文档视界 最新最全的文档下载
当前位置:文档视界 › 电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析
电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析

电磁感应中的导轨上的导体棒问题是历年高考的热点。其频考的原因,是因为该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题

滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题

例1 如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、

质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路,

整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S

串联。当闭合电键后,求金属棒可达到的最大速度。

图1

解析闭合电键后,金属棒在安培力的作用下向右运动。当金属棒的速度为

v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有

解得

点评本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)

(二)闭合电路中的导体棒在安培力之外的力作用下的问题

1. 导体棒在外力作用下从静止运动问题

例2(全国高考题)如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。一质量为m 且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。若用恒力F向上拉ef,则当ef匀速上升时,速度多大?

图2

解析本题有两种解法。方法一:力的观点。当棒向上运动时,棒ef受力如图3所示。当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应

=BIL变大,因拉力F和重力mg都电流I=E/R变大,它受到的向下的安培力F

不变,故加速度变小。因此,棒ef做加速度越来越小的变加速运动。当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。当棒匀速运动时(设速度为),由物体的平衡条件有

图3

点评应用力学观点解导体棒问题的程度:(a)分析棒的受力情况,判断各力的变化情况;(b)分析棒的运动情况,判断加速度和速度的变化情况;(c)分析棒的最终运动情况,依平衡条件或牛顿第二定律列方程。

方法二:能量观点。

当导体棒ef以最大速度匀速运动以后,拉力做功消耗的能量等于棒重力势能的增加△和bc部分产生的热量Q之和。设棒匀速运动的时间为t,则有

点评①ef棒的运动尽管在达到最大速度以前为变速运动,产生的感应电流及感应电动势都在变化,但达到最大速度以后,感应电流及感应电动势均恒定,

故计算热量可以用计算。②求导体棒的最大速度问题,要会抓住速度最

大之后速度不变这一关键条件,运用能量观点处理,往往会使运算过程简洁。③求导体棒的最大速度问题,可以运用力的观点和能量观点的任一种,但两种方法所研究的运动过程却不同。力观点研究分析的是棒达到最大速度为止的以前的运动过程,而能量观点研究的是从棒达到最大速度开始以后做匀速运动的一段过程。要注意这两种观点所研究运动过程的不同。

2. 外力作用下有初速问题

例3 如图4所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻为R,磁感应强度为B,一根质量为m、电阻不计的金属棒受到外

力冲量后,以的初速度沿框架向左运动,棒与框架的动摩擦因数为,测得棒

在整个运动过程中,通过任一截面的电量为q,求:(1)棒能运动的距离?(2)R上产生的热量?

解析(1)在整个过程中,棒运动的距离为S,磁通量的变化

通过棒的任一截面的电量

解得

(2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q,即有

点评本题的棒与框架无论有无摩擦,棒的最终状态是静止。不过,无摩擦时,原来棒的动能全部要转变成R上产生的热量。

二、滑轨上有两个导体棒的运动问题

滑轨上有两个导体棒的运动问题,还分为两种:一种是初速度不为零,无安培力之外的力作用下的问题,另一种是初速度为零,有安培力之外的力作用下的问题。

(一)初速度不为零,无安培力之外的力作用的问题

1. 两棒各以不同的初速度做匀速运动问题

例4 如图5所示,相距d的平行光滑金属长导轨固定在同一水平面上处于竖直的匀强磁场中,磁场的磁感应强度为B,导轨上面横放着两条金属细杆ab、cd构成矩形回路,每条金属细杆的电阻为R,回路中其余部分的电阻可忽略不计。已知ab、cd分别以2v、v的速度向右匀速运动,求两金属细杆运动t秒后,共产生多少热量?

解析以整个回路为研究对象,t秒后

磁通量的变化

回路中的感应电动势

回路中的感应电流

产生的热量

点评本题的关键,是把两杆及导轨构成的回路作为研究对象,利用法拉第电磁感应定律求电动势E。如果用E=BLv求每杆的电动势,再求回路总电动势,那就要涉及到中学阶段不要求的反电动势问题。

2. 两棒之一有初速度的运动问题

例5 在例4中,两棒的质量均为m。若开始用一水平冲击力使ab获得一冲量I,使其沿轨道向右运动,而cd无初速度。求ab棒在整个过程中产生的焦耳热?

解析ab棒获得速度,就开始向右切割磁感线,产生感应电流,从

而ab棒在磁场力作用下做减速运动,cd棒做加速运动,当两棒速度相等时,两棒产生的感应电动势大小相等,在回路中方向相反,感应电流为零,磁场力也为零。此后两棒以相同的速度v做匀速运动(达到稳定状态)。在这个过程中,两

棒组成的系统所受外力之和为零,系统动量守恒,有v=。

在上述过程中,系统损失的动能先转化为电能,电流通过电阻后又转化为焦耳热。又因为两棒电阻相同,产生的焦耳热相等,故有

故ab棒在整个过程中产生的焦耳热

(二)初速度为零,有安培力之外的力作用下的问题

1. 初速度为零,有安培力之外的恒力作用下的问题

例6(03年高考理综卷)两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离L=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨

上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为。

在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F 作用于金属杆上,使金属杆在导轨上滑动。

(1)若经过t=5.0s,金属杆甲的加速度为,问此时两金属杆的速度各为多少?

(2)若经过10s,电路中的电功率达到最大值。问第10s末,

①金属杆甲的加速度是多少?

②两金属杆的速度各是多少?

解析(1)设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为,经过很短的时间△t,杆甲移动距离,杆乙移动距离,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势

由闭合电路欧姆定律,回路中电流

对甲由牛顿第二定律,有④

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量

联立以上各式解得

代入数据得

(2)①根据法拉第电磁感应定律可知,甲、乙两杆的速度差越大,感应电动势越大。开始阶段,甲杆的加速度大于乙杆的加速度,甲杆的速度比乙杆的速

度增加得快,因而速度差不断增大,直到两杆加速度相等,即(稳定条件)时,两杆达到稳定状态??均做加速度相同的匀加速运动,此时

达到最大值,从而E、I最大,电路中的电功率达最大。

由于

解得

由牛顿第二定律,金属杆乙的加速度

金属杆甲的加速度

②流过金属杆的电流

回路中的感应电动势

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量

联立以上两式解得

点评本题必须先根据楞次定律,正确判出甲在F作用下运动时,乙也在其后同向运动。

2. 有安培力之外的变力作用下的运动问题

例7(2004年广东高考)如图7,在水平面上有两条导电导轨MN、PQ,导轨间距为L,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为

。两杆与导轨接触良好,与导轨间的动摩擦因数皆为。已知:

杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动。导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。

解析设杆2的运动速度为v,由于两杆运动时,两杆和导轨构成的回路中的磁通量发生变化,产生感应电动势

感应电流②

杆2做匀速运动,它受到的安培力等于它受到的摩擦力

导体杆2克服摩擦力做功的功率

联立①②③④式得

总之,通过以上的分析,可以看出:对导轨上的单导体棒问题,其稳定状态就是导体棒最后达到的匀速运动状态。稳定条件是导体棒的加速度为零。对导轨上的双导体棒运动问题,在无安培力之外的力作用下的运动情况,其稳定状态是两棒最后达到的匀速运动状态,稳定条件是两棒的速度相同;在有安培力之外的恒力作用下的运动情况,其稳定状态是两棒最后达到的匀变速运动状态,稳定条件是两棒的加速度相同,速度差恒定。

电磁感应测试题(含答案)

1. A 2. B 3. D 4. A 5. B 6. C 7. D 8. B 9. B 高中物理单元练习试题(电磁感应) 一、单选题(每道小题 3分共 27分 ) 1. 一根0.2m长的直导线,在磁感应强度B=0.8T的匀强磁场中以V=3m/S的速度做切割磁感线运动,直导线垂直于磁感线,运动方向跟磁感线、直导线垂直.那么,直导线中感应电动势的大小是[ ] A.0.48v B.4.8v C.0.24v D.0.96v 2. 如图所示,有导线ab长0.2m,在磁感应强度为0.8T的匀 强磁场中,以3m/S的速度做切割磁感线运动,导线垂直磁感线, 运动方向跟磁感线及直导线均垂直.磁场的有界宽度L=0.15m, 则导线中的感应电动势大小为[ B ] A.0.48V B.0.36V C.0.16V D.0.6V 3. 在磁感应强度为B、方向如图所示的匀强磁场中,金属杆PQ 在宽为L的平行金属导轨上以速度v向右匀速滑动,PQ中产生的 感应电动势为e1;若磁感应强度增为2B,其它条件不变,所产生 的感应电动势大小变为e2.则e1与e2之比及通过电阻R的感应 电流方向为[ ] A.2:1,b→a B.1:2,b→a C.2:1,a→b D.1:2,a→b 4. 图中的四个图分别表示匀强磁场的磁感应强度B、闭合电路中一部分直导线的运动速度v 和电路中产生的感应电流I的相互关系,其中正确是[ ] 5. 如图所示的金属圆环放在匀强磁场中,将它从磁场中匀速拉出 来,下列哪个说法是正确的\tab [ ] A.向左拉出和向右拉出,其感应电流方向相反 B.不管从什么方向拉出,环中的感应电流方向总是顺时针的 C.不管从什么方向拉出,环中的感应电流方向总是逆时针的 D.在此过程中感应电流大小不变 6. 如图所示,在环形导体的中央放一小条形磁铁,开始时,磁铁和环 在同一平面内,磁铁中心与环的中心重合,下列能在环中产生感应电 流的过程是[ ] A.环在纸面上绕环心顺时针转动30°的过程 B.环沿纸面向上移动一小段距离的过程\par C.磁铁绕轴OO ' 转动 30°的过程 D.磁铁绕中心在纸面上顺时针转动30°的过程 7. 两水平金属导轨置于竖直向下的匀强磁场中(俯视如图),一金属方框abcd两头焊上金属短轴放在导轨上,以下说法中正确的是哪一个[ ]

电磁感应现象中的常见题型汇总(精华版)

电磁感应现象的常见题型分析汇总 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图1-2所示的下列图线中,正确反 映感应电流强度随时间变化规律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C 评注 (1)线框运动过程分析和电磁感应的过程是密切关联的,应借助于运动过程的分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感应电动势,而整个电路的总感应电动势则是回路各部分所产生的感应电动势的代数和。 例2在磁棒自远处匀速沿一圆形线圈的轴线运动,并穿过线圈向远处而去,如图2—1所示,则下列图2—2中较正确反映线圈中电流i 与时间t 关系的是(线圈中电流以图示箭头为正方向)( ) 分析与解 本题要求通过图像对感应电流进行描述,具体思路为:先运用楞次定律判断磁铁穿过线圈时,线圈中的感应电流的情况,再提取图像中的关键信息进行判断。 条形磁铁从左侧进入线圈时,原磁场的方向向右且增大,根据楞次定律,感应电流的磁场与之相反,再由安培定则可判断,感应电流的方向与规定的正方向一致。当条形磁铁继续向右运动,被 ← → 图1—1 图1—2 图2—1 图2—2

电磁感应导体棒平动切割类问题综述

试卷第1页,总61页 2013-2014学年度北京师范大学万宁附属中学 电磁感应导体棒平动切割类问题训练卷 考试范围:电磁感应;命题人:孙炜煜;审题人:王占国 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ( ) A .匀速滑动时,I 1=0,I 2=0 B .匀速滑动时,I 1≠0,I 2≠0 C .加速滑动时,I 1=0,I 2=0 D .加速滑动时,I 1≠0,I 2≠0 【答案】D 【解析】 试题分析:当AB 切割磁感线时,相当于电源.电容器的特点“隔直流”,两端间电压变化时,会有充电电流或放电电流.匀速滑动,电动势不变,电容器两端间的电压不变,所以I 2=0,I 1≠0,故AB 均错误;加速滑动,根据E BLv 知,电动势增大,电容两端的电压增大,所带的电量要增加,此时有充电电流,所以I 1≠0,I 2≠0,故C 错误,D 正确.所以选D . 考点:本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律及电容器对电流的作用. 2.如图所示,在匀强磁场中,MN 、PQ 是两根平行的金属导轨,而ab ?cd 为串有电压表和电流表的两根金属棒,同时以相同速度向右运动时,正确的有( ) A .电压表有读数,电流表有读数 B .电压表无读数,电流表有读数 C .电压表无读数,电流表无读数

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案 一、电磁感应现象的两类情况 1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿 Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“ ”字型(如图乙)通电后使 其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的 MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力 f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“ ”字型线圈依次通 电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进. (1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相) (2)求列车能达到的最大速度m v ; (3)列车以最大速度运行一段时间后,断开接在“ ” 字型线圈上的电源,使线圈 与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为 B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“ ”字型线圈 时,电容器中贮存的电量Q . 【答案】(1) 012() BL v v R -2222 101 22BL B L kR v B L +-2 4nB Lb R ' 【解析】 【详解】 解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-

备战高考物理法拉第电磁感应定律(大题培优)附答案

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度 12sin v gl θ 则ab 棒开始下滑的位置离EF 的距离

电磁感应单元测试题(含详解答案)

第十二章电磁感应章末自测 时间:90分钟满分:100分 第Ⅰ卷选择题 一、选择题(本题包括10小题,共40分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分) 图1 1.如图1所示,金属杆ab、cd可以在光滑导轨PQ和RS上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是() A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左 C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左 解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确. 答案:B 图2 2.(2009年河北唐山高三摸底)如图2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有() A.线圈与蹄形磁铁的转动方向相同 B.线圈与蹄形磁铁的转动方向相反 C.线圈中产生交流电 D.线圈中产生为大小改变、方向不变的电流 解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对

图3 线圈中心轴做匀速圆周运动,所以产生的电流为交流电. 答案:AC 3.如图3所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流() 解析:据楞次定律,P中产生正方向的恒定感应电流说明M中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D正确. 答案:D 图4 4.(2008年重庆卷)如图4所示,粗糙水平桌面上有一质量为m的铜质矩形线圈,当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力N及在水平方向运动趋势的正确判断是() A.N先小于mg后大于mg,运动趋势向左 B.N先大于mg后小于mg,运动趋势向左 C.N先小于mg后大于mg,运动趋势向右 D.N先大于mg后小于mg,运动趋势向右 解析:由题意可判断出在条形磁铁等高快速经过线圈时,穿过线圈的磁通量是先增加后减小,根据楞次定律可判断:在线圈中磁通量增大的过程中,线圈受指向右下方的安培力,在线圈中磁通量减小的过程中,线圈受指向右上方的安培力,故线圈受到的支持力先大于mg 后小于mg,而运动趋势总向右,D正确. 答案:D 5.如图5(a)所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同线圈Q,P和Q 共轴,Q中通有变化电流,电流随时间变化的规律如图(b)所示,P所受的重力为G,桌面对P的支持力为F N,则() 图5 A.t1时刻F N>G B.t2时刻F N>G C.t3时刻F N

电磁感应现象中的常见题型汇总(很全很细)---精华版

电磁感应现象的常见题型分析汇总(很全) 命题演变 “轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨 (1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合,也可闭合; (3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定 速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规 律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C ← → 图1—1 图1—2

高考物理大题突破--电磁感应(附答案)

1、(2011上海(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。(取210/g m s =)求:(1)金属棒在此过 程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时 的加速度a .3)为求金属棒下滑的最大速度m v ,有同学解答如下由动能定理21-=2 m W W mv 重安,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。 解析:(1)下滑过程中安培力的功即为在金属棒和电阻上产生的焦耳热,由于3R r =,因此30.3()R r Q Q J == ∴=0.4()R r W Q Q Q J =+=安 (2)金属棒下滑时受重力和安培力22 =B L F BIL v R r =+安 由牛顿第二定律22 sin 30B L mg v ma R r ?-=+∴ 2222210.80.752sin 3010 3.2(/)()20.2(1.50.5)B L a g v m s m R r ??=?-=?-=+?+ (3)此解法正确。金属棒下滑时重力和安培力作用,其运动满足22 sin 30B L mg v ma R r ?-=+ 上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动。无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大。由动能定理可以得到棒的末速度,因此上述解法正确。21sin 302m mgS Q mv ?-= ∴ 2.74(/)m v m s === 2、(2011重庆第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上 镀有间距为d 的平行细金属条,磁场中始终仅有一 根金属条,且与电极接触良好,不计金属电阻,若 橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电 功率;(3)一根金属条每次经过磁场区域克服安培 力做的功。 解析:(1)设电动势为E ,橡胶带运动速率 为v 。由:BLv E =,U E =,得:BL U v =

高二物理电磁感应测试题及答案

高二物理同步测试(5)—电磁感应 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试用时60分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的,全部选对得4分,对而不全得2分。) 1.在电磁感应现象中,下列说法正确的是 () A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动,一定产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 2. 为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势来测量 海水的流速.假设海洋某处的地磁场竖直分量为B=×10-4T,水流是南北流向,如图将两个电极竖直插入此处海水中,且保持两电极的连线垂直水流方向.若 两极相距L=10m,与两电极相连的灵敏电压表的读数为U=2mV,则海水 的流速大小为() A.40 m/s B.4 m/s C. m/s D.4×10-3m/s 3.日光灯电路主要由镇流器、起动器和灯管组成,在日光灯正常工作的情况下,下列说法正确的是() A.灯管点燃后,起动器中两个触片是分离的 B.灯管点燃后,镇流器起降压和限流作用 C.镇流器在日光灯开始点燃时,为灯管提供瞬间高压 D.镇流器的作用是将交变电流变成直流电使用 4.如图所示,磁带录音机既可用作录音,也可用作放音,其主要部件为

可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象,下面对于它们在录音、放音过程中主要工作原理的说法,正确的是 ( ) A .放音的主要原理是电磁感应,录音的主要原理是电流的磁效应 B .录音的主要原理是电磁感应,放音的主要原理是电流的磁效应 C .放音和录音的主要原理都是磁场对电流的作用 D .放音和录音的主要原理都是电磁感应 5.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导 体环,当A 以如图所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流。则( ) A .A 可能带正电且转速减小 B .A 可能带正电且转速增大 C .A 可能带负电且转速减小 D .A 可能带负电且转速增大 6.为了测出自感线圈的直流电阻,可采用如图所示的电路。在测量完毕后将电路解体时应该( ) A .首先断开开关S 1 B .首先断开开关S 2 C .首先拆除电源 D .首先拆除安培表 7.如图所示,圆形线圈垂直放在匀强磁场里,第1秒内磁场方向指向纸里,如图(b ).若磁感应强度大小随时间变化的关系如图(a ),那么,下面关于线圈中感应电流的说法正确的是 ( ) A .在第1秒内感应电流增大,电流方向为逆时针 B .在第2秒内感应电流大小不变,电流方向为顺时针 C .在第3秒内感应电流减小,电流方向为顺时针 D .在第4秒内感应电流大小不变,电流方向为顺时针 8.如图所示,xoy 坐标系第一象限有垂直纸面向外的匀强磁 场,第 x y o a b

电磁感应典型题型归类

电磁感应期中复习材料 知识结构: 常见题型 一、磁通量 【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a 的磁通量为Φa ,穿过圆环b 的磁通量为Φb ,已知两圆环的横截面积分别为S a 和Sb,且S a Φb C.Φa<Φb ? D.无法确定 二、电磁感应现象 【例2】图为“研究电磁感应现象”的实验装置. (1)将图中所缺的导线补接完整. (2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后( ) A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下 B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧 C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向右偏转一下 D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向左偏转一下 三、感应电流产生的条件 (1)文字概念性 【例3】关于感应电流,下列说法中正确的是( ) A.只要闭合电路里有磁通量,闭合电路里就有感应电流 B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生 C .线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流 电磁感应产生的条件 感应电流的方向判定 感应电动势的大小 回路中的磁通量变化 楞次定律 法拉第电磁感应定律E=ΔΦ/Δt 电磁感应的实际应用:自感现象(自感系数L ),涡流 特殊情况:导体切 割磁感线E=BLV 特殊情况:右手定则

D.只要电路的一部分切割磁感线运动电路中就一定有感应电流 (2)图象分析性 【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是: 【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周 向外拉,使线圈包围的面积变大,这时: A、线圈中有感应电流 B、线圈中无感应电流 C、穿过线圈的磁通量增大 D、穿过线圈的磁通量减小 二、感应电流的方向 1、楞次定律 【例6】在电磁感应现象中,下列说法中正确的是( ) A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 【例7】如图,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈 中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到 的支持力FN及在水平方向运动趋势的正确判断是( ) A.FN先小于mg后大于mg,运动趋势向左 B.F N先大于mg后小于mg,运动趋势向左 C.F N先大于mg后大于mg,运动趋势向右 D.F N先大于mg后小于mg,运动趋势向右 【例8】如图1所示,当变阻器R的滑动触头向右滑动时,流过电阻R′的电流方向是_______. 图1 图2图3 【例9】如图2所示,光滑固定导轨MN水平放置,两根导体棒PQ平行放在导轨上,形成闭合

电磁感应高考试题

2006年高考 电磁感应 1.[重庆卷.21] 两根相距为L 的足够长的金属直角导轨如题21图所示放置,它们各有一边在同一水平 面内,另一边垂直于水平面。质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速率向下V 2匀速运动。重力加速度为g 。以下说法正确的是 A .ab 杆所受拉力F 的大小为μmg +221 2B L V R B .cd 杆所受摩擦力为零 C . 回路中的电流强度为 12() 2BL V V R D .μ与大小的关系为μ=221 2Rmg B L V 2.[全国卷II .20] 如图所示,位于同一水平面内的、两根平行的 光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在 平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直。现用一平行于导轨的恒力F 拉杆ab ,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率等于 A .F 的功率 B .安培力的功率的绝对值 C .F 与安培力的合力的功率 D .iE 3.[上海物理卷.12] 如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时 (A )电阻R 1消耗的热功率为Fv /3. (B )电阻 R 。消耗的热功率为 Fv /6. (C )整个装置因摩擦而消耗的热功率为μmgvcosθ. (D )整个装置消耗的机械功率为(F +μmgcosθ)v· 4、[天津卷.20] 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间t 如图2变化时,图3中正确表示线圈 感应电动势E 变化的是 图1 图2

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版

A B R v0 B 导轨与导体棒问题一、单棒问题 【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动 摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电 量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s时,其加速度为多大 【答案】(1);(2);(3)12m/s2. (2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0 而F安t=BLt=BLq,得:BLq+μmgt=mv0, 解得:t= (3)当杆速度为2m/s时,由感应电动势为:E=BLv 安培力为:F=BIL,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s2, 25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。

如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电 阻为R,每段长度为D的导轨的电阻也为R。其 他电阻忽略不计,重力加速度为g。 (1)如图(c),当管道中的导轨平面与水平面 成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。 【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则 ( ) A.随着ab运动速度的增大,其加速度也增大 B.外力F对ab做的功等于电路中产生的电能

电磁感应计算题类型大全

电磁感应易错题 1.如图所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导 线框每边的电阻R0=1.0Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。导线框放置在匀强磁场中,磁场的磁感应强度B=0.50T,方向垂直导线框 所在平面向里。金属棒MN与导线框接触良好,且与导线框对角 线BD垂直放置在导线框上,金属棒的中点始终在BD连线上。若 金属棒以v=4.0m/s的速度向右匀速运动,当金属棒运动至AC的 位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面,cd边保持水平。磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l。已知cd边刚进入磁场时线框恰好做匀速运动。重力加速度为g。 (1)求cd边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd边刚进入磁场到ab边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h=0.50m的平行虚线围,有磁感强度B=0.50T、方向水平向里的匀强磁场,正方形线框abcd的质量m=0.10kg、边长L =0.50m、电阻R=0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd边跟磁场下边缘有一段距离。现用一竖直向上的恒力F=4.0N向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面,且cd边保持水平。设cd边刚进入磁场时,线框恰好开始做匀速运动。( g a b d c l l

电磁感应篇高考模拟试题

2015年电磁感应篇高考模拟试题11.(2003年上海综合能力测试理科用)唱卡拉OK用的话筒,内有传感器。其中有一种是 动圈式的,它的工作原理是在弹性膜片后面 粘接一个轻小的金属线圈,线圈处于永磁体 的磁场中,当声波使膜片前后振动时,就将 声音信号转变为电信号。下列说法正确的是 () A 该传感器是根据电流的磁效应工作的 B 该传感器是根据电磁感应原理工作的 C 膜片振动时,穿过金属线圈的磁通量不变 D 膜片振动时,金属线圈中不会产生感应电动势 28.(2001年粤豫综合能力测试)有一种高速磁悬浮列车的设计方案是在每节车厢底部安装 强磁铁(磁场方向向下),并在两条铁轨之 间沿途平放—系列线圈。下列说法中不正确 ...

的是() A 当列车运动时,通过线圈的磁通量会发生变化 B 列车速度越快,通过线圈的磁通量变化越快 C 列车运动时,线圈中会产生感应电流 D 线圈中的感应电流的大小与列车速度无关 15.(2002年上海综合能力 测试理科用)右图是一 种利用电磁原理制作的 充气泵的结构示意图。其工作原理类似打点 计时器。当电流从电磁铁的接线柱a流入,吸引小磁铁向下运动时,以下选项中正确的 是() A.电磁铁的上端为N极,小磁铁的下端为N极

B.电磁铁的上端为S极,小磁铁的下端为S极 C.电磁铁的上端为N极,小磁铁的下端为S极 D.电磁铁的上端为S极,电磁铁的下端为N极 19.(2004全国理综)一直升飞机停在南半球的 地磁极上空。该处地磁 B 场的方向竖直向上,磁 感应强度为B。直升飞机 螺旋桨叶片的长度为l, 螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a,远轴端为b,如图所示。如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )

高中物理第十三章 电磁感应与电磁波精选测试卷练习(Word版 含答案)

高中物理第十三章电磁感应与电磁波精选测试卷练习(Word版含答案) 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,通电螺线管置于水平放置的光滑平行金属导轨MN和PQ之间,ab和cd是放在导轨上的两根金属棒,它们分别静止在螺线管的左右两侧,现使滑动变阻器的滑动触头向左滑动,则ab和cd棒的运动情况是() A.ab向左运动,cd向右运动 B.ab向右运动,cd向左运动 C.ab、cd都向右运动 D.ab、cd保持静止 【答案】A 【解析】 【分析】 【详解】 由安培定则可知螺线管中磁感线方向向上,金属棒ab、cd处的磁感线方向均向下,当滑动触头向左滑动时,螺线管中电流增大,因此磁场变强,即磁感应强度变大,回路中的磁通量增大,由楞次定律知,感应电流方向为a→c→d→b→a,由左手定则知ab受安培力方向向左,cd受安培力方向向右,故ab向左运动,cd向右运动; A. ab向左运动,cd向右运动,与结果一致,故A正确; B. ab向右运动,cd向左运动,与结果不一致,故B错误; C. ab、cd都向右运动,与结果不一致,故C错误; D. ab、cd保持静止,与结果不一致,故D错误; 2.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是() A.B. C. D. 【答案】B 【解析】

【分析】 要知道环形电流的方向首先要知道地磁场的分布情况:地磁的南极在地理北极的附近,故右手的拇指必需指向南方,然后根据安培定则四指弯曲的方向是电流流动的方向从而判定环形电流的方向. 【详解】 地磁的南极在地理北极的附近,故在用安培定则判定环形电流的方向时右手的拇指必需指向南方;而根据安培定则:拇指与四指垂直,而四指弯曲的方向就是电流流动的方向,故四指的方向应该向西.故B正确. 【点睛】 主要考查安培定则和地磁场分布,掌握安培定则和地磁场的分布情况是解决此题的关键所在.另外要掌握此类题目一定要乐于伸手判定. 3.如图所示,匀强磁场中有一圆形闭合线圈,线圈平面与磁感线平行,能使线圈中产生感应电流的应是下述运动中的哪一种() A.线圈平面沿着与磁感线垂直的方向运动 B.线圈平面沿着与磁感线平行的方向运动 C.线圈绕着与磁场平行的直径ab旋转 D.线圈绕着与磁场垂直的直径cd旋转 【答案】D 【解析】 【分析】 【详解】 A.线圈平面沿着与磁感线垂直的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故A错误. B.线圈平面沿着与磁感线平行的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故B错误. C.线圈绕着与磁场平行的直径ab旋转时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故C错误. D.线圈绕着与磁场垂直的直径cd旋转时,磁通量从无到有发生变化,线圈中有感应电流产生;故D正确. 故选D. 【点睛】

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

专题:电磁感应导体棒问题

F 1 图专题:电磁感应导体棒问题 电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。 主干知识 一、发电式导轨的基本特点和规律 如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止 开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。 求:棒下滑的最大速度. 1、 电路特点 导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点 安培力为运动阻力,并随速度按正比规律增大。 F B =BI l =v r R v l B l r R Blv B ∝+=+22 3、 加速度特点 加速度随速度增大而减小,导体做加速度减小的加速运动 m r R v l B mg mg a ) /(cos sin 22+--= θμθ 4、 两个极值的规律

f a R b e B d c r 当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有 mgsin θ=μmgcos θ+) (2 2r R v l B m + 所以,最大速度为 :2 2) )(cos (sin l B r R mg v m +-= θμθ 5、 匀速运动时能量转化规律 当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。 P G =P F +P f ?? ?????=+=+====θμθ cos )(sin 2 2 m f m m m m m m F m G mgv P r R I r R E E I v F P mgv P 当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。 mgv m sin θ=F m v m =I m E m )(2 2 r R I r R E m m +=+= 例1、如图所示,两根平行金属导轨abcd,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在的平面垂直,导轨的电阻可忽略不计。一阻值为R 的电阻接在导轨的bc 端。在导轨上放一根质量为 m ,长为L ,电阻为r 的导体棒ef ,它可在导轨上无摩擦滑动,滑动过程中与导轨接触良好并保持垂直。 (1)若导体棒从静止开始受一恒定的水平外力F 的作用求:导体棒获得的最大速度时,ef 的位移为S,整个过程中回路产生的焦耳热。(2)若金属棒ef 在受到平行于导轨,功率恒为P 的水平外力作用下从静止开始运动。求:金属棒ef 的速度为最大值一半时的加速度a 。

相关文档
相关文档 最新文档