文档视界 最新最全的文档下载
当前位置:文档视界 › 初中数学全等三角形部分知识点整理及经典例题

初中数学全等三角形部分知识点整理及经典例题

初中数学全等三角形部分知识点整理及经典例题
初中数学全等三角形部分知识点整理及经典例题

《全等三角形》

一、结构梳理

二、知识梳理

(一)概念梳理

1.全等图形

定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形.

2.全等三角形

这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等.

(二)性质与判定梳理

1.全等图形性质:全等多边形的对应边、对应角分别相等.

全等三角形的对应边、对应角分别相等.

2.全等三角形的判定

这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有:

(1)三边对应相等的两个三角形全等,简记为:SSS ;

(2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA;

(3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS;

(4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS.

若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等.

(5)注意判定三角形全等的基本思路

从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有

2

三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有:

??

???→→S S S S A S 找另一边找夹角 ???

?????????→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边

找任一角边为角的对边 ???→→AAS

ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素

辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角.

(三)基本图形梳理

注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种:

1.平移型 如图3,下面几种图形属于平移型:

它们可看成有对应边在一直线上移动所构成的,故该对应边

的相等关系一般可由同一直线上的线段和或差而得到.

2.对称型 如图4

,下面几种图形属于对称型:

它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点.

3.旋转型 如图5,下面几种图形属于旋转型:

它们可看成是以三角形的某一顶点为中心旋转

所构成的,故一般有一对相等的角隐含在

对顶角、某些角的和 或差中. 三、易混、易错点剖析

1.探索两个三角形全等时,要注意两个特例

(1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3

图4

图6(1)

角都是600,但这两个三角形显然不全等; (2)两边和其中一边的对角对应相等的两个

三角形不一定全等,如图6(2),中的△ABC 和△ABD 中,

虽然有AB=AB ,AC=AD ,∠B=∠B ,但它们显然不全等. 2.在判定三角形全等时,还要注意的问题 在判定三角形全等时,应做到以下几点:

(1)根据已知条件与结论认真分析图形;

(2)准确无误的确定每个三角形的六个元素;

(3)根据已知条件,确定对应元素,即找出相等的角或边;

(4)对照判定方法,看看还需什么条件两个三角形就全等;

(5)想办法找出所需的条件来.

四、例题:

例1.如图7(1),E 、F 分别是四边形ABCD 的边BA 、DC 延长线上的点,AB//CD ,AD//BC ,且AE=CF ,EF 交AD 于G ,交BC 于H .

(1)图中的全等三角形有 对,它们分别是 ;(不添加任何辅助线)

(2)请在(1)问中选出一对你认为全等的三角形进行证明. 我选择的是: .

解:(1)2,△AEG ≌△CFH 和△BEH ≌△DFG . (2)如求证明:△AEG ≌△CFH .

证明:在平行四边形ABCD 中,有∠BAG=∠HCD , 所以∠EAG=1800-∠BAG=1800-∠HCD=∠FCH . 又因BA ∥DC ,所以∠E=∠F .又因AE=CF ,所以△AEG ≌△CFH .

点评:本题简单地考察学生对图形的识别能力以及证明能力,

主要是根据全等三角形的判定条件去寻找,然后再作出证明.

例2.如图8,在△ABD 和△ACE 中,有下列四个等式:

1AB=AC ○2AD=AE ○31=∠2○4BD=CE. 请你以其中三个等式作为题设,余下的作为结论,

写出一个真命题(要求写出已知,求证及证明过程).

(提示:答案不唯一).

点评:本题是条件组装题,答案不唯一,它重点考查学生的 有的是假命题,请同学们注意分辨. 例3.如图9,点E 在AB 上,AC=AD ,

请你添加一个条件,使图中存在全等三角形,并给予证明。 所添条件为 ,

你得到的一对全等三角形是? ?? .

(提示:可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个。

可得到ADB ACB ADE ACE ??????或, 证明过程略).

H G E D C B A 图6 D 图10 A

B C D 图6(2) 图10

图7(1)

例4.如图10,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.

(1)求证:△ABD≌△EDB

(2)只需添加一个条件,即________,可使四边形ABCD为矩形.

请加以证明.

提示:(1)证明略

(2)添加AB∥CD,或添加AD=BC或BE=BC或∠A=∠ADC或∠ADC=90°或∠A=∠C或∠C=90°或∠ABD=∠BDC或∠A=∠ABC或∠ADB=∠DBC或∠ABC=90°等.证明略.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题 Revised on November 25, 2020

集合 一、知识点: 1、元素: (1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ?; (2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1);,,A B B A A A A A ?=?=?=?φφ (2) ;,A B B A A A ?=?=?φ (3) );()(B A B A ??? (4);B B A A B A B A =??=??? (5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ?=??=? 二、典型例题 例1. 已知集合 }33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。 例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。 例3. 已知集合 },01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。 \ 例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。 例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。 例6. 已知A ={0,1}, B ={x|x ?A},用列举法表示集合B ,并指出集合A 与B 的关系。 三、练习题 1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ? C. a = M D. a > M

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

【离散数学】知识点典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

相关文档
相关文档 最新文档