文档视界 最新最全的文档下载
当前位置:文档视界 › 先进复合材料在航空航天的应用综述 (1)

先进复合材料在航空航天的应用综述 (1)

先进复合材料在航空航天的应用综述 (1)
先进复合材料在航空航天的应用综述 (1)

第31卷第2 期高科技纤维与应用Vol.31 No.2 2006 年 4 月Hi-Tech Fiber & Application Apr. 2006 先进复合材料在航空航天的应用综述

何东晓

(哈尔滨玻璃钢研究院,哈尔滨150036)

摘要:讨论了先进复合材料在航天飞机、航空发动机、机用雷达天线罩、航天隔热材料、航天卫星和宇航器、固体火箭发动机壳体、战略导弹等方面的应用情况。结合航空航天应用阐明了先进复合材料未来的发展趋势,重点是提高耐热性,抗冲击韧性和发展低成本制造技术。

关键词:先进复合材料;航空;航天;应用;发展趋势

中图分类号:V258文献标识码:A文章编号:1007-9815(2006)02-0009-03

Review of the Application of Advanced Composite

in Aviation and Aerospace

HE Dong-xiao

(Harbin FRP Institute,Harbin150036China)

Abstract: In this paper, the application of advanced composite in space shuttle, aviation engine, radar antenna mask, aviation hot insulation material, space satellite solid rocket engine and strategic missile are discussed. The development trends of advanced composite in aviation and aerospace are introduced, the key point is improving the thermal stability, impact resistance and developing low-cost manufacturing technique.

Key words: advanced composite;aviation;aerospace;application;development trends

前言到航空航天等军事领域中,是制造飞机、火箭、

航天飞行器等军事武器的理想材料。

近年来,随着科学技术的不断进步,材料技

术得到飞速发展,其中尤以先进复合材料的发展 1 国内外应用概况

最为突出。

先进复合材料(Advanced Composites ACM) 1.1 在航空飞机上的应用

专指可用于加工主承力结构和次承力结构、其刚飞机用ACM经过近40 a的发展,已经从最度和强度性能相当于或超过铝合金的复合材料。初的非承力构件发展到应用于次承力和主承力构目前主要指有较高强度和模量的硼纤维、碳纤件,可获得减轻质量20 %~30 %的显著效果。目

维、芳纶等增强的复合材料。ACM在航空航天前已进入成熟应用期,对提高飞机战术技术水平的

等军事上的应用价值特别大。比如,军用飞机和贡献、可靠性、耐久性和维护性已无可置疑,其设

卫星,要又轻又结实;军用舰船,要又耐高压又计、制造和使用经验已日趋丰富。

耐腐蚀。这些苛刻的要求,只有借助新材料技术迄今为止,战斗机使用的ACM占所用材料

才能解决。ACM具有质量轻,较高的比强度、总量的30 %左右,新一代战斗机将达到40 %;

比模量、较好的延展性、抗腐蚀、导热、隔热、直升机和小型飞机ACM用量将达到70 %~隔音、减振、耐高(低)温,独特的耐烧蚀性、80 % 左右,甚至出现全 ACM 飞机。“科曼奇”透电磁波,吸波隐蔽性、材料性能的可设计性、直升机的机身有70 %是由ACM制成的,但仍计制备的灵活性和易加工性等特点,被大量地应用划通过减轻机身前下部质量,以及将ACM扩大

收稿日期:2006-03-26;修回日期:2006-04-05

作者简介:何东晓(1964-),女,黑龙江牡丹江人,高级工程师,主要从事复合材料的应用研究,(电话)0451- 55637339(电子信箱)hbyjhchdx@https://www.docsj.com/doc/308594887.html,。

- 10 -高科技纤维与应用第31卷

到配件和轴承中,以使再减轻15 %质量。“阿帕奇”为了减轻质量,将采用ACM代替金属机身。使用ACM,未来的联合运输旋转翼(JTR)飞机的成本将减少 6 %,航程增加55 %,或者载荷增加36 %。以典型的第四代战斗机F/A-22 为例,ACM 用量为24.2 %,其中热固性复合材料占23.8 %,热塑性复合材料占0.4 %左右。热固性复合材料的70 %左右为双马来酰亚胺树脂(BMI,简称双马)基复合材料,生产200多种复杂零件,其它主要为环氧树脂基复合材料,此外还有氰酸酯和热塑性树脂基复合材料等。主要应用部位为机翼、中机身蒙皮和隔框、尾翼等。世界各国先进战斗机ACM用量见表1。

近10 a来,国内飞机上也较多的使用了ACM。例如由国内 3 家科研单位合作开发研制的某歼击机ACM垂尾壁板,比原铝合金结构轻21kg,减质量30 %。北京航空制造工程研究所研制并生产的QY8911/HT3双马来酰亚胺单向碳纤维预浸料及其ACM已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。由北京航空材料研究院研制的PEEK/AS4C热塑性树脂单向碳纤维预浸料及其ACM,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性能,适合制造飞机主承力构件,可在120 ℃下长期工作,已用于飞机起落架舱护板前蒙皮。

1.2在航空发动机上的应用

美国通用电器飞机发动机事业集团公司(GE -AEBG)和惠普公司,以及其他一些二次承包公司,都在用ACM取代金属制造飞机发动机零部件,包括发动机舱系统的许多部位推力反向器、表1世界各国先进战斗机ACM用量

% 国家名称飞机代号ACM 用量

美国F/A-22 24

美国F-35 36 德国、英国、西班牙和意大利EF2000 30~40

瑞典JAS39 30

俄罗斯M-1.44 30 俄罗斯S-37 21 法国RAFALE 24

风扇罩、风扇出风道导流片等都用 ACM 制造。如发动机进口气罩的外壳是由美国聚合物公司的碳纤维环氧树脂预混料(E707A )叠铺而成,它具有耐 177 ℃高温的热氧化稳定性,壳表面光滑似镜面,有利于形成层流。又如 FW4000 型发动机有 80 个149℃ 的高温空气喷口导流片,也是碳纤维环氧预浸料制造的。

在 316 ℃ 这一极限温度下的环境中,ACM

不仅性能优于金属,而且经济效益高。据波音公司估算,喷气客机质量每减轻 1 kg ,飞机在整个使用期限内即可节省 2 200 美元。 1.3 在机用雷达天线罩上的应用

机用雷达罩是一种罩在雷达天线外的壳形结构,其使用性能要求透微波性能良好,能承受空气动力载荷作用且保持规定的气动外形,便于拆装维护,能在严酷的飞行条件下正常工作,可抵抗恶劣环境引起的侵蚀。ACM 具有优良的透雷达波性能、足够的力学性能和简便的成型工艺,使它成为理想的雷达罩材料。目前制作雷达罩材料较多采用的是环氧树脂和 E 玻璃纤维。玻璃纤维品种中还有空心的 S-2 纤维,其密度为 1.8 g/cm 3

,制成的复合材料抗拉强度为 1.5 GPa 。还有一种低介电 D -玻璃纤维,是一种硅硼纤维(72 %~75 % 的SiO 2,23 % 的 B 2O 3),主要用于制造雷达罩,目的是改善电性能和减少电气厚度以降低实心罩的质量。随着对雷达罩性能要求的不断提高,D 玻璃纤维、石英玻璃纤维等增强材料及改性双马来亚胺树脂、DAIP 树脂、氰酸脂等具有更好介质性能的 ACM 也投入了使用。

石英纤维作为制作雷达罩材料在航天飞机、隐

身飞机及导弹上已应用了数 10 a ,其电性能优异,热膨胀系数为 0,硬度高,用它代替以往的玻璃纤维,可以获得高性能的雷达罩。这种雷达罩的探测范围可以增大到 224 km ,寿命更长,维修性能更好,同时可获得较明显的减质量效果。与相同的 E-玻璃雷达罩相比,它可减质量 6 %~

20 %。

2 在航天工业方面的应用

航天技术对结构材料不仅提出减质量要求,还要求结构材料具有高比模量和高比强度,最好

第2期何东晓:先进复合材料在航空航天的应用综述11

还兼具有一些特殊的功能,如防热、隔热、耐高温及耐湿热等特性,ACM具有上述优点及性能和功能的可设计性,被大量地应用于航天工业上。

2.1在防热方面的应用

导弹、卫星及其它航天器再入大气层的防热,是航天技术必须解决的关键问题之一。由于经过高空飞行以超高速进入稠密的大气层时,飞行器周围空气受到强烈压缩,使空气温度和压力急剧升高,再入体受到严重的气动力和气动热作用,如不采取有效防热措施,将像流星一样被烧毁。早在1950年代,美国就采用石棉酚醛作为烧蚀防热材料,如“丘比特”中程导弹,苏联的“东方号”飞船也用该种材料。此后广泛地使用玻璃/酚醛、高硅氧/酚醛,如美国的“ MK-11A” 弹头和“水星号”飞船,苏联的“联盟号”飞船,法国第一代导弹的弹头等。近期采用了碳基ACM (碳/ 酚醛和碳/ 碳),如美国的“MK-12A”弹头和法国的第二代导弹弹头已应用。另外国内外均将高强度玻纤增强树脂基复合材料用于多管远程火箭弹和空空导弹的结构材料和耐烧蚀-隔热材料,使金属喷管达到了塑料化,耐烧蚀-隔热-结构多功能化,实现了喷管收敛段、扩张段和尾翼架多部件一体化,大大减轻了武器质量,提高了战术性能。

2.2在卫星和宇航器上的应用

卫星结构的轻型化对卫星功能及运载火箭的要求至关重要,所以对卫星结构的质量要求很严。国际通讯卫星VA中心推力筒用碳纤维ACM取代铝后减质量23 kg(约占30 %),可使有效载荷舱增加450条电话线路,仅此一项盈利就接近卫星的发射费用。美、欧卫星结构质量不到总质量的10 %,其原因就是广泛使用了ACM。目前卫星的微波通讯系统、能源系统(太阳能电池基板、框架)各种支撑结构件等已基本上做到

ACM 化。

我国在“风云二号气象卫星”及“神舟”系列飞船上均采用了碳/环氧ACM做主承力构件,大大减轻了整星的质量,降低了发射成本。

2.3固体火箭发动机壳体

国外在1950年代末就开始采用纤维缠绕成型的玻璃钢壳体取代钢壳,如美国的潜地导弹“北极星A-3”的一、二级结构质量,分别比“ A-1”

的钢质发动机壳体减轻了 50 %~60 %。后来“三叉戟 1”、MX 的三级发动机壳体全部采用芳纶/环氧 ACM ,质量又比玻璃钢的同尺寸壳体减轻 50 %。目前碳 ACM 发动机壳体以其优异的特性得到了较好的应用与发展,如其先后成功地用于飞马座,德尔塔Ⅱ-7925 运载火箭,三叉戟Ⅱ(D5)、侏儒导弹等型号。

我国 ACM 固体火箭发动机壳体研究制造技术起步较晚,与国外存在一定差距,但经过近40 a 的发展,从无到有取得了很大进步。玻璃纤维/环氧、芳纶/环氧 ACM 固体火箭发动机壳体已经成功地应用到航天运载上,现正在进行高性能

的碳 ACM 发动机壳体研制。

2.4 战略导弹的应用

美国已采用 JFRP 作弹头结构壳体,仪器舱、级间段等 50 多个分系统部件。据洛克希德导弹与宇航公司称,用碳纤维/环氧 ACM 制造的结构取代铝结构,可使结构减轻 40 %。另外 ACM 导弹发射筒在战略和战术型号上被国外广泛采用,如美国的战略导弹 MX 导弹,俄罗斯的战略导弹“白杨 M ”导弹均采用 ACM 发射筒。由于 ACM 发射筒相对于金属材料而言,结构质量大幅度减轻,使战略导弹的机动灵活成为可能。在战术领域,ACM 导弹发射筒的应用更加普遍。目前我国在某些导弹型号上也采用了 ACM 仪器舱和发射筒,并取得了良好的应用效果。

3 ACM 未来发展方向

3.1 提高耐热性

以发动机为例,一般来说,材料耐高温性能越好,用它做出来的发动机水平就越高。据理论计算和试验发现,发动机的工作温度每提高 100 ℃,它的推力就可提高 15 % 左右。可见提高发动机材料耐高温性能的重要性,而 ACM 的高温性能主要由树脂基体决定,因此耐高温树脂基体的研究是今后 ACM 应用发展的一个重要内容。

3.2 低成本ACM 制造技术

对航天航空用高性能 ACM ,过去重视性能,较少考虑成本。随着冷战结束,各国国防开

支减少,迫使制造商和使用者考虑降低成本,

(下转 19 页)

第 2 期 张艳华, 黄玉东, 浦丽莉, 等:芳纶-RFL -轮胎橡胶体系性能增强研究

- 19 -

[43] SOLOMON T S. Systems for Tire Cord-Rubber

Adhesion[J]. Rubber Chemistry and Technology, 1985, 58(3): 561-576.

[44] HARTZ R E, ADAMS H T. Effects of Atmosphere

Pollutants at High Temperature on the Adhesion of RFL-Coated Tire Cords to Rubber[J]. Journal of Applied Polymer Science, 1977, 21: 525-533.

[45] RIJPKEMA B, WEENING W E, 徐晓成. RFL 粘合

剂的机械性能及对橡胶与帘线复合材料的影响[J]. 橡

胶译丛, 1996, (1): 35-42.

[46] STEPHEN FULTON W. 轮胎帘线的附着力-界面形态

学及钴的影响[J]. Tire Technology International,

2004.

[47] UMNERS A J M, MARWEDE G, KELBCH S A.

Neodymium BR-the Environmentally Friendly Future for Polymer Blends[J]. Tire Technology International, 1997, 102-108.

[48] OH T S, LEE Y J. Manufacture of Kevlar-containing nitrile butadiene rubber using silane coupling agent[J]. Synthetic Elastomers and Natural

(上接 11 页)

ACM 低成本制造技术是当今世界 ACM 技术发展的核心问题。它包括以下几个主要方面:降低原材料成本,尤其是高性能碳纤维成本,世界呼声很高;开发低温固化、高温使用的树脂和预浸料,节约能源;开发长寿命的预浸料;使用混杂纤维 ACM ;通过工艺创新如电子束固化工艺等降低制造成本。

3.3 提高抗冲击韧性

提高航空用结构 ACM 的抗冲击韧性一直是一个重要的研究课题。ACM 的抗冲击性能主要依赖于树脂的交联密度。可通过改变树脂和固化剂结构,增加柔性链段,或利用高韧性、耐高温的橡胶或热塑性树脂增韧,提高抗冲击性能。这样既不牺牲预浸料的工艺性和 ACM 的耐热性,

又赋予材料类似于热塑性树脂的抗冲击性能。

总之,ACM 形成产业并首先应用的领域就

Rubber, 2000, 15(1): 115-126.

[49] AMESJ A VYSOKY. Adhesion Enhancers

for Rubber/Reinforcement Bonding[J].Tire Technology International, 1997, 80-86.

[50] ARKADIY G SHVARTS. Chemical Modification of

Synthetic Rubber Vulcanizates[J]. Tire Technology International, 1996, 89-94. [51]

BTUN JELSMA, AKZO NOBEL,

NETHERLANDS. Designing New Technology With Aramid Fibre[J]. Tire Technology International, 1997, 59-60.

[52]

BTUN JELSMa, AKZO NOBEL,

NETHERLANDS. Exploitation of the Potential of Aramid[J]. Tire Technology International, 1996, 146-148.

[53] 刘继涛, 黄莉茜, 张庆, 等. 芳纶帘子线的浸胶工艺

对其与橡胶粘合性能的影响[J]. 苏州丝绸工学院学报, 2000, 20(1): 51-55.

[54] 帅长庚, 何 琳, 吕志强. 浸胶芳纶帘线的力学性能

[J]. 高分子材料科学与工程, 2005, 21(1): 229-235.

是航空航天工业,航空航天工业的发展和需求一直对 ACM 的研究起着积极的促进作用,同时 ACM 的飞速发展又为航空航天的新型结构设计和制造提供了更大的发展空间。

参考文献:

[1] 杨胜利. 军事高技术概述[DB/OL]. (2005-09-06) [2006-01-12]. https://www.docsj.com/doc/308594887.html,. [2] 高永忠. 纤维增强树脂复合材料在武器装备上的应用

[J/OL]. 应用导航,应用指南, (2006-01-24)[2006-01-24]. https://www.docsj.com/doc/308594887.html,. [3] 航空航天用先进树脂基复合材料[J/OL]. 塑料物料技

术 , (2005-09-12)[2006-01-12]. http://www.ipionline. https://www.docsj.com/doc/308594887.html,.

[4] 翁祖祺, 陈博, 张长发. 中国玻璃钢工业大全[M]. 北京:

国防工业出版社, 1992.

诚邀在本刊广告敬请为本刊撰稿

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

航空复合材料项目立项申请报告 (1)

航空复合材料项目立项申请报告 规划设计/投资方案/产业运营

航空复合材料项目立项申请报告 碳纤复合材料最大的优点是轻质、高强,航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件,同铝合金相比,减重效果可达20-40%,体现出巨大的节能效益。 该航空复合材料项目计划总投资10580.16万元,其中:固定资产投资7957.92万元,占项目总投资的75.22%;流动资金2622.24万元,占项目总投资的24.78%。 达产年营业收入22100.00万元,总成本费用17586.14万元,税金及附加196.99万元,利润总额4513.86万元,利税总额5333.45万元,税后净利润3385.39万元,达产年纳税总额1948.05万元;达产年投资利润率42.66%,投资利税率50.41%,投资回报率32.00%,全部投资回收期4.63年,提供就业职位418个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

航空复合材料项目立项申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

先进复合材料在航空航天领域的应用

龙源期刊网 https://www.docsj.com/doc/308594887.html, 先进复合材料在航空航天领域的应用 作者:周庆庆 来源:《科技风》2017年第17期 摘要:复合材料是在随着科技发展所衍生出的一种新型材料,尤其是先进复合材料目前 已经被广泛应用到了航空航天领域,并发挥着至关重要的作用价值。本文简要介绍了先进复合材料的特性,而后重点就先进复合材料在航空发动机、无人机等航空领域,以及导弹结构、运载火箭结构、卫星和宇航器结构等航天领域中的具体应用展开了深入的探究工作。 关键词:先进复合材料;航空航天;应用 伴随着当前科技水平的不断提高,尤其是航空航天领域的快速发展,材料的应用环境愈发恶劣,对于材料本身也提出了更为严苛的要求。新型材料的研发是为了更好的满足于高新技术发展的需求,其中复合材料是目前在材料科学领域中的一个主要发展方向,同时也是新材料发展最好的一个分支,随着复合材料的快速发展,其目前已经成为了与高分子材料金属材料、无机非金属材料所并列的四大材料体系之一。 一、复合材料的特性 先进复合材料有着十分明显的优势特性,具体可概括为结构整体化、经济效益最大化、可设计性以及功能多样性,现具体分析如下: (1)结构整体化。先进复合材料能够被加工为整体部件,也就是应用先进复合材料部件来取代金属部件。在一些较为特殊的轮廓及表层比较复杂的部件当中,利用金属制造往往可行性相对较差,而应用先进复合材料往往便可有效满足于实际的工作需求。 (2)经济效益最大化。将先进复合材料应用于航空航天领域内,可实现对产品数量的大幅度精减。因对复杂部件的连接往往无需采取焊接、铆接等方式,因而对于连接部件的需求量也便可以大大减少,进而使得材料的装配成本与时间也能够有效降低,从而实现经济效益的最大化。 (3)可设计性。应用纤维、树脂、复合结构等方式可得到多种性能、形状存在明显差异化的复合材料,选取出适当的材料及铺层次序便可加工出没有膨胀系数的复合材料,同时其尺寸稳定性也要明显优于一般的金属材料。 (4)功能多样性。随着先进复合材料材料的不断发展,其不断融合了许多优异的物理性能、化学性能、生物性能、力学性能等。如先进复合材料所具备的阻燃性能、吸波性能、防热性能、屏蔽性能、半导性能及超导性能,而且各类先进复合材料其本身的构成也不尽相同,在功能方面也会产生出一定的差异性,目前综合性及多功能性现已成为先进复合材料发展的一项主流趋势。

先进复合材料在航空航天的应用综述 (1)

第31卷第2 期高科技纤维与应用Vol.31 No.2 2006 年 4 月Hi-Tech Fiber & Application Apr. 2006 先进复合材料在航空航天的应用综述 何东晓 (哈尔滨玻璃钢研究院,哈尔滨150036) 摘要:讨论了先进复合材料在航天飞机、航空发动机、机用雷达天线罩、航天隔热材料、航天卫星和宇航器、固体火箭发动机壳体、战略导弹等方面的应用情况。结合航空航天应用阐明了先进复合材料未来的发展趋势,重点是提高耐热性,抗冲击韧性和发展低成本制造技术。 关键词:先进复合材料;航空;航天;应用;发展趋势 中图分类号:V258文献标识码:A文章编号:1007-9815(2006)02-0009-03 Review of the Application of Advanced Composite in Aviation and Aerospace HE Dong-xiao (Harbin FRP Institute,Harbin150036China) Abstract: In this paper, the application of advanced composite in space shuttle, aviation engine, radar antenna mask, aviation hot insulation material, space satellite solid rocket engine and strategic missile are discussed. The development trends of advanced composite in aviation and aerospace are introduced, the key point is improving the thermal stability, impact resistance and developing low-cost manufacturing technique. Key words: advanced composite;aviation;aerospace;application;development trends 前言到航空航天等军事领域中,是制造飞机、火箭、 航天飞行器等军事武器的理想材料。 近年来,随着科学技术的不断进步,材料技 术得到飞速发展,其中尤以先进复合材料的发展 1 国内外应用概况 最为突出。 先进复合材料(Advanced Composites ACM) 1.1 在航空飞机上的应用 专指可用于加工主承力结构和次承力结构、其刚飞机用ACM经过近40 a的发展,已经从最度和强度性能相当于或超过铝合金的复合材料。初的非承力构件发展到应用于次承力和主承力构目前主要指有较高强度和模量的硼纤维、碳纤件,可获得减轻质量20 %~30 %的显著效果。目 维、芳纶等增强的复合材料。ACM在航空航天前已进入成熟应用期,对提高飞机战术技术水平的 等军事上的应用价值特别大。比如,军用飞机和贡献、可靠性、耐久性和维护性已无可置疑,其设 卫星,要又轻又结实;军用舰船,要又耐高压又计、制造和使用经验已日趋丰富。 耐腐蚀。这些苛刻的要求,只有借助新材料技术迄今为止,战斗机使用的ACM占所用材料 才能解决。ACM具有质量轻,较高的比强度、总量的30 %左右,新一代战斗机将达到40 %; 比模量、较好的延展性、抗腐蚀、导热、隔热、直升机和小型飞机ACM用量将达到70 %~隔音、减振、耐高(低)温,独特的耐烧蚀性、80 % 左右,甚至出现全 ACM 飞机。“科曼奇”透电磁波,吸波隐蔽性、材料性能的可设计性、直升机的机身有70 %是由ACM制成的,但仍计制备的灵活性和易加工性等特点,被大量地应用划通过减轻机身前下部质量,以及将ACM扩大

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

航空航天复合材料设计要求比较

航空航天复合材料结构设计要求的比较 复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联与协同,从而获得原组分材料无法比拟的优越性能, 复合化是当代材料技术发展的重要趋势之一,而大量采用高性能复合材料是航空航天飞行器发展的重要方向。航空航天追求性能第一的特点,使其成为先进复合材料技术的率先实验和转化的战场,航空航天工业的发展和需求推动了先进复合材料的发展,而先进复合材料的发展和应用又促进了航空航天的进步。先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。将先进复合材料用于航空航天结构上可相应减重20%~30%,这是其他先进技术很难达到的效果。美国NASA的Langley 研究中心在航空航天用先进复合材料发展报告中指出,各种先进技术的应用可以使亚音速运输机获得51%的减重(相对于起飞重量)效益,其中,气动设计与优化技术减重4·6%,复合材料机翼机身和气动剪裁技术减重24·3%,发动机系统和热结构设计减重13.1%,先进导航与飞行控制系统减重9%,说明了先进复合材料的应用减重最明显。这不仅带来相当大的经济效益,而且可以增加装备的机动性,还可以提高其抗疲劳、耐腐蚀性能。 由于航天与航空的使用环境和应用范围存在区别,因而造成复合

材料在航空飞行器与航天飞行器上使用的设计要求也有很多不同之处。而且由于任务目标和使用环境差异,飞机结构的要求不能直接作为空间飞行器的结构设计要求。空间飞行器的飞行环境和承受的载荷很特殊,并且几乎没有可能再去检查和维修航天器的结构或在其任务条件下验证其结构的性能。因此,空间飞行器复合结构设计必须比飞机复合材料结构设计更加稳定可靠。虽然如此,飞机行业的复合材料结构设计方面的经验仍然可以为航天器的复合材料结构设计提供一定的参考和借鉴。 航空和航天复合材料结构设计要求具体在哪些方面存在差异呢? 第一点是两者的生成规模差别很大。航空产品通常进行大规模生产,不仅整机生产数量多,而且因为需要维修等等,这样更换损坏的零件同样数量巨大;而航天产品则大多生产较少。因此在结构设计时,航空产品对结构设计时需要对加工工艺等配套设施进行细致的考虑,以达到成本、周期。效益的均衡,而航天结构设计则大多不需要考虑。同时生产数量的差异也使后续的设计工作产生了很大不同。 第二点是初始设计要求。飞机工业需要通过测试数量庞大的样本总结设计出一套模块建立的方法。但航天器的生产数量很有限,因此用于航空专业的样本采集到模块建立的方法,要想应用于航天器,从成本和进度的角度来看,是不切实际的。 第三点是强度要求。在航空和航天器中,对于强度的要求二者是一致的,但因工作环境不同存在一定的区别。航空和航天器复合材料

先进的复合材料

先进的复合预浸纱 (5码起订) 薄膜粘合材料:BMS5-101(AF163-2K),BMS5-129等。 核心接合剂/泡沫粘合剂:BMS5-90,BMS5-139,环氧树脂和聚脂石墨:BMS8-168,BMS8-212,纤维和单向带。 纤维B:BMS8-219,BMS8-129,纤维 管/密封复合材料 粘合管:BMS5-89(EC3960,BR127) 燃料电池密封剂:PR1422B2 或PR1422B1/2(MIL-S-8802) 抗腐蚀密封剂:PS870B2 或PSB870B1/2 防腐复合材料:BMS3-27(Mastionx6856K) 真空包装/加工材料 送气/抽吸帆布:4盎司和10盎司 闪光带:硅制和非硅制 特氟纶带:压力敏感型 玻璃纤维带:宽度范围50英寸至60英寸 密封带/包装带:“胶带” 松解薄膜:FEP(打孔型和非打孔型) 松解纤维:特氟纶外包裹玻璃纤维(多孔渗水型和非多孔渗水型)真空包装带:尼龙(V字折叠型,管型,平板型) 干性材料(纤维) 石墨:BMS9-8,AH370-5H 玻璃纤维:BMS9-3 纤维B:纤维B49 复合修复设备: 热补仪:威奇技术HB1单层环带,HB2双层环带,危险环境。 电热毯:电压标准110—220伏,现货,接受订货 热(电)偶适应器:BAC5621,带测试报告证明 真空附件:泵,量规,管线,软管接头,吸气探针 预填装铝: (填充物为BAC5555和BAC5514-589) 尺寸为:48英寸*48英寸 按平方尺出售 起订量为3平方尺 可以以绝缘材料包装,也可以不以绝缘材料包装 标准厚度:0.012英寸—0.032英寸 保存期限:按保存说明可保存60个月 所有材料的运输都严格按照美国军方的加工标准 可接受定货 人造树脂补充剂/粉末 微型气球:玻璃和酚醛塑料 CAB-O-SIL:熏制硅土 磨细的玻璃纤维 蜂窝状中心[芯轴]

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

先进复合材料论文

摘要:纤维增强复合材料具有较强的结构特性,是一种多相体材料。其力学性能及损伤破坏规律不仅取决于各组分材料性能,同时也取决于细观结构特征。采用细观力学分析研究复合材料宏现力学性能与细观结构参数之间的内在联系具有重要的科学意义和工程价值。论述了细观力学实验技术的理论基础和常用实验技术及进展,介绍了复合材料的细观力学模型的发展,综述了复合材料力学行为有限元分析的研究现状,并对这一学科的研究发展进行了简要评述与展望。 1 前言 纤维增强复合材料是目前最先进的复合材料之一。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其它复合材料所无法比拟的。纤维复合材料因其较高的比强度、比模量在国外先进战略、战术固体火箭发动机方面应用较多,如美国的战略导弹“侏儒”三级发动机壳体,“三叉戟”一、二、三级发动机壳体的复合材料裙,民兵系列发动机的喷管扩张段,部分固体发动机及高速战术导弹美国的11IAAD、ERINT等。除军用外,开发纤维复合材料的其它应用也大有作为,如飞机及高速列车刹车系统、民用飞机及汽车复合材料结构件、高性能碳纤维轴承、风力发电机大型叶片、体育运动器材(如滑雪板、球拍、渔杆)等。随着碳纤维生产规模的扩大和生产成本的逐步下降,在增强混凝土、新型取暖装置、新型电极材料乃至日常生活用品中的应用也必将迅速扩大。我国拟大力开发新型纤维增强复合材料建材及与环保、日用消费品档关的高科技纤维增强复合材料的新市场,因此,对于纤维增强复合材料的力学性能研究是十分必要的。 复合材料既表现出宏观特征,又具有明显的细观结构特征。复合材料力学是一种两层次的力学理论。在宏观尺度上,可以将复合材料当作各向异性的宏观均匀连续体,用连续介质力学理论研究复合材料的力学行为旧,但是无法研究对宏观行为有重要影响的细观尺度上各组份相的变形及损伤失效行为。在细观尺度上,复合材料具有包含多种组份相的非均质结构,复合材料细观力学在宏观有效性能预测以及细观应力、应变场分析方面取得了一定进展。如果将复合材料宏观结构分析与细观结构分析结合起来,在进行宏观结构分析时就能够获得细观尺度上的力学参量值,将是一种更好的分析方法。本文在分析复合材料宏观、细观特

复合材料在航天航空领域的应用现状与展望

复合材料在航天航空领域的应用现状与展望 摘要现代飞机和卫星的制造材料应具有质量轻、强度高、耐高温、耐腐蚀等特性,先进复合材料的独有性能使它成为制造卫星和飞机的理想材料。本文重点介绍了我国航天用符合材料的研究情况,并展望了今后的发展趋势。 关键词复合材料;航空航天;应用现状;发展趋势 Prospect and Application of Composites in Aviation and Aerospace Abstract Nowadays, the material of producing planes and satellites should be light, strong and should resist high temperature, corrosion and so on. Because of the unique peculiarities, advanced composites become the ideal material of producing planes and satellites. In this paper, the present status and prospect of applied research on composite materials for aero-space application in China are given. Key words composites; aviation and aerospace ; application and development; development trends

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报 告 班级: 学号: 姓名:

日期:2016年10 月09 日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1]对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21 世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008 年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材 料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石 棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70 年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金 属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×10 厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这 种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发 挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料, 它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统 的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于 后

航空航天领域先进复合材料制造技术进展

专题研究 Feature 72 纺织导报 China Textile Leader · 2018 产业用纺织品专刊 参考文献 [1] 李俊宁,胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术 研究进展[J]. 宇航材料工艺,2011,41(6):10-13. [2] GRITSEVICH I V, DOMBROVSKII L A, NENAROKOMOV A V. Heat transfer by radiation in vacuum shield insulation of spacecrafts [J]. Thermal Processes in Engineering, 2013, 5(1): 12-21. [3] 沈学霖,朱光明,杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程,2016,32(10):164-169. [4] KIM J, LEE J H, SONG T H. Vacuum insulation properties of phe-nolic foam[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5343-5349. [5] BHEEKHUN N, ABU TALIB A R, HASSAN M R. Aerogels in aerospace: An overview[J]. Advances in Materials Science and En-gineering, 2013, 406065. [6] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A stra-tegy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.[7] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Com-munications, 2014, 5: 5802. [8] GBEWONYO S, CARPENTER A W, GAUSE C B, et al. Low th-ermal conductivity carbon fibrous composite nanomaterial enab-led by multi-scale porous structure[J]. Materials & Design, 2017, 134: 218-225. [9] ZHENG H, SHAN H, BAI Y, et al. Assembly of silica aerogels wi-thin silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015, 5(111): 91813-91820. [10] SHAN H, WANG X, SHI F, et al. Hierarchical porous structured SiO 2/SnO 2 nanofibrous membrane with superb flexibility for mole-cular filtration[J]. Acs Applied Materials & Interfaces, 2017, 9(22): 18966-18976. [11] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angew Chem-Int Edit, 2014, 53(39): 10394-10397. [12] SI Y, WANG X, DOU L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4(4): eaas8925. 机梯度隔热、舱室隔热保暖等领域。 纳米纤维材料虽然具有良好的隔热性能和弹性,但其拉伸、剪切性能仍需大幅提升以满足实际应用需求。同时,现有纳米纤维气凝胶的孔径较大,导致其热对流效应明显,特别是在高温环境下,因此需在保证其力学性能未大幅下降的前提下进一步减小纳米纤维气凝胶的孔径,提升材料的隔热性能,最终实现其在航空航天热防护领域的特效应用。 图 1 民用飞机结构复合材料用量的变化 1970年 1980年 1990年 2000年 2010年 空客A350:52% 波音787:50%空客A380:25%空客A340:13%波音777:11%波音757:4%波音767:4% 复合材料用量/% 尾翼应用复合材料 外翼、机身应用复合材料 A350 A380 A340中央翼应用复合材料 次承力结构应用复合材料 50403020100 波音787 波音777 波音757/767 复合材料自20世纪60年代问世以来迅速发展,由于具有高比刚度、高比强度、性能可设计、抗疲劳性和耐腐蚀性等优点,越来越广泛地应用于各类航空航天飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。同时,复合材料的应用部位已由飞机的非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量成为航空器先进性的重要标志。本文重点阐述航空航天领域最为广泛应用的碳纤维增强树脂基先进复合材料的应用概况、制造技术及未来发展方向。 1 先进复合材料在航空航天领域的应用概况 先进复合材料在航空航天领域的应用始于军用飞 机,是为满足其对高机动性、超音速巡航及隐身等要求而不惜成本开始采用的。近年来由于结构轻量化的要求,民用飞机在复合材料用量方面也呈现增长的趋势。图 1 为商用飞机中复合材料用量占结构重量比例的增加趋势。以1990年研制的波音777为例,在其机体结构中,复合材料仅占11%,而且主要用于飞机辅件,如尾翼和操纵面等。到了2009年波音787首飞时,复合材料的使用出现了质的飞跃,其用量已占到结构重量的50%(图 2),而空客A350的复合材料用量更是达到了52%(图 3),不仅复合材料占比激增,而且复合材料大量应用于 碳纤维复合材料层压板碳纤维夹芯复合材料玻璃纤维复合材料铝 铝/钢/钛复合材料 其他5% 钢10% 钛15%铝20% 复合材料50% 图 2 波音787的复合材料用量

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报告 班级: 学号: 姓名: 日期:2016年10月09日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1] 对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于 4×10厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料 树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料,它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后

2016先进复合材料在航空航天领域的应用_汤旭

- 39 - 2016年第13期(总第364期) NO.13.2016 ( Cumulativety NO.364 ) 串口,与通信网关机进行IEC101规约通讯,通信网关机 通过B接入网与调度主站进行IEC104规约通讯。 图12 其方案描述如下:(1)综自系统通过原与地调通信的串口以IEC101规约向通信网关机发送地调点表数据,综自系统通过新增串口以IEC101规约向通信网关机发送省调点表数据;(2)通信网关机首先与综自A机尝试串口IEC101规约通讯,若与综自A机通讯失败,则尝试与综自B机通讯,但同一时间只与一台综自主机进行串口IEC101规约通讯;(3)通信网关机通过B接入网与调度主站系统进行IEC104规约通讯;(4)综自系统通过A接入网与调度主站系统进行IEC104规约通讯,即保持原来的通讯方式不变。 改造后网络拓扑图如图11所示。其逻辑连接关系如图12所示。 该方式的优点:主站通过A接入网与综自系统直接通讯,通过B接入网与通信网关机通讯,两路通讯互备,真正达到“双主模式”的要求。 该方式的缺点:需在综自系统上增加一路串口传输设置,不过几乎所有综自系统通信机上都具备至少2路以上串口传输能力,因此仅需软件设置,不需要做硬件扩充。 4 结语 本文结合工程实际和现实技术手段,探讨网络双平面传输改造技术,并在实际改造经验基础上对各种改造技术方案加以比较和总结,从安全经济的角度出发,研究比较了5种基于规约转换方式的实现变电站自动化系统通信机双机“双主模式”,通过调度数据网双平面同时与调度主站系统进行IEC104规约通讯。综合比较5种方式的优劣,方式五是一个最简单易行且比较经济的技术方法。本文为有类似双平面传输改造者以及不久后即将开始的低电压等级(35kV)变电站自动化系统网络双平面传输改造提供技术借鉴。 作者简介:高夏生(1963-),男,安徽省电力公司高级工程师,研究方向:电网调度自动化。 (责任编辑:蒋建华) 1 概述 现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成本。现阶段,先进复合材料已经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料已经和高分子材料、无机非金属材料及金属材料并列为四大材料。因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。 2 我国先进复合材料发展现状 自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无先进复合材料在航空航天领域的应用 汤 旭 李 征 孙程阳 (哈尔滨工程大学,黑龙江 哈尔滨 150001) 摘要:先进复合材料由于具有多功能性、经济效益最大化、结构整体性、可设计性等众多特点,在各个领域被广泛推广和利用,特别是在航空航天领域。文章分析了我国先进复合材料的发展现状,对先进复合材料进行了简介,分别针对先进复合材料在航空领域、航天领域的应用进行了综述,最后探析了复合材料在航空航天领域的发展前景。 关键词:先进复合材料;航空航天领域;飞船;卫星;火箭;飞机 文献标识码:A 中图分类号:V257 文章编号:1009-2374(2016)13-0039-04 DOI:10.13535/https://www.docsj.com/doc/308594887.html,ki.11-4406/n.2016.13.019

相关文档