文档视界 最新最全的文档下载
当前位置:文档视界 › 函数的定义域与值域

函数的定义域与值域

函数的定义域与值域
函数的定义域与值域

函 数

一、函数定义

1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )

答案:B

二、函数求值

1.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1,

∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0.

2.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2

解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2,

3.函数f (x ),g (x )分别由下表给出.

则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1.

当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1

2

三、函数定义域

(1)一般函数的定义域求解

1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]

C .(-∞,0)∪(1,+∞)

D .(-∞,0]∪[1,+∞)

解析:由题意知,x 2-x >0,即x <0或x >1.则函数定义域为(-∞,0)∪(1,+∞),选C. 2.(2017·贵阳监测)函数y =1-x 2

2x 2-3x -2

的定义域为( )

A .(-∞,1]

B .[-1,1]

C .[1,2)∪(2,+∞) D.??????-1,-12∪? ????

-12,1

解析:选D 由函数y =1-x

2

2x 2-3x -2得??

?

1-x 2

≥0,2x 2-3x -2≠0,

解得?

??

-1≤x ≤1,x ≠2且x ≠-1

2,

即-1≤x ≤1且x ≠-12, 所以所求函数的定义域为??????-1,-12∪

? ????

-12,1,故选D. 3.函数f (x )=

1-|x -1|

a x -1

(a >0且a ≠1)的定义域为____________________.

解析:由???

1-|x -1|≥0,

a x

-1≠0

???

?

0≤x ≤2,x ≠0

?0<x ≤2, 故所求函数的定义域为(0,2].

4.函数f (x )=ln ?

?

???1+1x +1-x 2的定义域为( )

A .(-1,1]

B .(0,1]

C .[0,1]

D .[1,+∞)

解析:选B

由条件知?????

1+1x

>0,x ≠0,

1-x 2

≥0.

即???

x <-1或x >0,

x ≠0,-1≤x ≤1.

则x ∈(0,1].

5.函数f (x )=x +3+log 2(6-x )的定义域是( )

A .(6,+∞)

B .(-3,6)

C .(-3,+∞)

D .[-3,6) 解析:选D 要使函数有意义应满足??

?

x +3≥0,

6-x >0,

解得-3≤x <6.

(2)抽象函数的定义域的求解

1.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3],

∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].

2.已知函数y =f (x )的定义域是[0,3],则函数g (x )=f 3x x -1的定义域是( )

A.??

????0,13∪? ????13,1 B .[0,1) C .[0,1)∪(1,3] D .[0,1)∪(1,9] 解析:选B 由??

?

0≤3x ≤3,x -1≠0

可得0≤x <1,选B.

3.若函数y =f (x )的定义域是[1,2 017],则函数g (x )=

f x +1

x -1

的定义域是( )

A .[0,2 016]

B .[0,1)∪(1,2 016]

C .(1,2 017]

D .[-1,1)∪(1,2 016] 解析:选B 令t =x +1,则由已知函数的定义域为[1,2 017],可知1≤t ≤2 017.要使函数f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函数f (x +1)的定义域为[0,2 016].所以使函数g (x )有意义的条件是??

?

0≤x ≤2 016,

x -1≠0,解得0≤x <1或1<x ≤2

016.故函数g (x )的定义域为[0,1)∪(1,2 016].

抽象函数的定义域求解:

若函数f (x )定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; 若函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.

四、函数解析式的求法 (1)换元法和配凑法

1.已知f ? ??

??

1x =x 2+5x ,则f (x )=________.

解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t . ∴f (x )=5x +1

x

2(x ≠0).

2.已知f ? ????

12x -1=2x -5,且f (a )=6,则a 等于( )

A .-74 B.74 C.43 D .-4

3

解析:选B 令t =1

2

x -1,则x =2t +2,

f(t)=2(2t +2)-5=4t -1,则4a -1=6,解得a =7

4.

3、已知f ?

?

???x +1x =x 2+1x 2,求f (x )的解析式;

解:(1)(配凑法)由于f ? ?

???x +1x =x 2+1x 2=? ????x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,

故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. 4、已知f ? ??

??

2x +1=lg x ,求f (x )的解析式;

解:(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2

t -1,

又x >0,所以t >1,故f (x )的解析式是f (x )=lg

2

x -1

,x >1. 5.已知f (x +1)=x +2x ,求f (x )的解析式.

解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有

f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1. 法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 6.已知f (x )满足f ? ????3x -1=l

g x ,则f ? ????

-710=________.

解析:令3

x -1=-710,得x =10,∴f ? ??

??

-710=lg10=1.

(2)待定系数法

1.(2017·黄山质检)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1 D .x +1或-x -1 解析:选A f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2, 可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,

∴k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1.故选A.

2、已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); 解:设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2

+(2a +b )x +a +b =ax 2

+(b +1)x +1,所以??

?

2a +b =b +1,

a +

b =1,

解得a =b =1

2

.

所以f (x )=12x 2+1

2

x ,x ∈R.

3.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.

解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,

∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.

(3)解方程组法

1、已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ① ×2-②,得,3f (x )=2

x +1

-2-x

. 即f (x )=2x +1-2-x

3

.

∴f (x )的解析式是f (x )=2x +1-2-x

3.

五、分段函数

角度一:分段函数的函数求值问题

1.(2017·西安质检)已知函数f (x )=???

log 2x ,x >0,

3x

+1,x ≤0,

则f ? ??

??

f ? ????14的值是________.

解析:由题意可得f ? ????14=log 214=-2, ∴f ? ????

f ? ????14=f (-2)=3-2+1=109.

2.(2017·长沙四校联考)f (x )=???

? ??

??

13x ,x ≤0,

log 3

x ,x >0,

则f ? ??

??

f ? ????19=( )

A .-2

B .-3

C .9

D .-9

解析:选C ∵f ? ????19=log 319=-2, ∴f ? ????f ? ????19=f (-2)=? ??

??

13-2=9.故选C.

3.(2016·云南一检)已知函数f (x )的定义域为实数集R ,?x ∈R ,f (x -90)=??

?

lg x ,x >0,

-x ,x ≤0,

则f (10)-f (-100)的值为________.

解析:∵f (10)=f (100-90)=lg 100=2,

f (-100)=f (-10-90)=-(-10)=10, ∴f (10)-f (-100)=2-10=-8.

4.设函数f (x )=???

1x

, x >1,

-x -2,x ≤1,

则f (f (2))=______,函数f (x )的值域是______.

解析:f (2)=12,则f (f (2))=f ? ??

??

12=-52.

当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), ∴f (x )∈[-3,+∞). 答案:-5

2

[-3,+∞

5.已知函数f (x )=???

a -1x +1,x ≤1,

a x -1

,x >1,

若f (1)=1

2

,则f (3)=________.

解析:由f (1)=12,可得a =12, 所以f (3)=? ????122=1

4.

1.已知f (x )=?????

x 1

2

,x ∈[0,+∞,

|sin x |,x ∈? ??

??

-π2,0,若f (a )=1

2

,则a =________.

解析:若a ≥0,由f (a )=12得,a 1

2

=12,解得a =14

若a <0,则|sin a |=12,a ∈? ????

-π2,0,解得a =-π6.

综上可知,a =14或-π

6.

2.设函数f (x )=???

??

x ,x ≥0,

-x ,x <0,

若f (a )+f (-1)=2,则a =________.

解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±1

3.(2017·唐山统考)已知函数f (x )=??

?

2x

-2,x ≤0,

-log 3x ,x >0,

且f (a )=-2,则f (7-a )=

( ) A .-log 37 B .-34 C .-54 D .-7

4

解析:当a ≤0时,2a -2=-2无解;

当a >0时,由-log 3a =-2,解得a =9, 所以f (7-a )=f (-2)=2-2-2=-7

4

.

4.(2015·山东高考)设函数f (x )=???

3x -1,x <1,

2x

, x ≥1,

则满足f (f (a ))=2f (a )的a 的取

值范围是( ) A.??????23,1 B .[0,1] C.????

??

23,+∞ D .[1,+∞)

解析:由f (f (a ))=2f (a )得,f (a )≥1.

当a <1时,有3a -1≥1,∴a ≥23,∴2

3≤a <1.

当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥2

3,故选C

已知函数f (x )=???

x 2

+2ax ,x ≥2,

2x

+1,x <2,

若f (f (1))>3a 2,则a 的取值范围是________.

解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,

若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1

对称问题练习

1.已知实数a ≠0,函数f (x )=??

?

2x +a ,x <1,

-x -2a ,x ≥1,

若f (1-a )=f (1+a ),则a 的值为( )

A .-32

B .-34

C .-32或-34 D.32或-3

4

解析:当a >0时,1-a <1,1+a >1.

由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-3

2,不合题意;

当a <0时,1-a >1,1+a <1,

由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-3

4,

所以a 的值为-3

4

,故选B.

2.f (x )满足对任意x ∈R 都有f ? ????12+x +f ? ????12-x =2成立,则f ? ????18+f ? ????28+…+f ? ??

??

78=______.

解析:由f ? ????12+x +f ? ??

??

12-x =2,

得f ? ????18+f ? ????78=2, f ? ????28+f ? ????68=2, f ? ????38+f ? ??

??

58=2,

又f ? ????48=12??????f ? ????48+f ? ????48=12×2=1, ∴f ? ????18+f ? ????28+…+f ? ??

??

78=2×3+1=7.

3.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =

g (x )的解析式为________.

解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则??

?

x ′=4-x ,

y ′=y .

又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x .

课后练习题

1.已知具有性质:f ? ??

??

1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:

①y =x -1x ;②y =x +1

x ;③y =?????

x ,0

x

,x >1.其中满足“倒负”变换的函数是( )

A .①②

B .①③

C .②③

D .① 解析:对于①,f (x )=x -1

x ,f ? ????1x =1

x

-x =-f (x ),满足;

对于②,f ? ????1x =1

x

+x =f (x ),不满足;

对于③,f ? ??

??

1x =?????

1

x ,0<1

x <1,

0,1x =1,-x ,1x

>1,即f ? ??

??

1x =?????

1x ,x >1,0,x =1,-x ,0

故f ? ??

??

1x =-f (x )

满足. 综上可知,满足“倒负”变换的函数是①③.

2.如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =m x

的图象的两个交点,直线AB 与y 轴交于点C .

(1)求反比例函数和一次函数的解析式. (2)求△AOC 的面积.

解:(1)因为B (1,4)在反比例函数y =m x

上,所以m =4,

又因为A (n ,-2)在反比例函数y =m x =4

x

的图象上,所以n =-2,

又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点, 联立方程组??

?

-2k +b =-2,

k +b =4,

解得??

?

k =2,b =2.

所以y =4

x

,y =2x +2.

(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =1

2

×2×2=2.

函数的定义域和值域

函数的定义域、值域 一、知识回顾 第一部分:函数的定义域 1.函数的概念: 设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域. 如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或 a x y =,所有的函数值所构成的集合{} A x x f y y ∈=),(叫做这个函数的值域. 2.定义域的理解: 使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <. 满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,. 满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作 (][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括 时用空心点表示. 4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集. 5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零. (4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数定义域和值域

1.函数的定义、定义域、值域 2.两个函数相等的条件 (1)定义域相同. (2)对应关系完全一致. 知识点二函数的表示及分段函数 1.函数的表示方法 函数的三种表示法:解析法、图象法、列表法. 2.分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 知识梳理 1.函数与映射的概念 函数映射 两个集合A,B 设A,B是两个 非空数集 设A,B是两个 非空集合 对应关系f:A→B 如果按照某种确定的对应关 系f,使对于集合A中的任意 一个数x,在集合B中都有唯 如果按某一个确定的对应关 系f,使对于集合A中的任意 一个元素x,在集合B中都有

求()x f 与()x g 的解析式。 1.(绍兴质检)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.[-3,1] B.(-3,1) C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞) 2.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1 D.x +1或-x -1 3.(湖州一模)f (x )=???? ????13x (x ≤0),log 3x (x >0),则f ???? ?? f ? ????19=( ) A.-2 B.-3 C.9 D.-9 4.(全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2x D.y = 1x 5.(铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 2 0,则f (x )的解析式可以是( ) A.f (x )=x -1x B.f (x )=e x -1 C.f (x )=x +4 x D.f (x )=tan x 6.下列图象中,不可能成为函数y =f (x )的图象的是( )

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? ? 一、?求函数的解析式? (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法

例1.已知 :23)1(2 +-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 65)(6)1(5)1(22+-=++-+=x x x f ,x x 所以 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(2 2-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。 解:设x t 11+=,则1≠t ,1 1-=t x ,代入已知得 t t t t t f 21)1(1111 )(222-=--=-??? ??-= ∴ )1(2)(2≠-=x x x x f 注意:1、使用换元法要注意t 的范围限制,这是一个极易忽略的地方。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

函数的定义域和值域课件

函数的定义域和值域 学习目标: 1.了解构成函数的要素有定义域、对应法则和值域,会求一些简单函数的值域; 2.通过本节的学习,使学生养成用运动、发展、变化的观点认识世界的思维习惯; 活动方案 活动一(目标:理解函数定义域的概念,复习巩固上一节课的定义域的相关内容,并能 熟练求出一个给定的函数的定义域。) 题型一:简单函数的定义域 巩固检测1.求下列函数定义域: (1)()f x =; (2)21()1f x x = -; 小结:求简单函数的定义域时常考虑哪些因素? 题型二:函数由两个及以上数学式子的和、差、积、商的形式构成时的定义域 求下列函数的定义域: 巩固检测2.(1)y = (2)1()f x x = 小结:此种情况如何求定义域? 题型三:复合函数的定义域 例1.(P24.5)若2 ()f x x x =- (1)此函数的输入值是谁? (2)求(0),(1),(1)f f f x +; (3)函数(1)y f x =+的输入值又是谁?(2)y f x =呢? 例2.求下列函数的定义域: (1)若()y f x =的定义域为]1,4?-?,则2()y f x =的定义域是 。 (2)若函数(1)y f x =+的定义域是]2,3?-?,则(21)y f x =-的定义域 是 。 活动二(目标:理解函数值域的概念,并能熟练准确地求出一个给定的函数的值域。) 阅读课本P23中间关于值域的内容,思考以下问题: (1)函数的值域是怎样定义的? (2)函数的值域与定义中集B 有怎样的包含关系? (3)函数的定义域、值域、对应法则称为函数的三要素,这三者之间的关系怎 样?

函数的定义域与值域

函 数 一、函数定义 1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 答案:B 二、函数求值 1.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1, ∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0. 2.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2 解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2, 3.函数f (x ),g (x )分别由下表给出. 则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1. 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 2

三、函数定义域 (1)一般函数的定义域求解 1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1] C .(-∞,0)∪(1,+∞) D .(-∞,0]∪[1,+∞) 解析:由题意知,x 2-x >0,即x <0或x >1.则函数定义域为(-∞,0)∪(1,+∞),选C. 2.(2017·贵阳监测)函数y =1-x 2 2x 2-3x -2 的定义域为( ) A .(-∞,1] B .[-1,1] C .[1,2)∪(2,+∞) D.??????-1,-12∪? ???? -12,1 解析:选D 由函数y =1-x 2 2x 2-3x -2得?? ? 1-x 2 ≥0,2x 2-3x -2≠0, 解得? ?? -1≤x ≤1,x ≠2且x ≠-1 2, 即-1≤x ≤1且x ≠-12, 所以所求函数的定义域为??????-1,-12∪ ? ???? -12,1,故选D. 3.函数f (x )= 1-|x -1| a x -1 (a >0且a ≠1)的定义域为____________________. 解析:由??? 1-|x -1|≥0, a x -1≠0 ??? ? 0≤x ≤2,x ≠0 ?0<x ≤2, 故所求函数的定义域为(0,2]. 4.函数f (x )=ln ? ? ???1+1x +1-x 2的定义域为( ) A .(-1,1] B .(0,1] C .[0,1] D .[1,+∞) 解析:选B 由条件知????? 1+1x >0,x ≠0, 1-x 2 ≥0. 即??? x <-1或x >0, x ≠0,-1≤x ≤1. 则x ∈(0,1]. 5.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞) D .[-3,6) 解析:选D 要使函数有意义应满足?? ? x +3≥0, 6-x >0, 解得-3≤x <6.

函数的定义域及值域

函数的定义域及值域 题型一 求函数的定义域 1. 已函数f(x)=x x x -+0 )1(的定义域 2.函数 )3(log 1 3x y -= 的定义域为 3.函数x x y cos lg 252+-=的定义域为 __ 2.抽象函数定义域 1. 函数f(x 2)的定义域为[-1,1],则函数f(x)的定义域 2.设函数 的定义域是[0,1],求的定义域. 3.已知f(x 2)的定义域为[1,2],则y=f()(log 2 1x 的定义域为_______. 3.定义域逆用 1. 已知函数y = 的定义域为R.求实数m 的取值范围; 2. 设f (x )=lg(x 2 -2x +a )的定义域为R ,求a 的取值范围; 3.设函数y = 的定义域为R ,求实数a 的取值范围.

题型二 求函数的值域 1.求下列函数的值域: (1)y = 2x -1 x ∈[1,3] (2) y = -3x +1 x ∈[-1,2] (3)函数f(x)= ax + b x ∈[-1,1] 最大值为2,最小值为-4,求a,b 的值 2. 求下列函数的值域: ⑴y =x 2-5x +6 x ∈[-2,1] ⑵y =x 2-5x +6,x ∈[1,3] ⑶y =x 2-5x +6,x ∈[2,4] (4)y =x 2-5x +6,x ∈[3,5] (5) f(x)= x 2-2ax -2 x ∈[-2,4] 3. x>0 4.函数y =x +x 21-的值域 5.若 求函数的取值范围. 6. 对于任意实数,设函数 是与中较小者,求的最大值 7.已知函数 的值域是,求的值.

高一数学第五讲--函数的定义域与值域

第五讲 函数的定义域与值域 一、知识归纳: (一)函数的定义域与值域的定义: 函数y=f(x)中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。函数值的集合{f(x)│x ∈A}叫做函数的值域。 (二)求函数的定义域一般有3类问题: 1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0; ③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于0 [ 2、复合函数的定义域问题主要依据复合函数的定义,其包含两类: ①已知f[g(x)]的定义域为x ∈(a,b )求f(x)的定义域,方法是:利用a0且a,b≠1,k ∈R)

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的 集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

函数定义域、值域、解析式习题及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- (4) f(x)= 2 32--x x ; (5) ; (6)f(x)=1+x -x x -2; (7 )0y = (8 )223 y x x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、f(x)的定义域为[0,1],求f(x +1)的定义域。 5、已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ (5 )y x =(6)求函数y =-x 2 +4x -1 ,x ∈[-1,3) 的值域

三、求函数的解析式 1、已知函数 2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且 2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法) 5、已知函数f(x)满足1 ()2()f x f x x -=,求函数f(x)的解析式。(消去法) 6、已知()1f x x =+,求函数f(x)的解析式。 7、已知 2 2 11()11x x f x x --=++,求函数f(x)的解析式。 8、已知2 211()f x x x x +=+,求函数f(x)的解析式。 9、已知()2()1f x f x x +-=-,求函数f(x)的解析式。 10、求下列函数的单调区间: ⑴ 2 23y x x =++ 11、函数236x y x -= +的递减区间是

函数定义域值域习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941 x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-

⑼ y = ⑽ 4y = ⑾y x =-6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数 ()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数, 且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数 ()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

函数的定义域和值域

1 函数的定义域和值域 要点梳理 1.常见基本初等函数的定义域 (1)函数y =a x (a >0且a ≠1)、y =sin x 、y =cos x 的定义域是R (2) y =log a x 的定义域是{x |x >0}或(0,+∞),y =tan x 的定义域是{x |x ≠kπ+π2 ,k ∈Z }. 求定义域方法:①分式中的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0;④对数式中的真数大于0,底数大于0且不等于1. 2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为??????yy ≥4ac -b 24a ;当a <0时,值域为? ?????yy ≤4ac -b 24a .(3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)的值域是R .(6)y =sin x ,y =cos x 的值域是[-1,1].(7)y =tan x 的值域是R . 求值域方法:(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常 数法:形如y =cx +d ax +b (a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法,(7)导数法,(8)利用基本不等式 典型例题 求函数的定义域 例1、函数f (x )=1-2x +1x +3 的定义域为________. 例2、函数f (x )=x 2 2-x -lg(x -1)的定义域是________. 例3、函数f (x )=2x +12x 2-x -1 的定义域是________. 求函数的值域 例4、求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2; (3)y =x +4x (x <0); (4)f (x )=x -1-2x (5)y =log 3x +log x 3-1(x >1). 例5、若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围

函数的图像定义域与值域

知识归纳和梳理: 一、函数图像的变换法则 由函数y f ( x )的图像变换到以下函数图像的法则 1) y f ( x)法则:关于y 轴对称 2) y f (x)法则:关于x 轴对称 3) y f ( x) 法则:关于原点对称 4) y(x) 法则:右边不变,左侧去掉,左边和右边对称 5) y f(x) 法则:上面不变,下面的图像对折上去 6) y(x a)(a0) 法则:左右 7) y(x) b(b0)法则:上下 二、函数的定义域求法 一般函数的定义域求法: 1. y n f (x) (n 为偶数) 则f(x) 0 11 2. y 则f(x) 0 特别y (n为偶数)则f (x) 0 f(x) n f (x) 抽象函数的定义域求法: 1. 若y f (x)的定义域为D ,则y f (g ( x))必须满足g(x) D . 2.若y f (g ( x))的定义域为D,则y f (x)的定义域即为y g(x)在D内的值域。 三、函数的值域求法(初级) : 1、利用基本初等函数的值域; 2、配方法(二次函数或可转化为二次函数的函数); 3、部分分式法、判别式法(分式函数) 4、换元法(无理函数) 第六讲函数的图像、定义域与值域

1 x 2 3x 4 典型例题】: 例 1. 画出下列函数的图像 4) y x 2 2x 3 5) y x 1 2x 2 例 2. 求下列函数的定义域 1) y 1 x x 3 1) y 1 x2 2) y 2x 6 x1 3) y x 2 2 x 3 经典练习 1: 画出下列函数的图像 ( 1) y 1 x1 2) y x x1 3) y 2x 3 x 1 2) f (x)

求函数的定义域与值域的常用方法

函数的定义域与值域的常用方法 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等; 4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域; 5、分段函数的定义域是各个区间的并集; 6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明; 7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域 1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示; 2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”; 3、分段函数的值域是各个区间上值域的并集; 4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述; 5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集; 6、求函数值域的方法十分丰富,应注意总结; (四)求函数的最值 1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N; 2、求函数的最值问题可以化归为求函数的值域问题; 3、闭区间的连续函数必有最值。

函数的概念定义域和值域

函数的概念定义域和值域

函数的概念、表示、定义域和值域 一、复习回顾 1.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ?且S B φ ≠的集合S 为 (A )57 (B )56 (C )49 (D )8 2.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U 等 于 (A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 3.已知全集U=R ,集合{}2 1 P x x =≤,那么U C P = A. (),1-∞- B. ()1,+∞ C. ()1,1- D. ()(),11,-∞-+∞ 4. 若a R ∈,则“2a =”是“(1)(2)0a a --=”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件 5.若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记

()b a b a b a --+=22,?,那么()0,=b a ?是a 与b 互补 A. 必要而不充分条件 B . 充分而不必要条件 C. 充要条件 D. 既不充分也不必要的条件 6.设{1,2}M =,2 {}N a =,则“1a =”是“N M ?”则 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 7.命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是( ). A.若()f x 偶函数,则()f x -是偶函数 B.若()f x 不是奇函数,则()f x -不是奇函数 C.若()f x -是奇函数,则()f x 是奇函数 D.若()f x -不是奇函数,则()f x 不是奇函数 二、知识梳理 1.函数的概念 ⑴定义:设A ,B 是_______,如果按照某种确定的对应关系f ,使对于集

相关文档