文档视界 最新最全的文档下载
当前位置:文档视界 › 生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状
生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状

摘要:通过查找文献,简要介绍了生物柴油的定义和优点,重点介绍它的制备方法,同时也对它在国内外的发展现状作了些介绍。

关键词:生物柴油;制备;现状;

Abstract:This article gives a brief introduction to the definiton , advantages and development at home and abroad of the biodiesel,it also gives an emphasis introduction on prepation method .

Keywords: biodiesel;prepation;actuality;

随着城市对能源需求的不断增加,石油资源的日益枯竭,全世界都将面临能源短缺的危机,而且石油燃烧对环境造成严重的污染,在很大程度上影响着人们的健康水平,于是对生物柴油的研究应用成为缓解日益恶化的能源和环境问题的焦点。

1生物柴油的定义及优点

1.1 定义

生物柴油是指以油料作物、野生油料植物、工程微藻等水生植物油脂以及动物油脂、餐饮废油等为原料,通过酯交换工艺制成的有机脂肪酸酯类燃料[1]。产业化生产中所说的生物柴油是指脂肪酸甲酯,是脂肪酸与甲醇发生酯化反应后的生成物。

基于美国生物柴油协会定义,生物柴油是指以植物、动物油脂等可再生生物资源生产的可用于压燃式发动机的清洁替代燃料。天然油脂由长链脂肪酸的甘油三酯组成,分子量大,接近700~1000,虽本身可以燃烧,但不能和普通柴油充分混合,直接用作柴油有很多缺陷,需要设计专门的柴油机。酯交换后得到脂肪酸甲酯,分子量降低至200-300,与柴油的分子量相近,性能也接近于柴油,可以按任意比例混合,也无需设计专门的柴油机。且具有接近于柴油的性能,是一种可以替代柴油使用的环境友好的环保燃料。

1.2 优点

生物柴油与石化柴油具有相近的性能,并具有显著的优越性[2,3]:(1)具有优良的环保特性。生物柴油中硫含量低,不含芳香烃,不含芳烃和硫(<10μg/g),燃烧尾气

对人体损害低于柴油,生物柴油的生物降解性高。(2)具有较好的润滑性能。在其加剂量仅为0.4%时,生物柴油就显示出抗磨作用,可以缓解由于推行清洁燃料硫含量降低而引起的车辆磨损问题,增强车用柴油的抗磨性能。(3)具有较好的安全性能。由于闪点较石化柴油高,大于100℃,生物柴油不属于危险燃料,在运输、储存、使用方面的优点显而易见的。(4)具有良好的燃烧性能。其十六烷值高,大于56(普通柴油为49),燃烧性好于柴油。燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命延长。(5)具有可再生性能。作为可再生能源,其供应不会枯竭。(6)使用生物柴油的系统投资少。原有的引擎、加油设备、储存设备和保养设备等基本不需改动。(7)生物柴油以一定比例与石化柴油调和使用,可以降低油耗、提高动力性,降低尾气污染。

2 生物柴油制备方法

目前,生物柴油制备方法主要有直接混合法、微乳化法、高温裂解法和酯交换法[4]。前两种方法属于物理方法,虽简单易行,能降低动植物油的黏度,但十六烷值不高,燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生,缺点是在高温下进行,需催化剂,裂解设备昂贵,反应程度难控制,且高温裂解法主要产品是生物汽油,生物柴油产量不高。工业上生产生物柴油主要方法是酯交换法。在酯交换反应中,油料主要成分三甘油酯与各种短链醇在催化剂作用下发生酯交换反应得到脂肪酸甲酯和甘油。可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇,其中最常用的是甲醇,这是由于甲醇价格较低,碳链短,极性强,能够很快与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。酯交换反应是可逆反应,过量的醇可使平衡向生成产物的方向移动,所以醇的实际用量远大于其化学计量比。反应所使用的催化剂可以是碱、酸或酶催化剂等,它可加快反应速率以提高产率。酯交换反应是由一系列串联反应组成,三甘油酯分步转变成二甘油酯、单甘油酯,最后转变成甘油,每一步反应均产生一个酯。酯交换法包括酸催化、碱催化、生物酶催化和超临界酯交换法等。

2.1 直接混合法

在生物柴油研究初期,研究人员设想将天然油脂与柴油、溶剂或醇类混合以降低其黏度,提高挥发度。1983年Amans等将脱胶的大豆油与2号柴油分别以1:1和1:2的比例混合,在直接喷射涡轮发动机上进行600 h的试验。当两种油品以1:1混合时,会出现润滑油变浑以及凝胶化现象,而1:2的比例不会出现该现象,可以作为农用机

械的替代燃料。Ziejewski等人将葵花籽油与柴油以1:3的体积比混合,测得该混合物在40℃下的黏度为4.88×10-6 m2/s,而ASTM (美国材料实验标准)规定的最高黏度应低于4.0×10-6 m2/s,因此该混合燃料不适合在直喷柴油发动机中长时间使用。而对红花油与柴油的混合物进行的试验则得到了令人满意的结果。但是在长期的使用过程中该混合物仍会导致润滑油变浑[5]。

2.2 微乳液法

微乳状液是由两种不互溶的液体混合而形成的直径在1~150nm的胶质平衡体系,一种透明的、热力学稳定的胶体分散系[6]。1982年Georing等用乙醇水溶液与大豆油制成微乳状液,这种微乳状液除了十六烷值较低之外,其他性质均与2号柴油相似。Ziejewski等以体积比为53.3﹪的葵花籽油、13.3﹪的甲醇以及33.4﹪的1一丁醇制成乳状液,在200 h的实验室耐久性测试中虽然没有出现严重的破乳现象,但使用时仍出现了积炭和使润滑油黏度增加等问题。Neuma等[7]使用表面活性剂、助表面活性剂、水、柴油和大豆油为原料,开发了一种新的微乳状液体系,由柴油(3.160 g),大豆油(O.790g),水(O.050g),异戊醇0.338g和十二烷基硫酸钠(O.676g)组成,微乳状液体系的物理性质和燃烧性能与柴油非常接近。

2.3 高温热裂解法

高温裂解是在空气或氮气流中由热能引起化学键断裂而产生小分子的过程。甘油三酯高温裂解可生成一系列混合物,包括烷烃、烯烃、二烯烃、芳烃和羧酸等。不同的植物油热裂解可得到不同组分的混合物。Schwab等对大豆油热裂解的产物进行了分析,发现烷烃和烯烃的含量很高,占总质量的60%。并且发现裂解产物的黏度比原油下降了3倍多,但是该黏度值还是远高于普通柴油的黏度值。关于十六烷值和热值等方面,大豆油裂解产物与普通柴油相近。Pioch等[8]将椰油和棕桐油以SiO2/AI2O3为催化剂,在450℃裂解,对植物油催化裂解生产生物柴油进行了研究。发现裂解得到的产物分为气液固三相,其中液相的成分为生物汽油和生物柴油。分析表明,该生物柴油与普通柴油的性质非常相近。

加氧裂化方法也可生产生物柴油,现已开发了几种新工艺。加氧裂化方法不联产丙三醇。可将植物油转化为高十六烷值、低硫柴油,可加工宽范围原料包括高含游离酸的物料。加氢裂化过程中发生几种反应,包括加氢裂化、加氢处理和加氢。与石油基柴油相比,其降解率更高,但其主要优点是可降低NO的排放量[9]。

2.4 酯交换法

酯交换反应是在催化剂(酸、碱、酶等)作用下,利用低分子量醇类(甲醇、乙醇、丙醇、丁醇和戊醇等)将甘油三酸酯的甘油酯基取代下来,使一个大分子甘油三酸酯分成三个单独的脂肪酸甲酯,从而缩短碳链长度,降低产品黏度,提高挥发度,改善低温流动性能。Freedman等[10]认为,酯交换反应是由一连串可逆反应组成的,即甘油三酸酯逐步转化为二脂肪酸甘油酯、甘油单酯和甘油,每一步生成一种酯化产物,三步酯交换反应过程如下:

甘油三酸酯+R0H→二脂肪酸甘油酯+RCOOR (1)

二脂肪酸甘油酯+ROH→甘油单酯+RCOOR2 (2)

甘油单酯+ROH→甘油+RCOOR3 (3)

由以上反应过程看出,酯交换法制备生物柴油过程简单,所需催化剂易得,工艺条件容易实现,低温、常压下便可大量生产,有利于工业化生产。通过以上的酯交换反应可以使天然油脂(甘油三酸酯)的分子量降至原来的1/3,黏度降低8倍,同时也提高了燃料挥发度。生产出来的生物柴油的黏度与柴油接近,十六烷值达到50。

目前,大部分工厂所使用的酯交换工艺为传统的两步法,即反应和提纯两步。反应中最主要的影响因素是甲醇和催化剂用量,甲醇用量越多,产率越高,但会给分离带来困难。在进行酯交换反应时,以碱作为催化剂进行酯交换反应,其效果最好,但对反应物中水分及游离脂肪酸的含量有严格的要求。反应后混合产物经静置分为上下两层,下层为甘油和剩余甲醇的混合物,此外还有少量反应生成的皂类物质,上层是甲酯层。将上层的甲酯取出,经水洗除去溶于其中的微量甘油、甲醇和皂类物质,再经干燥脱水便得到最终产品。将下层经蒸馏等工序可回收甲醇,提纯甘油。在水分和游离脂肪酸含量较高的情况下,酸催化下的酯交换反应比较适合,但其转化率较低,反应速率较慢。酯化反应温度越高,反应速度越快。酯交换反应为可逆反应,为提高转化率需要加入过量的醇或将产物从反应体系中移走。但醇的用量过大会增加醇回收的难度,试验表明将醇与脂肪酸甘油酯的物质的量的比率维持在适当的水平能得到比较高的收率。用酸或碱作为催化剂制取生物柴油的缺点在于:工艺较复杂,醇必须过量,后续工艺必须有相应的醇回收装置,生成过程中有废液排除,能耗较高,在碱催化的条件下有皂类物质生成并可能阻塞管道。为解决上述问题,人们开始尝试用生物酶法合成生物柴油[11]。

2.4.1 碱催化酯交换反应

2.4.1.1 无机碱催化酯交换过程它的反应速率比酸催化要快得多。常用无机碱催化剂有甲醇钠、氢氧化钠、氢氧化钾、碳酸钠和碳酸钾等。Gemma Vicente等人以甲醇钠、甲醇钾、氢氧化钠和氢氧化钾等均相碱催化剂,对催化太阳花油合成生物柴油进行了比较。结果表明,采用甲醇钠和甲醇钾为催化剂可获得近100%的收率,而使用氢氧化钠和氢氧化钾的收率只有85.9%和91.67%;甲醇钠在用于制备生物柴油的碱催化剂中活性相当高,但易溶于脂肪酸。Alcantara等在用甲醇钠作催化剂制备生物柴油过程中发现,在60℃时,甲醇/油的物质的量比为7.5:1,加入质量分数为l%的甲醇钠,转速600r/min,3种油脂基本完全转化。然而,油脂中若含有水,甲醇钠活性将大大降低。同时氢氧化钠和氢氧化钾相对于甲醇钠的价格要便宜些。目前工业上常以天然油脂为原料生产生物柴油,因为天然油脂几乎都含有一定量的游离脂肪酸,它的存在不利于酯交换的进行,所以,单纯采用碱催化酯交换法生产脂肪酸甲酯损失大、得率低。一般先加人酸性催化剂,对原料进行预酯化,然后加入碱性催化剂进行酯交换。

2.4.1.2 有机碱催化酯交换过程传统的酸碱催化酯交换,由于油脂中水和游离脂肪酸易产生大量副产物,分离比较难。含氮类的有机碱作为催化剂进行酯交换,分离简单清洁,不易产生皂化物和乳状液。

2.4.1.3 多相碱催化酯交换过程在传统的酸碱催化酯交换过程中,催化剂分离比较难。因此,多相催化酯交换过程逐渐受到人们的关注。Peterson等首先将多相催化引入油菜籽油的酯交换过程中。由于多相催化剂的存在,反应混合物形成油-甲醇-催化剂三相,因而反应速率相对较慢,但大大简化了反应产物与催化剂的分离。Wenlei Xie等人报道了以NaX沸石催化剂负载KOH作为异均相催化剂,通过酯交换法制备大豆油甲基酯的情况。多相催化虽解决了分离的问题,但反应时间太长,且有些催化剂如分子筛和固体碱制备成本比较高。此外,催化剂易中毒,需解决其寿命问题[12]。

2.4.2 酸催化酯交换反应

碱催化法在低温下可获得较高产率,但对原料中游离脂肪酸(FFA)和水含量有严格限制。因为在反应过程中,FFA与碱反应产生皂类会在反应体系中起到乳化作用,使产物甘油与脂肪酸甲酯产生乳化而无法分离;所含的水则能引起酯水解,从而进一步引起皂化反应,最终减弱催化剂活性。因此,碱催化法在实际应用中受到很大限制。许多研究者开始把目标转向酸催化法,酸催化法虽然反应温度较高,但FFA 和少量水的存在对酸催化剂催化能力影响不大。另外,FFA会在该条件下发生酯化反应,且其速率远大于酯交换速率,这时可采用成本较低废餐饮油(FFA占油重2.0%

左右)为原料制备生物柴油,从而降低生产成本,使生物柴油较石化柴油更具竞争力。

2.4.2.1 均相酸催化酯交换反应过程该法常用催化剂有硫酸、盐酸、苯磺酸和磷酸等,多数都是Brpbnsted酸。硫酸价格便宜,资源丰富,是最常用一种均相酸催化剂。用酸催化时,耗用甲醇量要比碱催化时多,反应时间更长,通常要求含水量小于0.5%。另外,FFA酯化产生水也会使催化剂活性下降。

2.4.2.2 多相酸催化酯交换反应过程采用均相酸作为催化剂时,虽油脂转化率高,但催化剂由于均相而难以与产物分离,反应后需进行中和水洗才能除去;同时,催化剂也会随产品流失,从而使催化剂消耗增加,生产成本升高。因此,多相酸催化剂逐渐成为研究热点。在多相酸催化过程中,Brqbnsted酸和Lewis酸可同时起作用,在有水存在的条件下可以相互转化[12]。

2.4.3 使用生物酶催化酯交换反应

酶催化法是指用脂肪酶为催化剂,将醇与植物油进行酯交换反应生成脂肪酸酯的过程。酶催化法具有油脂原料适用性较广、反应条件温和(3O~40℃)、醇用量小、脂肪酸酯收率较高、产品易于收集和无污染等优点,近年来越来越受到人们的关注。

常规酶催化工艺中,由于甲醇在油脂中的溶解性差,体系中存在过多的甲醇极易导致脂肪酶失活,使脂肪酶的使用寿命缩短,从而导致脂肪酶的使用成本过高。另外,副产物甘油极易粘附在固定化酶的表面,影响传质效果,从而对酶催化活性及稳定性产生严重的负面影响。不少学者致力于降低甲醇及甘油负面影响的研究,如分步加入甲醇以降低甲醇对脂肪酶的毒害作用及定期用有机溶剂冲洗固定化脂肪酶以除去附着在酶表面上的甘油,这些措施可在一定程度上改善脂肪酶的催化活性和操作稳定性。

Iso等在甘油三脂肪酸酯与短链醇(甲醇、乙醇、1-丙醇或l-丁醇)的反应体系中加入溶剂1,4-二氧环己烷,可大幅度加快反应速率。文献报道,以相对亲水的惰性有机溶剂叔丁醇为反应介质制备生物柴油时,反应所需甲醇可一次性加入,除固定化酶外,反应呈均相体系。由于甲醇和副产物甘油可很好地溶解在叔丁醇反应介质中,故它们对脂肪酶催化活性和稳定性的负面影响不大,可大幅度延长脂肪酶的使用寿命。常温、常压下,脂肪酶可有效转化各种动植物油脂制备生物柴油,单程转化率达90%以上。

酶催化法的不足是生物(脂肪)酶的价格昂贵,反应速率慢。这些不足在一定程度上影响了酶催化法的推广应用[13]。

2.4.4 无催化剂条件下的酯交换反应

在无催化剂条件下生产生物柴油是为了解决酯交换反应中遇到的成本高、反应

时间长、反应产物与催化剂难于分离等问题。M.Diasakou等研究了在加热条件下大豆油与甲醇的酯交换反应,进行了动力学的研究,得到了无催化剂条件下反应的特点。醇油比为21:1,在235℃下反应10h,甲酯质量分数超过了85%。Saka和Kusdianat[14]研究发现,经过超临界处理的甲醇能够在无催化剂存在的条件下与菜籽油发生酯交换反应,其产率高于普通的催化过程,并且反应温度较低,同时还避免了使用催化剂所必须的分离纯化过程,使酯交换过程更加简单、安全和高效[15]。

3 国内外生物柴油产业化发展现状

进入21世纪,人类实际上已经开始迈进“生物质经济”时代,生物柴油作为一种重要的生物燃料,将是这一时代的标志性事物之一。迄今,世界上许多国家在发展生物柴油技术和产业方面投入重金,并已取得了不同程度的研究进展,见表1。生物柴油快速发展的根本原因在于其兼具能源与环保双重功能,而石油价格大幅攀升使得生物柴油在商业上变得可行[16]。目前,全球生物柴油的总产量已经达到300万t。主要使用于环保敏感部门和政府用车。

注:*生物柴油的比例指燃料中所含生物柴油的体积分数。B1O表示燃料中所含生物柴油的体积为10%。

3.1 国外生物柴油技术发展概况

3.1.1 欧盟

欧洲是生物柴油的发源地,也是近年来增长最快的地区。而近期,欧盟委员会已在敦促成员国大力发展更先进的第二代生物燃料。二代生物燃料不仅有取之不尽的原料资源而且使用成本很低,草、麦秸、木屑及生长期短的木材都能成为原料。而欧洲的生物柴油份额已占成品油市场的5%以上。鉴于植物生长过程吸收的CO2大于生物柴油燃烧排放的CO2,欧盟为了履行“京都议定书”中做出的在2008~2012年间CO2减排量要达到8%的承诺,大力发展生物柴油。进入21世纪后,欧洲生物柴油的产量迅速提高,2001年为78万t,2002年达到106万t,2003年则上升为142万t,2004年进一步提高到193.3万t,年增长率高达35%~40%。并计划于2010年达到830万t,占柴油市场份额的5.75%,于2020年达到20%。目前仅欧共体内已有近40套生产装置,最大装置的产能达25万t/a。

在欧盟,生物柴油能够迅速发展有两个重要因素:首先,欧洲实行农业预留地政策,给予种植生物柴油原料作物大量的补贴;其次,欧洲实行高额能源税,包括燃油税、CO2税、SO2税等各种税收占柴油售价的1/2至2/3,而生物柴油可免除90%的燃油税。这一系列的优惠政策,提高了欧盟生物柴油的竞争性。

德国是目前全球最大的生物柴油生产国,从1998年至2003年,5年内增长了10倍,至2003年,已建23家工厂,其中10万t/a的生物柴油工厂有7~8家,全国总产量达到72万t(产能110万t),占整个欧洲消费量的50%,生物柴油加油站已达1600个,占加油站总数的10%,其中40%的生物柴油是通过加油站销售,其余60%卖给了大宗客户如政府车队、运输车队、出租汽车公司等。

3.1.2 美国

美国对生物柴油的注意是由1990年的空气清洁法案引起的,该法案包含了要求降低柴油燃料中硫含量和降低柴油废气排放的规定。1992年的能源政策法案,已经确立到2000年用非石油代用燃料来替换10%的发动机燃料,到2010年将这一比例提高到30%的目标。但目前看来美国对生物柴油开发和利用的这一目标还远未达到。据美国国家生物柴油局(NBB)报告,2002年美国生物柴油消费量比2001年的4.73万

高性能混凝土的设计研究与发展现状

开题报告 高性能混凝土是在现代高强混凝土的基础上发展起来的。使用新型的高效减水剂和矿物掺和料,是使混凝土达到高性能的主要技术措施,前者能降低混凝土的水胶比,增大坍落度,控制坍落度损失,提高混凝土的密实性和工作性;后者能填充胶凝材料的孔隙,参与胶凝材料的水化,除提高混凝土的密实度外,还改善混凝土的界面结构,提高混凝土的强度和耐久性。粉煤灰高性能混凝土将粉煤灰作为矿物掺和料,既改善了混凝土的技术性能,同时又充分利用了工业废料,有效地节约了资源和能源,减少了环境污染,符合绿色高性能混凝土的发展方向,促进了混凝土技术的健康发展。 高性能混凝土的定义最早在美国提出。1990年5月在美国马里,由美国国家标准与工艺研究院(NIST)和美国混凝土学会(ACI)主办的讨论会上,将HPC定义为具有所要求的性能和匀质性的混凝土。这些性能主要包括:易于浇注捣实而不离析,力学性能好,早期强度高,韧性好,体积稳定性好,在恶劣条件下使用寿命长等。 高性能混凝土概念的提出至今只有十多年的时间,但是由于国际上广泛认识到高性能混凝土具有高工作性、高耐久性和高强度等特性,用其替代传统的混凝土以及建造在严酷环境中的特殊结构物,具有显著的经济效益和技术先进性,因此高性能混凝土的开发和应用得到了各国的很大重视,并且取得了巨大成果。美国、日本、法国、加拿大等国已将高性能混凝土作为跨世纪的新材料,投入了大量的人力、物力和财力进行研究和开发,至今已在不少重要工程中使用。高性能混凝土适应了当今科学技术和生产发展的要求,可以提高混凝土结构的使用寿命,大量利用工业废渣,减少资源耗费和环境污染,便于施工,节约能源,己被各国普遍认为是今后混凝土技术的发展方向,是混凝土可持续发展的出路所在。 从1996年开始,我国国家计委、国家科技部先后2次设立科技攻关项目,进行高性能混凝土的创新研究,由中国建筑材料科学研究院、清华大学、同济大学、中国水利水电科学研究院等几十所科研单位、高等院校承担了“高性能混凝土的综合研究和应用”及“新型高性能混凝土及其耐久性的研究”的研究课题,

德国生物替代能源发展概况

德国生物替代能源发展概况 德国是个资源匮乏而又十分重视环保的国家,为摆脱对能源进口和传统能源的过度依赖,德国近年来能源政策重点放在节约传统能源、提高能效和发展新型能源三个方面,以期实现能源生产和消费的可持续发展。德国对包括生物柴油、甲醇汽油及生物乙醇等替代能源的研究、开发和利用均处于世界领先水平,其做法和成效对我国发展相关产业具有一定的参考和启示作用。 一、德国发展生物柴油等替代能源最新情况德国是欧洲开发利用生物替代能源最早的国家之一,更是生物燃料产销量最大的国家。按照德国农业部提供的数据,2011 年德国大约共计消耗了5200 万吨燃油,其中柴油所占比例超过58% ,汽油为36% ,生物燃油(主要是生物柴油和生物乙醇汽油)为5.6% ,约合370 万吨。生物燃油既是可再生资源,也有利于气候和环境保护。德国在交通方面的减排目标是至2020 年减少7% 的温室气体排放,与之相匹配的生物燃油市场份额要达到10%-12% 。德国生物能源的发展仍存在一定的上升空间。 (一)甲醇汽油德国是较早开展甲醇替代能源研究的几个国家之一,早在上个世纪70 年代末80 年代初第二次石油危机之后,德国即开始投入人力物力进行甲醇燃料及甲醇汽车配套技术的研究开发。甲醇作为燃料在德国曾经得到政府支持、示范推广,但因其有毒(易造成人员伤害,严重时可致失明甚至丧命)、腐蚀性强(造成发动机故障,缩短使用寿命)、热值低(只有汽油的一半)和造价高等原因而遭遇消费者冷落。时至今日,甲醇汽油已基本退出德国市场,生产量和销售量都微不足道,故此不多撰述。

(二)生物柴油 为减少汽车排放对环境的污染和汽车燃料对石油的过度依赖,德国重视生态燃料的开发。进入21世纪,作为可再生燃料重要成分的生物柴油在德国得到迅速发展。德国生物柴油销量在 1998年时仅5万吨,到2000年达到34万吨,2007年创下326 万吨峰值,08年起销量逐渐下降(参见下图)。 德国生物柴油销量图(单位:百万吨) 0,0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2D10 2011* 图表来源:德国生物燃料工业协会。2011年为预估数。 由于税率的调整,德国生物柴油产品销量也随之变化。总体趋势 是:总的销售量基本持平,保持在250万吨/年左右;纯生物柴油 (B100 )销量逐年下降(从2000年的194万吨降至2211

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

国际劳动力流动现状及发展趋势

国际劳动力流动现状及发展趋势 按照WTO的界定,世贸组织成员国之间的劳动力流动属于服务贸易的范畴,是服务贸易的四种交付方式之一,受《服务贸易总协定》(以下简称GATS)及其附件的约束。GATS将国际间劳动力流动视作自然人移动。在GATS关于自然人的几种分类(公司内部调任人员,商务访客,合同服务提供者,独立专家)中,与我国对外劳务合作相关的主要是“合同服务提供者”(contractual service suppliers)。其在外期间的报酬由雇主支付,合同服务提供者应具有相关和相当的教育背景及专业资历。这种临时性服务的期限一般为1~3年。 由于自然人移动涉及到国家的出入境管理和移民问题,世界各国尤其是发达国家对自然人移动严格设限。进入21世纪后,随着服务贸易新一轮谈判的展开,自然人移动的自由化问题引起了各国的关注。由于发展中国家普遍拥有丰富、廉价的劳动力,他们越来越认识到,自然人移动自由化不仅有助于提高本国的经济水平和贸易竞争力,缓解国内日益严峻的就业压力,并可以帮助他们摆脱贫困。而对于发达国家来说,普遍存在着劳工大量短缺和高失业率并存的现象,一方面,人口下降和老龄化造成了劳工严重短缺;另一方面,许多社会地位低、工资少、耗体力的工作常常无人问津。因此,发达国家也逐渐认识到,劳动力流动自由化是一个双赢的问题。

这一共识,为下一轮的服务贸易谈判和劳动力在国际间的自由流动奠定了基础。 当前国际间劳动力流动的区域特点 据国际劳工组织的预计,全世界约有1.4亿人在国外工作,每年全球劳动人口流动达6000万人,而且在不断增加。按照经济学原理,生产要素总是从报酬低的地区或行业流向报酬高的地区或行业,作为劳动力要素也不例外。 当前,劳动力流动主要是从发展中国家流向发达国家。由于各个国家在全球劳动力流动过程中所处的地位、所面临的形势、所采取的政策不同,各大洲的劳务市场呈现出不同的特点。 一、欧美市场 作为当今世界最发达的经济体,欧盟和美国的薪酬福利体系对外来劳动力无疑是极具吸引力的,加上其存在大量劳工短缺和高失业率,开拓欧美国家的劳务市场显示出良好的前景。但由于历史和文化的差异,欧美的劳动力市场只对东欧各国和部分非洲国家开放,而对中国的开放度很低。

高性能混凝土发展的历史背景及目前国内外的研究现状 土木工程毕业论文

高性能混凝土发展的历史背景及目前国内外的研究现状土 木工程毕业论文 摘要 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。 本文主要介绍了高性能混凝土发展的历史背景及目前国内外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国内外研究应用中的重要成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。 关键词:高性能混凝土;耐久性;体积稳定性 ~ I ~ 目录 摘要………………………………………………………………………………………... I 目录……………………………………………………………………………………….?

第一章引 言 ..................................................................... ................................................. 1 1 高性能混凝土产生的背景和研究现 状 ..................................................................... .. (1) 1.1 背 景 ..................................................................... (1) 1.2 研究现状及发展方 向 ..................................................................... ........................ 2 2 高性能混凝土的性能研究和应用分 析 ..................................................................... .. (2) 2.1 高性能混凝土的概 念 ..................................................................... (2) 2.2 高性能混凝土的性 能 ..................................................................... (3) 2.3 高性能混凝土发展和应用中所面临的问 题 .......................................................... 3 3 高性能混凝土质量与施工控

生物柴油的现状与发展前景

生物柴油的现状与发展前景 柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。 目前世界每年新车产量大约5 000万辆,全世界汽车保有量大约7.5亿辆(含摩托车)。随着汽车工业的快速发展,汽油和柴油的用量随汽车保有量的增加而增加,同时也带来了汽车尾气污染等问题。近20年来,虽然在改善油品燃烧过程、尾气净化等方面都取得了很大进展,但仍然不能满足要求。为了改善汽车的运行性能和降低汽车尾气中害物质的排放量,美国、欧洲和日本汽车工业协会1998年6月4日提出了汽车燃料质量国际统一标准即”世界燃油规范”Ⅲ类标准。柴油”世界燃油规范”Ⅱ类、Ⅲ类标准(见表1、表2)。由表1、表2可以看出,Ⅱ类标准在目前基础上,提出了芳烃含量的限制,对硫含量、十六烷值等提出了更高的标准,Ⅲ类标准则在各项指标上比Ⅱ类标准都有更严格的规定。 随着我国汽车拥有量的急剧上升,大量的燃油被消耗,汽车尾气中污染物的排放量越来越大,汽车尾气已成为我国大气污染重要的原因。为保护环境,改善大气质量,我国国家质量技术监督局最近颁布了柴油机排放控制新标准(见表3)。新标准采用了联合国欧洲经济委员会汽车排放法规体系,使我国对新柴油机车的排放要求达到欧洲20世纪90年代初期的水平。 我国目前的车用无铅汽油和柴油标准介于世界燃油规范Ⅰ类油和Ⅱ类油水平之间,要满足汽车达到欧洲Ⅰ类排放标准都困难,更无法满足入世及举办奥运会的要求。为此,中国石化集团公司要求在清洁油品生产方面作出更大努力,以满足国家标准的要求。 炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要采取

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

高性能混凝土产生的背景和研究现状

摘要 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。 本文主要介绍了高性能混凝土发展的历史背景及目前国外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国外研究应用中的重要成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。 关键词:高性能混凝土;耐久性;体积稳定性

目录 引言 (1) 1 高性能混凝土产生的背景和研究现状 (1) 1.1 背景 (1) 1.2 研究现状及发展方向 (2) 2 高性能混凝土的性能研究和应用分析 (2) 2.1 高性能混凝土的概念 (2) 2.2 高性能混凝土的性能 (3) 2.3 高性能混凝土发展和应用中所面临的问题 (3) 3 高性能混凝土质量与施工控制 (4) 3.1 高性能混凝土原材料及其选用 (4) 3.2 配合比设计控制要点 (6) 3.3 高性能混凝土的施工控制 (7) 4 高性能混凝土的特点 (8) 4.1 高耐久性能 (8) 4.2 高工作性能 (8) 4.3 其它 (8) 5 绿色高性能混凝土 (9) 5.1 研发绿色高性能混凝土的必要性 (9) 5.2 绿色高性能混凝土的可行性 (9) 5.3 绿色高性能混凝土的发展 (10) 6 高性能混凝土的发展前景 (10) 结论 (11) 致词 (12) 参考文献 (13)

生物柴油研究与应用现状_吴慧娟

生物柴油研究与应用现状 吴慧娟,许世海,张文田(后勤工程学院,重庆400016) 摘要:随着环境污染问题的日益严重和能源危机的日益紧迫,迫使人们急需寻找一种不仅清洁的、对环境友好的、而且可再生的能源。生物柴油的可再生性和清洁性引起了世界各国的重视。综述了生物柴油在国内外的生产应用现状、发展趋势以及发展生物柴油对我国的意义。并对生物柴油生产方法的研究进展进行详细的介绍,重点介绍了酯交换反应,对生物柴油目前还存在的问题进行了分析。 关键词:生物柴油;可再生能源;酯交换反应中图分类号:TE626.24  文献标识码:C 文章编号:0253-4320(2007)S1-0013-04 Research and application situation of biodiesel W U Hui -juan ,XU Shi -hai ,ZHA NG Wen -tian (College of Logistical Engineering ,Chongqing 400016,China ) Abstract :With the increasin g urgency of both energy crisis and environ mental pollution ,there is an urgent need to find a kind of alternative fuel source which is clean ,environmental -friendly and reproducible .Biodiesel attracts notice all around the world because of its cleanness and reproducibility .The research and application situation of biodiesel in China and other countries ,as well as its importance to China are reviewed in this paper .The production technology ,especially transesterification ,is introduced in detail .The shortcomings of biodiesel are also discussed . Key words :biodiesel ;reproducible energy source ;transesterification  收稿日期:2006-11-27  作者简介:吴慧娟(1982-),女,硕士研究生,主要研究方向为燃料与燃料化学,sing4757@s ina .com 。 石油是国家经济社会发展和国防建设极其重要的战略物资。但近年来,石油供应出现紧缺,石油价格居高不下,各国从环境保护和资源战略的角度出发,积极探索发展一些可以再生、清洁的对环境友好的能源。生物柴油作为优质的柴油代用品,对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。我国是一个石油短缺的国家,石油资源数量较少,生产能力增长缓慢。但随着生活水平的提高,石油的需求急剧增长,供应缺口越来越大。2005年我国生产原油1.815亿t ,进口原油1.27亿t ,成品油净进口1742万t ,石油对外依存度已达42.9%。这种状况不仅给石油供应带来很大的压力,而且也危及到国家能源安全。另一方面我国环境状况也不容乐观,而能源使用过程中带来的污染是一个重要方面。因此,在我国发展生物柴油具有更大的意义。 1 国内外生物柴油应用情况 1.1 美国 美国是最早研究生物柴油的国家之一,原料是以大豆油为主。生物柴油在美国的商业应用始于 20世纪90年代初,但直到近几年才逐渐形成规模,并已成为该国发展最快的替代燃油[1],产量从1999年的50万加仑猛增到2000年的500万加仑。目前美国已有4家生产厂家,总生产能力达30万t /a [2] , 预计到2011年美国生物柴油的生产能力将达115万t /a 。美国在生产柴油的研制过程中,生产成本的合理化,适宜原料的选择及理化特性的改进方面都取得了突破性的进展。为促进生物燃料的发展,美国政府采取了有力的补贴措施。1.2 欧洲 生物柴油使用最多的是欧洲,份额已占到成品油的5%,2001年生物柴油产量已超过100万t ,主要以油菜为原料,目前在欧盟各国以前通常被用来做饲料用的废食用油脂,现在也正转向生产生物柴油[3]。据Frost &Sulivan 企业咨询公司最新发表的“欧盟生物柴油市场”报告,为实现“京都议定书”规定的目标(在2008—2012年期间,减少二氧化碳排放量8%),欧盟即将出台鼓励开发和使用生物柴油的新规定,如对生物柴油免征增值税,规定机动车使用生物动力燃料占动力燃料营业总额的最低份额。为了便于推广使用,德国、意大利等国也都制定了生 · 13·第27卷增刊(1)现代化工 June 20072007年6月Modern Chemical Industry

关于中国与欧盟的经贸关系现状及未来的 发展趋势

关于中国与欧盟的经贸关系现状及未来的 发展趋势 学院:电气工程学院 班级:电技111 姓名:缪梓强 学号:2011301030128

关于中国与欧盟的经贸关系现状及未来的 发展趋势 [论文摘要]中国与欧盟分别是全球最大的发展中国家和区域集团,是当今世界舞台上促进全球经济发展的两支重要力量。中国与欧盟建立全面战略伙伴关系以来,在全球化和国际格局快速变化的背景下,中欧经贸合作关系得到长足的发展,并且已经超越了双边范畴,具有日益重要的全球战略意义。在发展的过程中出现波折,但总体的发展前景仍然是积极的。21世纪,我们必须进一步加强中欧全面战略伙伴关系,以达到双方互利共赢的目的。 [论文关键词]中欧经贸合作;现状;发展趋势 中国与欧盟分别是全球最大的发展中国家和区域经济集团,是当世界舞台上维护和平与促进发展的两支重要力量,全面发展同欧盟及其成员国长期稳定的互利合作关系,是中国外交政策的重要组成部分。2004年中欧建立全面战略伙伴关系,为中欧关系的持续健康发展奠定了坚实基础。欧盟自2004年起跃居中国第一大贸易伙伴,中国也稳居欧盟第二大贸易伙伴地位,同时欧盟还是中国吸收外资最重要的来源地之一和技术引进第一大来源地,中欧双边经贸合作的领域与范围不断向纵深发展。 一、中国与欧盟的经贸关系现状 1.中欧双边贸易关系稳定发展 在中欧合作的诸多领域中,经贸关系是最具活力、收获最多的领域之一。进入2世纪以来,伴随着中国加入世界贸易组织(WTO),中欧双边贸易在原先基数较大的基础上又得到了突飞猛进的发展,以大约每3年就翻一番的速度增长着。如今,“中国制造”在欧洲上已随处可见。根据中国海关总署,2004-2007年中国对欧盟年均进出口额增长率在27%以上,欧盟一跃成为中国第一大贸易伙伴。2007年中欧进出口总额达到3561.5亿美元,同比增长27%,其中中方出口2451.9亿美元,增长29.2%;进口1109.6亿美元,增长22.4%,欧盟在中国对外贸易中的占比上升至16.4%,占到中国总出口额的近1/5。2008年中欧双方的贸易额更是一举达到了4255.8亿美元,增长19.5%,分别高于同期中美、中日双边贸易增速9个和6.5个百分点。 2.中欧直接合作不断深化 根据中国海关统计,作为中国第4大投资伙伴,欧盟对华投资的项目数自1986年以来总体呈现增长的趋势。截至2008年4月底,欧盟累计在华投资项目27139个,实际投资额585亿美元。欧盟对华投资项目平均规模大,技术含量较高,且多投资于生产领域。改革开放30年来,欧盟一大批优秀企业尤其是大的已大举进入中国,空中客车飞机、大众汽车、壳牌石油、联合利华日用品、西门子电器、诺基亚等等众多欧盟跨国企业巨头已在中国的相关领域中占据了显著地位,并先后成为了在华投资成功的典范。

生物柴油工艺流程图CAD图

一、概述 1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。美国能源部研究得出的结论是:使用B20(生

物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。 1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。 生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物

高性能混凝土的研究与发展现状78166

高性能混凝土地研究与发展现状 摘要:阐述了高性能混凝土产生地背景和国内外学者对高性能混凝土地认识与定义,并详细介绍了高性能混凝土地国内外地研究与发展现状,同时,还针对高性能混凝土研究与发展中地一些问题进行了探讨.关键词:高性能混凝土;定义;耐久性;存在问题高性能混凝土(,)是世纪年代末年代初,一些发达国家基于混凝土结构耐久性设计提出地一种全新概念地混凝土,它以耐久性为首要设计指标,这种混凝土有可能为基础设施工程提供年以上地使用寿命.区别于传统混凝土,高性能混凝土由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面地混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程中显示出其独特地优越性,在工程安全使用期、经济合理性、环境条件地适应性等方面产生了明显地效益,因此被各国学者所接受,被认为是今后混凝土技术地发展方向.高性能混凝土产生地背景传统地混凝土虽然已有近年地历史,也经历了几次大地飞跃,但今天却面临着前所未有地严峻挑战:()随着现代科学技术和生产地发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用地重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等地建造需要在不断增加.这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长.()进入世纪年代以来,不少工业发达国家正面临一些钢筋混凝土结构,特别是早年修建地桥梁等基础设施老化问题,需要投入巨资进行维修或更新.年美国国家材料咨询局地一份政府报告指出:在美国当时地.万座桥梁中,大约有.万座处于不同程度地破坏状态,有地使用期不到年,而且受损地桥梁每年还增加.万座.年在提交美国国会地报告“国家公路和桥梁现状”中指出,为修复或更换现存有缺陷桥梁地费用需投资亿美元;如拖延修复进程,费用将增至亿美元.美国现存地全部混凝土工程地价值约万亿美元,每年用于维修地费用高达亿美元.在加拿大,为修复劣化损坏地全部基础设施工程估计要耗费亿美元.在英国,调查统计了个工程劣化破坏实例,其中碳化锈蚀占%,环境氯盐锈蚀占%,内部氯盐锈蚀占%,混凝土冻蚀%,混凝土磨蚀%,混凝土碱—骨料反应破坏%,硫酸盐化学腐蚀%,其他各种不常发生地腐蚀破坏%.我国结构工程中混凝土耐久性问题也非常严重.建设部于世纪年代组织了对国内混凝土结构地调查,发现大多数工业建筑及露天构筑物在使用~年后即需大修,处于有害介质中地建筑物使用寿命仅~年,民用建筑及公共建筑使用及维护条件较好,一般可维持年.相对于房屋建筑来说,处于露天环境下地桥梁耐久性与病害状况更为严重.据年全国公路普查,到年底我国已有各式公路桥梁座,公路危桥座,每年实际需要维修费用亿元,而实际到位仅亿元.港口、码头、闸门等工程因处于海洋环境,氯离子侵蚀引发钢筋锈蚀,导致构件开裂、腐蚀情况最为严重.年交通部四航局等单位对华南地区座码头调查地结果,有%以上均发生严重或较严重地钢筋锈蚀破坏,出现破坏地时间有地距建成仅—年.()混凝土作为用量最大地人造材料,不能不考虑它地使用对生态环境地影响.传统混凝土地原材料都来自天然资源.每用水泥,大概需要.以上地洁净水,砂、以上地石子;每生产硅酸盐水泥约需.石灰石和大量燃煤与电能,并排放,而大气中浓度增加是造成地球温室效应地原因之一.尽管与钢材、铝材、塑料等其它建筑材料相比,生产?昆凝土所消耗地能源和造成地污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它地用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观.有些大城市现已难以获得质量合格地砂石.另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后地混凝土垃圾也给环境带来威胁.因此,未来地混凝土必须从根本上减少水泥用量,必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土地再生利用,未来地混凝土必须是高性能地,尤其是耐久地.耐久和高强都意味着节约资源.“高性能混凝土”正是在这种背景下产生地.高性能混凝土地定义与性能对高性能混凝土地定义或含义,国际上迄今为止尚没有一个统一地理解,各个国家不同人群有不同

生物柴油的现状与发展前景

生物柴油的现状与发展前景 概述了清洁柴油标准的演变,介绍了生物柴油的主要特性、开发和应用情况,从生物颤悠的竞争力不断提高、政府对生物柴油的扶持政策和汽车车型柴油化趋势三个方面分析了生物柴油的发展前景,并对我国生产生物柴油的原料及发展进行了讨论。 关键词:生物柴油柴油清洁应用展望 柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。 1 环境保护推动柴油标准的不断提高 目前世界每年新车产量大约5 000万辆,全世界汽车保有量大约7.5亿辆(含摩托车)。随着汽车工业的快速发展,汽油和柴油的用量随汽车保有量的增加而增加,同时也带来了汽车尾气污染等问题。近20年来,虽然在改善油品燃烧过程、尾气净化等方面都取得了很大进展,但仍然不能满足要求。为了改善汽车的运行性能和降低汽车尾气中害物质的排放量,美国、欧洲和日本汽车工业协会1998年6月4日提出了汽车燃料质量国际统一标准即"世界燃油规范"Ⅲ类标准。柴油"世界燃油规范"Ⅱ类、Ⅲ类标准(见表1、表2)。由表1、表2可以看出,Ⅱ类标准在目前基础上,提出了芳烃含量的限制,对硫含量、十六烷值等提出了更高的标准,Ⅲ类标准则在各项指标上比Ⅱ类标准都有更严格的规定。 随着我国汽车拥有量的急剧上升,大量的燃油被消耗,汽车尾气中污染物的排放量越来越大,汽车尾气已成为我国大气污染重要的原因。为保护环境,改善大气质量,我国国家质量技术监督局最近颁布了柴油机排放控制新标准(见表3)。新标准采用了联合国欧洲经济委员会汽车排放法规体系,使我国对新柴油机车的排放要求达到欧洲20世纪90年代初期的水平。 我国目前的车用无铅汽油和柴油标准介于世界燃油规范Ⅰ类油和Ⅱ类油水平之间,要满足汽车达到欧洲Ⅰ类排放标准都困难,更无法满足入世及举办奥运会的要求。为此,中国石化集团公司要求在清洁油品生产方面作出更大努力,以满足国家标准的要求。 2 生物柴油的主要特性 炼油企业为了向市场提供清洁油品使燃烧柴油尾气排放达到标准要求,需要采取以下三种措施:一是要有性能优异的深度加氢脱硫催化剂,以脱除难以加氢脱硫的4,6-二甲基苯并噻吩等芳香基硫化合物;二是要有抗硫的贵金属芳烃饱和催化剂,能使芳烃加氢饱和在较低压力下进行,以节省投资;三是要有提高十六烷值的工艺。而生物柴油以其优异的环保性能可很容易达到"世界燃油规范"的柴油Ⅱ、Ⅲ类标准要求。 众所周知,柴油分子是由15个左右的碳链组成的,研究发现植物油分子则一般又14~18个碳链组成,与柴油分子中碳数相近。因此生物柴油就是一种用油彩籽等可再生植物油加工制取的新型燃料。按化学成分分析,生物柴油燃料是一种高脂酸甲烷,它是通过以不饱和油酸C18 为主要成分的甘油脂分解而获得的[1]。与常规柴油相比,生物柴油下述具有无法比拟的性能。 (1)具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 (2)具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 (3)具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

欧盟国家电子政务发展现状与趋势

欧盟国家电子政务发展现状及其趋势 ——“中欧信息社会项目”中方代表团欧盟国家电子政务考察报告 2007年9月17日至21日,“中欧信息社会项目”中方代表团访问葡萄牙并参加第四次欧盟电子政务部长会议。 “中欧信息社会项目”中方代表团由国务院发展研究中心、国家信息中心、省信息产业厅和信息产业局的代表和专家组成。访问容主要包括两个部分,一是9月18日参观和调研葡萄牙的埃武拉县(Evora County)信息化建设情况,二是9月19日至21,参加欧盟第四次电子政务部长级会议。 本报告共分三个部分,第一、二两个部分分别介绍访问情况,介绍欧盟电子政务发展情况及其趋势,第三部分分析当前欧盟国家电子政务发展经验及其对我国电子政务发展的意义。 第一部分:葡萄牙埃武拉县(Evora County)信息化建设情况 一、埃武拉县基本情况 葡萄牙共有18个县(地区),埃武拉县即是其中之一。埃武拉县有常住人口17万2千人,面积是7500平方公里,辖区有14个市镇。葡萄牙实行地方自治,县和市镇之间并没有行政隶属关系,县和市镇的公职人员都经本地选举产生。但是,作为埃武拉县中心的埃武拉市镇则是该县的经济文化中心,埃武拉大学就坐落在这里。值得注意的是,这里的每个市镇其人口其实挺少的,有的甚至不到一万人,与我国的小镇差不多,只是其城市化相对比较成熟。

二、EVORA县数字化项目 EVORA县数字化项目(éVORA COUNTY DIGITAL PROJECT,也叫EDD项目)是全县信息化建设项目。该项目于2004年10月立项并开工建设,于2007年6月结束。最初预算资金是650万欧元,其中75%的资金由“信息社会知识计划”(Information Society Knowledge Program,POSC)提供。 EDD包括以下15个方面的建设容: 1、地区门户,Regional Portal 2、旅游门户,Tourism Portal 3、企业门户,Business Portal 4、GIS门户,GIS Portal 5、企业局域网,Business Extranet 6、互联网创新中心,Inovévor-Innovation Centre 7、市政Web 及其在线服务,Municipal Web-Sites and Online Services 8、市政局域网,Municipal Intranets 9、电子商务门户,E-Commerce Portal 10、地区无线宽带接入点,Regional Hotspots 11、地区数据中心,Regional Data Centre 12、城市光纤宽带网络,Municipal MANs (broadband network—optic Fibre) 13、EVORA城市历史文化传统及其在线服务,évora Municipality—Memory and Online Services 14、互联网移动服务车(信息大篷车),Internet Mobile Vehicle 15、项目推广,Marketing and promotion

生物柴油工艺流程简述

本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。是在国内外同行业中具有先进性的生物柴油生产新工艺。 叙述如下: STEP-1前处理 原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL 制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。 STEP-2 甲醇触媒的溶解 水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应 将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。。通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。过量甲醇通过闪蒸分离后经精馏回用。 STEP-4 甘油的分离 反应结束后,从酯交换反应的生成物甘油和甲酯的混合物中分离出甘油. 甘油的分离,虽然可以利用甘油(1.20g/cm3) 和甲酯(0.88g/cm3)的比重差,使之自然沉降,不仅分离速度很慢,也不能使甘油完全分离.所以, .D/OIL的制造过程是通过高效率的高速离心分离机来进行分离的. STEP-5 甲酯的精制 甲酯的精制是通过蛋白页岩吸附剂,去除生物柴油中的碱性氮、和黄曲霉素。

相关文档
相关文档 最新文档