文档视界 最新最全的文档下载
当前位置:文档视界 › 电加热器设备技术选型计算!技术出身真才实学!

电加热器设备技术选型计算!技术出身真才实学!

电加热器设备技术选型计算!技术出身真才实学!
电加热器设备技术选型计算!技术出身真才实学!

电热设备/导热油电加热器/油加热器/电加热器/水加热器设计资料

产品名称

电加热设计

●电热设计资料●电加热功率计算●有关加热功率计算的参考数据●常用的设计图表

电热设计资料

计量单位

1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr

2.重量:kg 1Kg=2.204621b(磅)

3.流速:m/min

4.流量:m3/min、kg/h

5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.0F=4186.8J/(Kg℃)

6.功率密度:W/cm21W/cm2=6.4516W/in2

7.压力:Mpa

8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cms℃)=0.578Btu/( ft.h.F)

9.温度:℃1‘F=9/5℃+32 1R=9/5℃+491.67 1K=I℃+273.15

电加热功率计算

加热功率的计算有以下三个方面:

运行时的功率

启动时的功率

系统中的热损失

所有的计算应以最恶劣的情况考虑:

最低的环境温度

最短的运行周期

最高的运行温度

加热介质的最大重量(流动介质则为最大流量)

计算加热器功率的步骤

1 / 11

根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。

计算工艺过程所需的热量。

计算系统起动时所需的热量及时间。

重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。

决定发热元件的护套材料及功率密度。

决定加热器的形式尺寸及数量。

决定加热器的电源及控制系统。

有关加热功率在理想状态下的计算公式如下:

系统起动时所需要的功率:

加热系统的散热量

管道

平面

计量单位

1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr

2.重量:kg 1Kg=2.204621b(磅)

3.流速:m/min

4.流量:m3/min、kg/h

5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.°F=418

6.8J/(Kg℃)

6.功率密度:W/cm2 1W/cm2=6.4516 W/in2

7.压力:Mpa

2 / 11

8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F)

9.温度:℃1F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15

h 加热时间:h

:

式中符号,含义如下

)

各种物质的比热( 25℃) Cal/( g℃) Kcal/ ( kg℃

3 / 11

各种物质的密度

气体( 0℃和标准大气压下,g / cm3 )

4 / 11

液体( 常温g / cm3 )

5 / 11

6 / 11

固体( 常温g / cm 3

)

各种物质的溶点 溶解热 沸点和汽化热

各种保温材料的导热系数和最高使用温度

注:准确的数据请查供应商的说明书

常用的设计图表

在工程的计算和电加热器的选型中,经常要涉及到一些常用数据,如介质表面的热损失、介质在不同

工况下的温度变化等。为了防止在电加热器工作的同时,对介质的性能和加热元件产生不必要的损伤

,下面列出了部分图表,供选型参考。

导热油电加热器/油加热器/电加热器/水加热器电加热器

7 / 11

热是将电能转换为热能的过程。自从发现电源通过导线可以发生热效应之后,世界上就许多发明家从事于各种电热电器的研究与制造。电热的发展及普及应用也与其它行业一样,遵循着这样一个规律:从先进的国家逐步推广到世界各国;从城市逐步发展到农村;由集体使用发展到家庭、再到个人;产品由低档发展到高档。十九世纪处于萌芽阶段的电热电器大都是拙劣的,最早出现是用于生活的电热电器,1893年电慰斗的雏型首在美国出现并使用,接着到1909年出现电灶的使用,那是在炉灶中放置电加热器,也就是说加热从柴禾转移到电气,即从电能转变为热能。但是真正电热电器工业的急速发展,却是在用作电热元件的镍铬合金的发明之后。1910年美国首先研制成功用镍铬合金电热丝制作的电慰斗,这就从根本上改善了电慰斗结构,使用慰斗迅速得到普及。到1925年在日本出现在锅中安装电热元件的产品,成为现代电饭锅的原形。在这阶段工业上也出现实验室用电炉,熔胶炉、暖气器等电热产品。自欺欺人1910年至于1925年家庭和工业方面电热电器各种品种的出现和普及应用都急速的发展,而尤以家庭方面为甚,是电热电

器历史上大发展阶段。所以镍铬合金的发明是奠定了电热电器工业发展的基础。

二十年代以后在新的应用发展方面没有上一时期多,但是在这阶段内所有各种电热电器都曾重新设订而不断改良,成为电热电器历史上的提高阶段。在家用电热电器方面,各种器具都设计得更为美观、耐用和坚固,而且大部分都有自动温度和时控制,所以运用不不得法、耐用和坚固,而且大部分都有自动温度和时间控制,所以运用不得法、温度不合和发生灾的可能性都可免除。象电灶,烤包器、烙饼器等都有自动控制。同时制造用料也加以改良,如采用质量良限的A级镍铬丝,用氧化镁或氧化锆作绝缘体等。在工业方面,也和家用加热器具一样,使用了自动控制装置及改用良好的材料,如熔腊锅、熔铅炉、各种大型烘炉、热处理炉等都得到普遍的提高和应

用。到四十年代以后,由于美国科学技术进步、电费便宜、发了战财、收入相对较高等原因,促成电热电器进入普及阶段。1940年电慰斗在美国家庭普及率达到了解情况%。解放前我国由于受到帝国主义侵略和反动派的统治,电热电器工业一直处于非常落后的状态。解放后才得到不断发展,特别是近年来在产品品种、数量和应用普及率上进入一个突飞猛进的阶段。

---------------------------------------------------------------------------------------------------------------------------------------------

电热设计资料

计量单位

1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr

2.重量:kg 1Kg=2.204621b(磅)

3.流速:m/min

4.流量:m3/min、kg/h

5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.°F=418

6.8J/(Kg℃)

6.功率密度:W/cm2 1W/cm2=6.4516 W/in2

8 / 11

7.压力:Mpa

8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F)

9.温度:℃1F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15

电加热功率计算

加热功率的计算有以下三个方面:

● 运行时的功率● 起动时的功率● 系统中的热损失

所有的计算应以最恶劣的情况考虑:

● 最低的环境温度

● 最短的运行周期

● 最高的运行温度

● 加热介质的最大重量(流动介质则为最大流量)

计算加热器功率的步骤

● 根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。

● 计算工艺过程所需的热量。

● 计算系统起动时所需的热量及时间。

● 重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。

● 决定发热元件的护套材料及功率密度。

● 决定加热器的形式尺寸及数量。

● 决定加热器的电源及控制系统。

三维流体防爆电加热器

概述:是一种国际流行的高品质长寿命电加热设备。用于对流动的液态、气态介质的升温、保温、加热。当加热介质在压力作用下通过电加热器加热腔,采用流体热力学原理均匀地带走电热元件工作中所产生的巨大热量,使被加热介质温度达到用户工艺要求。

工作原理

流体防爆电加热器是一种消耗电能转换为热能,来对需加热物料进行加热。在工作中低温流体介质通过管道在压力作用下进入其输入口,沿着电加热容器内部特定换热流道,运用流体热力学原理设计的路径,带走电热元件工作中所产生的高温热能量,使被加热介质温度升高,电加热器出口得到工艺要求的高温介质。电加热器内部控制系统依据输出口的温度传感器信号自动调节电加热器输出功率,使输出口的介质温度

9 / 11

均匀;当发热元件超温时,发热元件的独立的过热保护装置立即切断加热电源,避免加热物料超温引起结焦、变质、碳化,严重时导致发热元件烧坏,有效延长电加热器使用寿命。

应用范围

流体防爆电加热器典型的应用场合主要有:

1、化工行业的化工物料升温加热、一定压力下一些粉末干燥、化工过程及喷射干燥。

2、碳氢化合物加热,包括石油原油、重油、燃料油、导热油、滑油、石腊等

3、工艺用水、过热蒸汽、熔盐、氮(空)气、水煤气类等等需升温加热的流体加温。

4、由于采用先进的防爆结构,设备可广泛应用在化工、军工、石油、天然气、海上平台、船舶、矿区等需防爆场所。

功能特点

1、体积小、功率大:加热器主要采用集束式管状电热元件。

2、热响应快、控温精度高,综合热效率高。

3、加热温度高:加热器设计最高工作温度可达850℃。

4、介质出口温度均匀,控温精度高。

5、应用范围广、适应性强:该加热器可适用于防爆或普通场合,防爆等级可达dⅡB级和C级,耐压可达20MPa。

6、寿命长、可靠性高:该加热器采用特殊电热材料制造,设计表面功率负荷低,并采用多重保护,使电加热器安全性和寿命大大增加。

7、可全自动化控制:根据要求通过加热器电路设计,可方便实现出口温度、流量、压力等参数自动控制,并可与机算机联网。

8、节能效果显著,电能产生的热量几乎100%传给加热介质

电加热器在液体过滤设备上的使用

1.流态型电加热器工作原理:

流态型电加热器是用于管道内介质加热及保温的主要设备,一般都是纯电阻性的,接电后,将电能直接转化为热能通过金属护套与周围介质进行热交换,从而实现介质的升温或保温的设备。全部过程在管道内完成,热效率非常高。根据介质对金属材料的腐蚀情况

10 / 11

及介质工作温度,可选用金属护套材料主要有铜和不锈钢,铜护套材料的最高持续工作温度为+250℃,不锈钢为+800℃,对于温度低于+150℃的场合,也于某些特殊防腐蚀的目的,可采用具有塑料外护套的加热电缆或一体化电缆。

2.电加热器有关标准:☆JB/T2379-93 《金属管状电热元件》☆GB/T19835-2005 《自限温伴热带》☆GB10067.1-88 《电热设备基本技术条件通用部分》☆GB5959.1 《电热设备的安全通用部分》第一部分通用要求☆GB5959.2-1998 电热设备的安全第二部分对电弧炉设备的特殊要求☆GB5959.3-88 电热设备的安全第三部分对感应和导电加热设备以及感应熔炼设备的特殊要求☆GB/T 10066.1-88 电热设备试验方法通用部分☆GB3836.1-2000 《爆炸性气体环境用电气设备》

3.电加热功率计算:加热功率的计算有以下三个方面:⊙运行时的功率⊙启动时的功率⊙系统中的热损失所有的计算应以最恶劣的情况考虑:⊙最低的环境温度⊙最短的运行周期⊙最高的运行温度⊙加热介质的最大重量(流动介质则为最大流量)计算加热器功率的步骤⊙根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。⊙计算工艺过程所需的热量。⊙计算系统起动时所需的热量及时间。⊙重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。⊙决定发热元件的护套材料及功率密度。⊙决定加热器的形式尺寸及数量。⊙决定加热器的电源及控制系统。

11 / 11

设备设计计算与选型

第三部分 设备设计计算与选型 3.1苯∕甲苯精馏塔的设计计算 通过计算D=1.435kmol/h , η=F D F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。 设计条件如下: 操作压力:4kPa (塔顶表压); 进料热状况:自选; 回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。 3.1.1精馏塔的物料衡算 (1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 11.78M A =kg/kmol 甲苯的摩尔质量 13.92M B =kg/kmol 18.0x =F 90.0x D = 01.0x W = (2) 原料液及塔顶、塔底产品的平均摩尔质量 =F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol =D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol =W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol (3) 物料衡算 原料处理量 F=146.5kmol/h 总物料衡算 146.5=D+W 苯物料衡算 146.5×0.18=0.9×D+0.01×W 联立解得 D=27.89kmol/h W=118.52kmol/h

3.1.2 塔板数的确定 (1)理论板层数T N 的求取 苯—甲苯属理想物系,可采用图解法求理论板层数。 ①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1 图3.1图解法求理论板层数 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 667.0y q = 450.0x q = 故最小回流比为 1.1217 .0233 .045.0667.0667.09.0x y y x q q q min ==--= --= D R 取操作回流比为 R=22.21.12min =?=R ③求精馏塔的气、液相负荷 L=RD=2.2×27.89=61.358kmol/h

第五章设备选型及计算.

第五章设备平衡计算 设备选型的主要依据是物料平衡,根据由浆水平衡计算出来的生产1t风干浆所需要的物料的两来计算通过每一设备的物料量(通过量),然后用通过量来校核或计算每一设备所应具有的生产能力,最终确定同种设备的台数。 5.1设备平衡的原则 1.主要设备的确定:确定主要设备的生产能力时,要符合设备本身的要求, 既不能过大的超出设计能力的要求,又要适当的留有 余地。 2.设备数量的确定:对于需要确定台数的设备,其数量要考虑该设备发生 事故或检修时仍有其他设备做备用维持生产。 3.备品的确定 4.公式计算法的选择 5.避免大幅度波动 5.2设备台数的确定方法: 设备台数的确定,是通过理论或经验公式计算设备生产能力。根据我国现有纸厂的实践经验和理论建设,确定设备的生产能力或按设备产品目录查取其生产能力后,则可以用下列的公式计算出所需的台数。

式中 N——选用台数 Q——生产中需该种设备处理的物料量(t/d) G——该设备的生产能力(t/d) K——设备利用系数,其大小随不同设备,以及设备所处的生产位置不同 而不同,打浆,漂白筛选设备的取0.7,蒸煮设备的 K值取0.8等 5.3设备台数的确定方法 5.3.1备料工段 由备料段物料平衡计算可知,每天处理玉米秆料量 2551.3817×10-3×50=127.5691 t/d 则每小时处理苇料的数量=5.3154 t/h 1. 带式运输机:(1台) 已知:设定皮带运输机运输玉米秆的速度为1.4m/s。 带式运输机的生产能力可由公式: G=3600F·v·r ○1采用平行带运输,则物料层的截面积按三角形面积求得: F=b·h/2 ○2 式中: F——带上物料层的截面积,m2; r——物料表观重度,t/m3取值0.13 t/m3; v——运输机的速度; b——物料层宽度,m 取值0.8B( B为带宽); h——物料层的高度, h=b·tgα/2 α=30°(物料堆积角)

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

学生专用计算器使用说明书

目录 取下和装上计算器保护壳 (1) 安全注意事项 (2) 使用注意事项 (3) 双行显示屏 (7) 使用前的准备 (7) k模式 (7) k输入限度 (8) k输入时的错误订正 (9) k重现功能 (9) k错误指示器 (9) k多语句 (10) k指数显示格式 (10) k小数点及分隔符 (11) k计算器的初始化 (11) 基本计算 (12) k算术运算 (12) k分数计算 (12) k百分比计算 (14) k度分秒计算 (15) kMODEIX, SCI, RND (15) 记忆器计算 (16) k答案记忆器 (16) k连续计算 (17) k独立记忆器 (17) k变量 (18) 科学函数计算 (18) k三角函数/反三角函数 (18) Ch。6 k双曲线函数/反双曲线函数 (19) k常用及自然对数/反对数 (19) k平方根﹑立方根﹑根﹑平方﹑立方﹑倒数﹑阶乘﹑ 随机数﹑圆周率(π)及排列/组合 (20) k角度单位转换 (21) k坐标变换(Pol(x, y)﹐Rec(r, θ)) (21) k工程符号计算 (22) 方程式计算 (22) k二次及三次方程式 (22) k联立方程式 (25) 统计计算 (27) 标准偏差 (27) 回归计算 (29) 技术数据 (33) k当遇到问题时 (33)

k错误讯息 (33) k运算的顺序 (35) k堆栈 (36) k输入范围 (37) 电源(仅限MODEx。95MS) (39) 规格(仅限MODEx。95MS) (40) 双行显示屏 双行显示屏可同时显示计算公式及其计算结果。 ?上行显示计算公式。 ?下行显示计算结果。 当尾数的整数部分多于三数字时﹐每隔三位便会有一个分隔符。使用前的准备 模式 在开始计算之前﹐您必须先进入下表所列的适当的模式。 ?下表所示的模式及所需的操作仅适用于MODEx。95MS。其他型号的用户请参阅“用户说明书2(追加功能)”之手册来 寻找有关其模式及模式选择方法的说明。 MODEx。95MS 型号的模式 按键两次以上将调出追加设置画面。有关设置画面的 说明将在其实际需要使用以改变计算器设置的章节里进行 阐述。 ?在本说明书中﹐有关为进行计算而需要进入的各模式的说

运输设备选型计算

盘县石桥老洼地煤矿 运输设备设计选型计算书

二零一四年 运输设备设计选型计算 一、概述 1、矿井设计生产能力 矿井设计生产能力为30t/年;主干系统包括通风、提升、运输。 2、井下运输 112运输石门和113运输石门用CDXT-2.5T型特殊防爆型蓄电池机车牵引1t固定箱式矿车运煤和矸石。其他运输为皮带、溜子运输。 运输方式的选择 一、运输方式

本矿井为高瓦斯突出矿井,112运输石门和113运输石门选用2.5t 特殊防爆型蓄电池机车牵引运输。煤、矸石采用2.5t固定式矿车装载,设备、材料用平板车或材料车装载,蓄电池机车牵引运输。 二、主要运输巷道断面、支护方式、坡度及钢轨型号 1、矿井巷道断面及支护方式 矿井下元炭煤层运输大巷采用料石砌碹支护方式,大白炭煤层运输大巷采用料石砌碹支护方式。 2、坡度 矿井主要运输巷道和石门的轨道运输坡度,均取千分之三的坡度。 3、钢轨型号 矿井主要运输斜井及石门敷设22㎏/m钢轨,600㎜轨距,木料轨枕。主平硐敷设30㎏/m钢轨,600㎜轨距,石料轨枕。 矿车 一、矿车选型 本矿井运载原煤的矿车选用600㎜轨距、MG1.1-6A型,1t固定式矿车。 二、各类矿车的数量 1、一吨固定式矿车 按排列法计算矿井达到设计生产能力时需用MG1.1-6A型1t固定式矿车6辆。 2、1t材料车

矿井运送材料采用MG1.1-6A 型一吨材料车,材料车数量为矿车, 为4辆。 3、1t 平板车 矿井运送设备采用MP1.1-6A 型1t 平板车,平板车数量为5辆。 运输蓄电池机车选型 一、设计依据 本矿井属高瓦斯矿井,井下运输选用CDXT-2.5T 型,600轨距, 特殊防爆型蓄电池机车牵引矿车。 本矿井在主平洞开拓113运输石门,113运输石门的材料、煤、 矸石需经主平洞运输,输距离均为1000m ,112回风石门前期运输距 离为210m 矸石率 20% 装运容器 MG1.1-6A 大巷轨道坡度 3‰ 二、设计选型计算 1、机车牵引能力 t 4.315 .1304.0110312224.01000=++++??=Q 蓄电池机车牵引MG1.1-6A 型1t 固定式矿车数量取4辆。 2、机车电机过热能力校核 (1)蓄电池机车牵引空车时的牵引力

计算器按键的使用说明

计算器按键的使用说明. 1、电源开关键:ON、OFF 2、输入键:0—9、. +/—:正负转换键 3、运算功能键:+ - * / (注意:加、减、乘、除键在计算时都可能代替等号键) √:开平方键,用来进行开平方运算。先输入数字,再按下此键,不必按等号键 即可得出结果。 4、等号键:= 5、清除键: ①C:清除键。在数字输入期间,第一次按下此键将清除除存储器内容外的所 有数值.如果是太阳能计算器,在计算器关闭状态下,按此键则开启电源,显示 屏显示出“0”。 ②AC或CA键:全部清除键,也叫总清除键,作用是将显示屏所显示的数字 全部清除。 ③→:右移键。其功能是荧屏值向右位移,删除最右边的尾数。 ④CE:部分清除键,也叫更正键。其功能是清除当前输入的数字,而不是清 除以前输入的数。如刚输入的数字有误,立即按此键可清除,待输入正确的数字后,原运算继续进行。如5+13,这时发现“13”输入错了,则按“CE”键就可 以清除刚才的“13”,但还保留“5”这个数。值得注意的是,在输入数字后,按“+”、“-”、“/”、“*”键的,再按“CE”键,数字不能清除。 ⑤MC:累计清除键,也叫记忆式清除键。其功能是清除储存数据,清除存储 器内容,只清除存储器中的数字,内存数据清除,而不是清除显示器上的数字。6、累计显示键: (1)M+:记忆加法键,也叫累加键。是计算结果并加上已经储存的数;用 作记忆功能,它可以连续追加,把目前显示的值放在存储器中(也就是将显示的 数字与内存中已有的任何数字相加,结果存入存储器,但不显示这些数字的和)。 如先输入“5×1.6”→按“M+”键(把“5×1.6”的结果计算出来并储存起来)→然后输入“10×0.8”→按“M+”键(把“10×0.8”的结果计算出来并和 前面储存的数相加)→接着输入“15×0.4”→按“M+”键(把“15×0.4”的结 果计算出来并和前面储存的数相加)→最后按“MR”键(把储存的数全部取出来)→则出结果“22” (2)M-:记忆减法键,也叫累减键。是计算结果并用已储存的数字减去目 前的结果;从存储器内容中减去当前显示值(也就是将显示的数字与内存中已有 的任何数字相减,结果存入存储器,但不显示这些数字的差). 计算“50-(23+4)”时→先输入“50”→按“M+”(把“50”储存起来)→ 再输入“23+4”→按“M-”键(计算结果是“27”)→再按“MR”(用储存的“50”减去目前的结果“27”)→则出结果“23” 7、存储读出键:MR MRC GT ①MR:存储读出键。表示用存储器中数值取 代显示值。按下此键后,可使存储在“M+”或“M-”中的数字显示出来或同时 参加运算,数字仍保存在存储器中,在未按“MC”键以前有效。MR调用存储器 内容,读取储存的数据。如有三组数字不连续在一起相加的时候,则用这个“MR”键。举例:如输入“3+2”时,按“M+”键,再输入“6+7”时,按“M+”键,再 输入“8+9”时按“M+”键,然后再按“MR”,则三组数字的总和“35”就出来了。 ②MRC:MR和MC功能的组合,即存储读出和清除键。按一次为MR功能,即 显示存储数,按第二次为MC功能,即清除存储数。

挤出滚圆设备选型

挤出滚圆设备选型 挤出滚圆系统设备选型分析 文中华 重庆力谱制药机械有限公司 摘要:介绍挤出滚圆微丸系统的设备种类,主要阐述其设备构成、工作流程、工艺特点。关键词:混合、挤出、滚圆、高粘度、热敏性 挤出滚圆工艺以其高效、工艺可操作性强、重现性好、收率高等优势而在医药、化工、食品等含行业均得到广泛应用。 挤出滚圆属于湿法挤压制粒范畴,使用的基本设备包括湿法混合机、挤出机和离心滚圆机,另外还有输送设备、计量设备、干燥设备等。在此对工艺中使用的基本设备做一简要描述,对各种设备进行分析,以方便用户进行相关设备选择。 一、湿法混合机 湿法混合机的种类繁多,适合做挤出滚圆混合用的设备要求混合均匀度高、混合得到的软材均匀性好,常用的主要由以下几种。 1、槽型混合机 槽型混合机用以混合粉状或糊状的物料,使不同质物料混合均匀。是卧式槽形单桨(或双桨)混合,搅抖桨为通轴式,便于清洗。与物体接触处全采用不锈钢制成,有良好的耐腐蚀性,混合槽可自动翻转倒料。 槽型混合机是间歇式混合机,需手动翻转出料,混合有死角,操作也不很方便,已渐渐被其他设备取代。

2、湿法混合制粒机 湿法混合制粒机能一次完成混合加湿、制粒等工序,适用于制药、食品、化工等行业。它是符合药品生产GMP要示的先进设备。具有高效、优质、低耗、无污染、安全等特点。 湿法混合制粒机生产效率高,全自动操作,是混合一般物料的理想设备。 典型产品:德国GLATT、德国DIOSNA、中国625所、浙江明天机械等。 3、捏合机 捏合机是一种对高粘度及超高粘度的弹塑性物料进行混炼、捏 合、破碎、分散及聚合成化工产品的设备;其功能全、品种多,应 用十分广泛,特别适用于塑料、橡胶、硅橡胶、染料、颜料、油墨、食品胶基、医药药剂、建筑涂料、碳素、纤素等各行业。 在挤出滚圆工艺中,用于对简单混合效果不理想的物料进行均 匀混合。 典型产品:德国LCI、英国CALEVA、德国IKA、莱州龙兴集团等。 4、连续混(捏)合机

论文中的设备选择及参数计算

一. 设备选择 1.电液比例方向阀:4WRE6V16-2X/G24型直动式电液比例方向阀; 表1 4WRE6V16-2X/G24型直动式电液比例方向阀参数表 2.比例放大器:与阀配套的VT –VRPA2–1–1X/V0/T1; 表2 VT-MRPA2-1模块化模拟式比例放大器参数表 3.液压马达:宁波中意液压马达有限公司的BM3-80摆线液压马达 表3 BM3-80摆线式液压马达参数表 2阀控液压马达系统数学建模 为了对阀控液压马达系统进行动态分析,需要建立阀控液压马达的数学模型。 2.1 电液比例方向阀数学建模 系统采用博世力士乐4WRE6V16-2X/G24型直动式电液比例方向阀,阀芯运动直接由比例电磁铁产生的电磁力驱动,在电磁力的作用下产生位移输出;根据电液比例方向阀的节流特性,产生与放大器输入控制电压相对应的流量输出。因此本节根据比例放大器的特性方程,比例电磁铁的稳态控制特性,阀芯的力平衡方程,阀的线性化流量方程。建立电液比例方向阀的数学模型。 1) 比例放大器 比例放大器将系统输入的电压转变成电流输出,以驱动比例电磁铁动作。系统采用的阀配套的VT-MRPA2-1型模块化模拟比例放大器,其频带比液压固有频率宽很多,可视为一阶比例环节,即 )()(s s I U K e a = (1) 式中 K a ----比例放大器增益; )(s I ----比例放大器输出电流; U e ----系统输入的偏差电压。 2) 比例电磁铁稳态控制方程

比例电磁铁输出的轴向驱动力 F d 与电流I 成正比,即: )()(s I s K F I d = (2) 式中 K I ----比例电磁铁的电流-力增益 3) 阀芯的力平衡方程 比例电磁铁产生的电磁力需要克服的负载力包括滑阀组件的的惯性力,滑阀阀芯的阻尼力及弹簧的弹性力等,则阀芯的力平衡方程为: )()()()(2 2 t dt t d d t m t x K x B t x d F v SF v p v d ++= 对上式进行拉普拉斯变换得: )()()()(2 s s s s m s X K X B X s F v SF v p v d ++= (3) 式中 m----滑阀阀芯组件的质量; X v ----阀芯位移; B p ----阀的阻尼系数; K SF ----弹簧刚度。 根据式(1)(2)(3)可以得到电液比例方向阀的负载流量Q L 与输入偏差电压 U e 的传递 函数: 1 2)() ()(2 2 ++= = s s s s v v v q e v v s K U X G ω ξ ω (4) 其中 m K SF v = ω K B SF p v m 2 = ξ ωv ----阀的等效无阻尼自振频率; ξv ----阀的阻尼系数; s----拉普拉斯算子。

(完整word版)设备设计与选型

设备设计与选型 7.1全厂设备概况及主要特点 全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。 本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式。 在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录)。 7.2反应器设计 7.2.1概述 反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。 7.2.2反应器选型 反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。 1、固定床反应器 固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。

固定床反应器的优点有: ①反混小 ②催化剂机械损耗小 ③便于控制 固定床反应器的缺点如下: ①传热差,容易飞温 ②催化剂更换困难 2、流化床反应器 流化床反应器,又称沸腾床反应器。反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应。流态化技术在工业上最早应用于化学反应过程。 流化床反应的优点有: ①传热效果好 ②可实现固体物料的连续进出 ③压降低 流化床反应器的缺点入下: ①返混严重 ②对催化剂颗粒要求严格 ③易造成催化剂损失 3、移动床反应器 移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出。反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。 本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000

设备选型

5.设备计算及选型 5.1设备选型的目的、依据及基准 1.设备选型的目的 化工生产是原料通过一系列的化学、物理变化的过程,其变化的条件是化工设备提供的。因此,选择适当型号的设备、设计符合要求的设备,是完成生产任务、获得良好效益的重要前提。 2.设备选型的依据 设备的选择是根据物料衡算、热量衡算的结果进行的,根据物料衡算的数据可以从《化工工艺设计手册》上查取并选择所需的设备型号,在根据其所对应的参数结合热量衡算的数据对所选设备进行校核,使其经济上合理,技术上先进,投资少,加工方便,采购容易,水电汽消耗少,操作清洗方便,耐用易维修。 3.设备选型的基准 根据各单元操作反应的周期,计算出生产批次,在由总体积计算出单批生产体积,以此数据查找《化工工艺设计手册》,对设备进行选择。 5.2不同设备的选型计算 1.储罐的选型 储罐用以存放酸碱、醇、气体、液态等提炼的化学物质。其种类有很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。就储罐的性价比来讲,现在以玻璃钢储罐最为优越,其具有优异的耐腐蚀性能,强度高,寿命长等,外观可以制造成立式,

卧式,运输,搅拌等多个品种。本次工程中需要用到的储罐有3-N-吗啡啉丙磺酸缓冲溶液储罐,四氢呋喃储罐,甲醇储罐,以及树脂预处理所用到的重生树脂所要用的溶剂乙醇的储罐。 (1)3-N-吗啡啉丙磺酸缓冲溶液储罐 缓冲溶液的体积:V= ρ 水 m = 1 1899 .1061=1061.1899L 圆整容积2500L ,选用V111钢衬塑储罐Φ1200*2240*4,材料纯聚乙烯,不锈钢304,容积2500L 面积1.1304m 2。 (2)四氢呋喃储罐 四氢呋喃的体积:V= 四氢呋喃 四氢呋喃 m ρ= 89 .0 1011.6276=1136.66L 选用V112玻璃钢卧式罐Φ1200*1400*5,材料不锈钢304,容积1583L ,面积1.1304m 2。 (3)甲醇储罐 甲醇的体积:V= 甲醇 甲醇 m ρ= 79 .0 149.9410=189.80L 选用V113 立式储罐Φ500*1000,材料不锈钢304,容积196.25L ,面积0.19625m 2 。 (4)浓缩储罐 浓缩储罐里面的物料是四氢呋喃和甲醇 甲醇的体积: V 甲醇= 甲醇 甲醇 m ρ= 79 .02706 .85=107.94L 四氢呋喃的体积:V 四氢呋喃= 四氢呋喃 四氢呋喃 m ρ= 89 .0 644.9393=724.65L 总的体积: V 总=107.94+724.65=832.59L

科学计算器的使用方法

一、计算器使用的状态 对于两类计算器来说,使用的是数值计算,所采用的状态是十进制状态: 1、学生计算器(KDT科灵通科学计算器):按模式键 第一次屏幕显示 第二次屏幕显示 按2次,再按1,则进入十进制计算状态,这时在屏幕上会出现D的标志。 2、普通计算器(价格10元以内):按键 直接按键,依次在屏幕上会分别显示:DEG、RAD、GRAD,表示十进制、弧度、百分率。要选择DEG,即在屏幕上看到DEG的标志。 二、角度的输入与计算 两种计算器都可以进行角度的运算以及转换: 1、学生计算器(KDT (1 例如输入129°59′26″,操作如下: 输入1295926

这时屏幕的第二行显示:129°59°26°,说明已经将角度输入 (2)角度经过三角函数的计算之后,显示的角度是十进制,即129°59′26″屏幕上显示129.353336,这时需要将十进制的角度转换回六十进制。 按129.353336→129°59°26°。 2 (1)角度的输入:输入角度要以六十进制输入,度和分秒以小数点隔开, 可将六十进制的角度值转换成十进制,用于角度计算或三角函数计算。 具体操作如下:输入129.5926 这时屏幕上显示结果129.9905556,可以进行角度的加减或三角函数计算。 (2)计算结果显示:当角度计算完毕后,需要显示角度的结果,即六十进制的角度结果, 按 具体操作如下:129.9905556→按 这时屏幕上显示计算结果129.592600,可以将成果记录下来。 三、测量误差的精度评定(统计计算) 两种计算器都可以进行标准偏差统计计算: 1、学生计算器(KDT科灵通科学计算器):在标准偏差统计模式下 (1)进入标准偏差统计计算模式:按 显示 ) 其中n x x2m,即中误差。

机电设备选型

《机电设备选型》学习领域课程标准 学习领域名称:机电设备选型 代码:Z020401027 学时:60 学分:4 适用专业:矿山机电 一、学习领域课程描述 (一)课程定位 《机电设备选型》课程是矿山机电专业进行岗位能力培养的一门核心课程,它集理论与实践与一体,是学生将来直接用于生产实践的实用技术,本课程构建于《运输与提升设备安装维修》、《井下电气设备安装维修》《煤矿生产与安全法律法规案例分析》等课程的基础上,围绕机电设备选型内容,本着企业需求组织教学内容,为进行煤矿生产一线工程技术人员提供技能训练,为岗位需求提供职业能力,为培养高端技能型专门人才提供保障。 (二)课程设计思路 《机电设备选型》课程采用以行动为向导、基于工作过程的课程开发方法进行设计,整个学习领域,由2个学习模块,即采区运输系统设备选型学习模块和采区供电系统设备选型学习模块,其中采区运输系统设备选型学习模块由6个情境组成,采区供电系统设备选型学习模块由7个情境组成。学习情境的设计要主要考虑以下因素: 1.学习情境的设计要符合基于工作过程的教学设计思想的要求。学习情境是在职业学校实训场地对真实工作的教学化加工,以完成具体的工作任务为目标。 2.学习情境的前后排序要符合学生认知规律,可以考虑从简单到复杂、从单一到综合的排序方法。 (三)课程特色 本课程采用以行动为向导、基于工作过程的课程开发方法进行设计,按照机电技术组的工作任务作为整个学习领域,由采区运输系统设备选型、采区供电系统设备选型2个模块组成;模块之间即相互独立,又为同一个采区而相互联系。每个模块先以系统拟定为学习情境,之后以系统中各设备的选型为学习情境。 二、学习领域目标 通过本课程的学习,培养学生的系统拟定、方案比较、选型计算等专业能力,以及学习和应用机电、采煤、通风等专业知识解决机电设备选型中实际问题的能力、自学和探索采区机电新设备和新技术的能力、收集查找资料和编写设计说明书的能力、创新能力等职业发展能力。 (一)专业知识目标 (1)明白机电设备选型设计所需收集的原始资料,熟悉采掘工程图及工作面作业规程相关知识; (2)熟悉采区运输系统、采区供电系统的拟定原则、拟定步骤;掌握系统方案技术比较方法; (3)熟悉采区运输及采区供电设备的选择原则、选择方法及步骤; (4)熟悉采区运输系统图、采区供电系统图、采区变电所硐室布置图、采区电缆敷设图的绘制方法及要求;

设备选型计算

bbQ - )( 12 KB ? 设备选型计算: 打浆设备: 1、针叶木打浆设备 已知:叩解度要求:叩前 15°SR ,叩后 35—40 °SR 叩解浓度:3.5% 计算:针叶木浆,纤维较长,需进行适当切断以改善纸页匀度,选用大锥度精 浆机与 ?450 双盘磨相结合的打浆设备,进行低浓半游离半粘状打浆,能 够满足工艺要求。 大锥度精浆机与 ?450 双盘磨的生产能力均可达到 40t/d ,故而针叶木用 量是 50%,30t/d.故采用 1 列,无需并联。 串联台数的确定:据资料及经验数据,两种设备的打浆能力为 8500— 9500 kg·O SR/h , 取 9000 kg·°SR/h ,则该打浆线需用台数为: N = Q (b 2 - b 1 ) B ? K 式中 N —需用打浆设备的台数 Q —浆料处理量,kg (绝干)/h b 1、b 2—原浆及成浆的打浆度,O SR B —打浆设备的打浆能力,kg·O SR/h K —富余系数,一般取 0.7 N= =408.6133×30×(40-15)/(9000×22.5×0.7) =2.2 故取 1 台大锥度精浆机及 2 台 ?450 双盘磨串联即可 大锥度精浆机主要数据:型号 ZDG11 单重 0.9t 生产能力 15-30t/d [6] ? 450 双盘磨主要数据:型号 ZDP11 重量 2.775t 生产能力 10-60t/d 进浆压力 1-3kg/cm 2 电机 JO 2117-6 115kw A23-7114P 0.4kw 外形尺寸 3185×930×1016

2、阔叶木浆打浆设备 已知:同上 计算:过程同上 N=245.1680×18×(40-15)/(9000×22.5×0.7)=0.8 故可取1台ZDP11型?450双盘磨浆机 3、麦草浆打浆设备 已知:叩解度要求:叩前15O SR,叩后35O SR 计算过程同上 计算:N=163.4533×12×(35-15)/(9000×22.5×0.7)=0.3 故可取1台ZDP11型?450双盘磨浆机 辅助设备: 1、浆池 (1)麦草浆未叩浆池 已知:V’=4086.1325,停留时间T=2h,产量12t/d,工作时间22.5h/d 计算:V=V’T=4086.1325×12×2/(1000×22.5)=4.3585m3 富余系数1.1 4.3585×1.1=4.7944m3 故选25M3卧式贮浆池并配循环推进器以保证其浓度稳定。 容积25M3 池底坡度4.0% 附:循环泵推进器 型号?390 电机JO2-52-67.5kw300r/min (2)麦草浆已叩浆池 已知:V’=6144.0524,其余同上 计算:V=V’T=6.5738m3 富余系数1.16.5738×1.1=7.2312m3 故选用浆池同上

化工设备设计基础课程设计计算说明书

化工设备设计基础课程设计计算说明 书 1

2

<化工设备设计基础>课程设计计算说明书 学生姓名:学号: 所在学院: 专业: 设计题目: 指导教师: 月日 目录

一.设计任务 书 (2) 二.设计参数与结构简 图 (4) 三.设备的总体设计及结构设 计 (5) 四.强度计 算 (7) 五.设计小 结 (13) 六.参考文 献 (14) 1

一、设计任务书 1、设计题目 根据<化工原理>课程设计工艺计算内容进行填料塔(或板式塔)设计。 设计题目: 各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。 例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据<化工原理>课程设计,确定塔设备的型式(填料塔、板式 塔); (2)根据化工工艺计算,确定塔板数目 (或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2

2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1<化工原理>课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M]. 北京:化学工业出版社, . [2] 全国化工设备技术中心站.<化工设备图样技术要求> [S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社, . [5] JB/T4710- .钢制塔式容器[S]. 4、文献查阅要求 设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。 3

设备断路器选型计算方法

设备断路器选型计算方 法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

设备断路器选型计算方法 当用电回路发生故障和短路时,断路器能够切断用电回路,保护用电设备。如何选择合适的断路器,其计算方法如下: 一、计算计算电流: 1)三相负荷时: 1.52/cos js js I P φ=?; js e P P Kx =?; 其中,cos φ为功率因数, Kx 为需要系数,可根据《建筑电气常用数据》附表(P 23-27)查出。 由回路的计算电流大小,根据《施耐德电气配电产品选型手册》选择断路器。依据计算电流从小到大,常用的断路器如下: C65断路器,计算电流不超过40A 的可选用该系列的,具体选型查手册8-16,8-17,8-18; 例1: 12js P KW =,cos 0.8φ=; 12 1.52/0.822.8js I =?=, 选断路器时,其额定电流 1.25js I I >; 因此,选择的断路器的型号为:C65N-D32A/4P+30mA 。 Compact NS 塑壳断路器,计算电流在450A 以下的,可选用该系列断路器,常用的是NSX100,NSX160,NSX250系列的; 例2: 40,cos 0.8js P KW φ==, 40 1.52/0.876js I =?=, NSX100的满足要求; 选断路器时,其额定电流 1.25js I I >, 因此,选定的断路器型号为NSX100NTM100A/4P 。 注:1、断路器选择应注意按照负荷类型选取特性曲线。计算机插座回路 剩余电流动作装置选用A 型,其他的插座回路选C 型曲线;开水器断路器选

校园网设备选型与设计说明书

校园网设备选型与设计说明书 第一章校园网概述 校园网是在学校范围内,在一定的教育思想和理论指导下,为学校教学、科研和管理等教育提供资源共享、信息交流和协同工作的计算机网络。校园网除了需要有必备的硬件设备和操作系统平台外,利用全面的校园网络管理软件、网络教学软件,实现学校多媒体教学资源、教师备课系统、电子图书阅览检索、多媒体教学软件开发平台、校园网站和教学资源网站建设等功能。为学校提供教学、管理和决策三个不同层次所需要的数据、信息和知识的一个覆盖全校管理机构和教学机构的基于Internet/Intranet技术的大型网络系统。校园网应该具有较先进的水平,体现现代教育思想,要把建设校园网的规划与学校的长远发展规划统一起来,同时把服务教学作为网络建设的着眼点和落脚点。校园网还应具有教务、行政、总务管理功能,可以进行课程管理、学生成绩与学籍管理、图书资料管理等教学教务管理,也可以进行档案管理(含人事、教师档案等)、处室管理等行政事务管理,总务后勤管理包括财务管理、设备、房产等。 校园网是不以盈利为目的的。校园网上提供大量的免费资源,供广大师生工作学习之用,它所涉及的范围并不局限于校园内部。有些人认为:校园网就是大学校园围墙里面的网,即围墙里面的就是校园网,围墙外面的就是公网。这种看法是错误的。校园网的界限,并不是以用户终端所处的地理位置范围来的界定的,而是以校园网提供的接入服务范围来界定的。在校园围墙内可以有公网,在校园围墙外也可以有校园网,应满足对内对外的通信功能。

第二章校园网设备选型 2.1校园网设备选型对校园网建设的重要意义 一个完整的校园网建设主要包括两个内容:技术方案设计;应用信息系统资源建设。 技术方案设计主要包括:结构化布线与设备选择、网络技术选型等。 应用信息系统资源建设主要包括:内部信息资源建设、外部信息资源建设等。 在这里我重点说一下设备选择的重要意义。设备选择这一环节做的好的话首先可以为学校节约大笔的校园网建设费用,其次为校园网网络规模的扩大和校园网服务的扩展提供了较大空间,最后可以为综合布线节约大部分时间。 2.2校园网设备的分类 校园网的网络设备分为交换机,路由器,网络服务器,专业网管软件等。 2.3校园网设备选型的原则 校园网设备我简单的把它总结为需要硬件设备和软件设备,硬件设备包括交换机,路由器,网络服务器等.软件设备包括专业网管软件. 对于中小规模的网络,设备选型时应遵循以下一些基本原则 (1) 标准化原则:所选择的设备必须基于国际标准或行业标准。因为只有基于标准的产品才有可能和其他厂商的产品互连互通(需要指出的是,并非只要基于标准的产品,彼此之间才能够互连互通)。 (2) 技术简单性原则:对网络需求必须十分明确。对于普通用户而言,在满足需求的前提下,尽可能选择简单实用的技术和设备。否则,今后的运行管理、故障诊断等,都需要请专业人员,开销巨大,运行效果不见得好。 (3) 环境适应性原则:不要轻信外国某些机构的评测报告,其中不乏商

挤出设备计算与选型

第4章挤出设备计算与选型 挤出生产线的设备计算 依据设计任务书,要求要设计年产量25万吨PUC-U塑钢型材生产车间,生产时间设置为6744小时。 选择的挤出机为TSH-135双螺杆挤出机,其生产能力为5000kg/h,则所需挤出机台数为:÷5÷6774=台,实际中取为8台。即能完全符合产量要求,且留有增大产量空间,可减少机器满负荷运转的时段。并且该PVC-U型材推拉框生产线,自动化程度高,性能稳定,变频调速等多项特点。所以选用TSH-135双螺杆挤出机设备,其技术参数见表4-1[15]。 表4-1 锥形双螺杆挤出机设备工技术参数

混合机组的设备计算 高速混合机的选取与计算 每年需要高混的物料量为: 每天需要高混的物料量为:281= 每小时需要高混的物料量:24= 每10分钟可以混一锅料,则每小时混6锅料,则每锅混料量:6= PVC-U粉料的表观密度为m3,每锅可装粉料量:=; 则需要高混机的最小容积为。 所以选用WLD-H-35高速加热/冷却混合机组,其技术参数见表4-2。 表4-2 WLD-H-35热混机技术参数

高混机的有效容积取15m3,PVC-U粉料的表观密度为m3,每锅可装粉料量:×15= t 每10分钟可以混一锅料,则每小时混6锅料,则每小时混料量: ×6= t/h 需要高混机:×6744)=台 所以选用2台WLD-H-35热混机。 冷混机的选取与计算 与WLD-H-35热混机配套的冷混机可选用 WLD-H-35冷却机。WLD-H-35冷却机技术参数见表4-3。

表4-3 WLD-H-35冷混机技术参数 需要冷混机的台数:×6744)= 所以选用2台WLD-H-35冷混机。 其它设备计算 粉碎机(技术参数见表4-4)及磨粉机(技术参数见表4-5)因只在回收粉碎废品时使用,年需破碎、磨粉量为吨,全年需要破碎下脚料为吨,选用PE-200×300型破碎机,每小时破碎量为3-6t/h,因此选用大型的PE-200×300型粉碎机和同规格的磨粉机即可满足生产;这些设备8条生产线选用一台机器就可满足生产要求。 表4-4 粉碎机设备技术参数

设备选型计算

K B b b Q ?-)(12K B b b Q ?-) (12设备选型计算: 打浆设备: 1、针叶木打浆设备 已知:叩解度要求:叩前15°SR,叩后35—40 °SR 叩解浓度:3、5% 计算:针叶木浆,纤维较长,需进行适当切断以改善纸页匀度,选用大锥度精浆机与 ?450双盘磨相结合的打浆设备,进行低浓半游离半粘状打浆,能够满足工艺要求。 大锥度精浆机与?450双盘磨的生产能力均可达到40t/d,故而针叶木用量 就是50%,30t/d 、故采用1列,无需并联。 串联台数的确定:据资料及经验数据,两种设备的打浆能力为8500—9500 kg·O SR/h, 取9000 kg·°SR/h,则该打浆线需用台数为: N = 式中 N —需用打浆设备的台数 Q —浆料处理量,kg(绝干)/h b 1、b 2—原浆及成浆的打浆度,O SR B —打浆设备的打浆能力,kg·O SR/h K —富余系数,一般取0、7 N= =408、6133×30×(40-15)/(9000×22、5×0、7) =2、2 故取1台大锥度精浆机及2台?450双盘磨串联即可 大锥度精浆机主要数据:型号 ZDG11 单重 0、9t 生产能力 15-30t/d [6] ? 450双盘磨主要数据:型号 ZDP11 重量 2、775t 生产能力10-60t/d 进浆压力1-3kg/cm 2 电机 JO 2117-6 115kw A23-7114P 0、4kw 外形尺寸 3185×930×1016

2、阔叶木浆打浆设备 已知:同上 计算:过程同上 N=245、1680×18×(40-15)/(9000×22、5×0、7)=0、8 故可取1台ZDP11型?450双盘磨浆机 3、麦草浆打浆设备 已知:叩解度要求:叩前15 O SR,叩后35 O SR 计算过程同上 计算:N=163、4533×12×(35-15)/(9000×22、5×0、7)=0、3 故可取1台ZDP11型?450双盘磨浆机 辅助设备: 1、浆池 (1)麦草浆未叩浆池 已知:V’=4086、1325,停留时间T=2h,产量12t/d,工作时间22、5h/d 计算: V=V’T=4086、1325×12×2/(1000×22、5)=4、3585m3 富余系数1、1 4、3585×1、1=4、7944m3 故选25M3卧式贮浆池并配循环推进器以保证其浓度稳定。 容积25M3 池底坡度4、0% 附:循环泵推进器 型号?390 电机JO2-52-6 7、5kw 300r/min (2)麦草浆已叩浆池 已知:V’=6144、0524,其余同上 计算:V=V’T=6、5738 m3 富余系数1、1 6、5738×1、1=7、2312m3 故选用浆池同上

相关文档