进行调节; 7)配电柜:使用互感器监测电源电压、电流并实时反馈到监测中心; 8)*发电机:对于无法接入市电的地点,可以对油量进行监测; 9)*视频监控:可对机房内进行实时视频监控; 11)电路故障监测,本地和远程报警; 12)网络:可接入3G、4G、WIFI以及Internet; 2.2.2监控中心 1)可远程控制或定时打开的设备:照明、风机、空调等; 2)PC远程控制与异常报警、数据记录; 3)一个监控中心可同时接入多个监控点; 2.3 监控中心的功能 1)周期性采集各个监控对象的运行状态和数据; 2)显示告警信息和实时数据; 3)能对告警数据和监测数据进行统计分析; 4)当通信中断时,能自动保存断点开始处以后的有关数据; 5)提供远程监控能力和智能设备接入能力; 6)软件提供良好的外部接口(如声光报警等)。 7)具备数据查询和统计功能,能按局方要求,生成各种曲线、报表:如:月、日、年告警统计表、系统操作统计表、检测数据统计表、直流设备负载曲线、温湿度历史曲线、交接班日志、特定时间的设备运行参数或曲线等。 8)当发生了紧急告警(等级可设定)时,能以拨号方式自动寻呼责任人员。如果此告

虚拟仿真实验教学共享平台基本功能介绍

虚拟仿真实验教学共享平台 基本功能介绍 1.账号管理 平台对账号基础信息的管理可分为用户导入和用户注册两种方式。 1.1用户导入 平台对用户提供导入功能,用户可对姓名、账号、性别、密码、用户类型、角色、单位、电话,手机、邮箱等字段按照模板导入数据。 1.2用户注册 平台对用户提供注册功能,注册用户需要填写所属学校、姓名、账号、密码、确认密码、身份、个人邮箱、手机号等信息。 2.首页展示内容 平台的首页显示包括(实验、仪器)搜索、资源排行、资源列表。 2.1资源搜索 平台按照实验、仪器分类支持一站式智能搜索。 2.2资源排行 平台按照实验、仪器分类的操作次数由高到低显示。 2.3资源列表 平台按照实验、仪器两种分类显示所有的资源信息。 3.基础数据 平台的基础数据包括单位信息、虚拟仿真中心。 3.1单位信息 平台对单位信息进行添加或导入。 3.2虚拟仿真中心 平台对虚拟仿真中心进行添加。 4.仿真资源管理 平台的仿真资源包括仿真项目(仪器)、实验自测、实验预习、实验操作、实验收费、实验操作记录、实验报告。 4.1仿真项目(仪器) 可以添加仿真项目(仪器)的基本信息。 4.2实验自测

可以添加、导入客观题。供学习用户进行在线自测。 4.3实验预习 平台可以上传文本、图片、动画、视频、音频等多种类型和格式的资源文件上传,供学习用户查看。 4.4实验操作 平台可以上传在网页操作的仿真实验资源,供学习用户在网页操作。 4.5实验收费 平台可以设置按章节收费和按时间收费。 4.6操作记录 平台根据用户操作的仿真资源内容,自动生成操作记录,作为实验报告的数据支撑。 5.收费平台(第三方支付平台) 平台暂不支持该功能。 6.数据接口 平台可以仿真资源进行数据对接,从资源获取学习用户操作的数据,包含“操作内容、操作时长、操作费用”等。

机械设备远程监控方案(DOC)

施工机械设备远程监控方案 一、需求分析 1、设备远程控制的必要性 1)目前设备管理的难点 伴随油建公司业务的不断扩展,施工大型机械设备的应用率不断提高,同时设备分布越来越分散,但是大型设备的管理也越来越难;其一是设备动态达不能及时准确掌握。二是设备状况不能及时诊断分析维护。三是零星设备成为管理盲区。四是设备油耗得不到准确的控制。 2)设备远程控制管理将提升公司管理的一台阶 由于公司机械设备数量不断增加,也迫使机械设备的管理不断升级,然而传统的人到现场进行管理、维护已经远远不能满足公司的要求,高昂的人工成本、维护成本逐步成为公司发展的压力、甚至成为公司的发展瓶颈,因此采用设备的远程监控管理需求尤为迫切。 2、方案实现的基本功能 1)实现公司对分布在全国的工程机械设备运行数据的采集和上传,变量监控、 参数设置、故障报警以及控制器程序的更新和升级。 2)提供数据库存储保存历史数据。 3)提供监控管理平台(B/S结构)供管理人员浏览控制器数据、设置现场网络 设备参数。 4)提供趋势数据及业务数据报表。 5)设备故障报警,实时报警,可定义报警条件,支持超油耗报警、设备强制保 养报警(更换机油、空气滤芯、材机油滤芯)。 6)基于GIS的状态监控(编辑、处理、分析)。

7)监控中心支持上800台设备的接入 8)提供远程控制台便于技术人员远程调试 9)提供数据库及通信协议访问接口 10)支持数据订阅功能,过滤冗余数据。可大大减少垃圾流量,降低运营费用。 11)可管理>800台的设备接入,并可通过升级扩展实现更多机械设备接入监控系 统。 12)多种网络组网,克服地理障碍,保证通讯顺畅 系统可提供支持多种通讯网络形式的智能终端,保证分布广泛的设备采用多种网络完成远程通信。 13)支持不同品牌、不同型号的多种设备的统一接入 14)基于机型的变量管理,保证产品的兼容性、可升级性 可定义现场机械设备控制器变量。针对不同控制器类型和编程程序,均可采用变量定义的方式实现采集所需变量的要求 15)多级用户权限安全管理 该系统是一个多用户管理系统。系统提供多级用户权限供不同管理者使用不同资源,保证系统安全性,如超级管理员,设备管理员,生产调度员,设备监控员。 二、总体方案论证 2.1系统组成 本系统由监测中心、通信平台、监测设备三部分组成。 1)监测中心:由服务器、GPRS数据传输模块等组成。 2)通信平台:中国移动公司的GPRS专网。 3)监测设备:电源模块、采集模块、GPRS传输模块、转换器、转速传感器、电 流电压互感器、温度传感器、压力传感器等。

相关文档