文档视界 最新最全的文档下载
当前位置:文档视界 › 主机板零部件介绍

主机板零部件介绍

主机板零部件介绍
主机板零部件介绍

主機板零部件介紹

一、主板是一個什麼概念?

主板是電腦系統中最大的一塊電路板,它的英文名字叫做“Mainboard”或“Motherboard”,簡稱M/B。它為CPU、內存和各种功能(聲、圖、通信、網絡、TV、SCSI等)卡提供安裝插座(槽);為各种磁、光存儲設備、打印和掃描等I/O設備以及數碼相機、攝像頭、“貓”(Modem)等多媒體和通訊設備提供接口,實際上電腦通過主板將CPU等各种器件和外部備有機地結合起來形成一套完整的系統。電腦在正常運行時對系統內存、存儲設備和其它I/O設備的操控都必須通過主板來完成,因此電腦的整體運行速度和穩定性在相當程度上取決于主板的性能。

二、專有名詞術語:

SIMM:Single inline Memory 單面記憶體模組

USB:Universal Serial Bus 通用串列埠

DIMM:Double inline Memory 雙面記憶體模組

POST:Power on self Test 開機自檢

ISA:Industry standard Architecture 工業標準體系結構

AMR:Audio/Medom Riser 音頻調制解調器卡IDE:Integrated Device Electonics 集成電路設備

FDD:Floppy Disk Device 軟磁盤驅動器

HDD:Hard Disk Device 硬磁盤驅動器

COM:Component Object Model 通信端口

LPT:Line Printer 在線打印機

PS/2:Personal System/2 個人系統

PCI:Peripheral Component Interconnect 外部部件連接器

DMA:Direct Memory Acess 直接存儲器

RTC:Real Time Clock 標準時鐘

IRDA:Infra Red Data Associatior 紅外線搖控裝置

BIOS:Basic Input Output System 基本輸入輸出系統

VGA:Video Graphics Array 加速圖形端

JP:Jumper 跳線CN:Connector 連接器F:Fuse 保險絲D:Diode二極管

C: Capacitance普通電容R:Resister普通電阻VR:Voltage Regulator Tube穩壓管

RT: Resister Temperature 熱敏電阻

三、什麼是Cache?

所謂緩存就是高速緩沖存儲器,它位于CPU與內存之間,通常它

SRAM(靜態存儲器)構成,容量小但存取速度快.

由于DRAM是使用電容特性來儲存信息,存取速度慢,遠小于CPU速度,

為了實現速度的匹配,只能在CPU指令中插入等待,這樣會降低系統的執行效率,加入Cache就是為解決上述問題,即在CPU與主存之間加裝一個容量較小的SRAM作為高速緩沖存儲器,當合使用緩存時,在緩存中就保存有主存部分內容的副本,CPU在讀寫數據時,首先訪問緩存,由于緩存與CPU相當,所以CPU可以在零等等下完成指令執行,只有當緩存中沒有CPU所需的數據時,CPU才去訪問主存,從而提高CPU訪問數據的速度,提高系統性能

四、主板上面的南北橋芯片是如何定義的?

芯片組(Chipset)是主板的核心組成部分,按照在主板上的排列位置的不同,通常分為北橋芯片和南橋芯片.北橋芯片提供對CPU的類型和主頻、內存的類型和最大容量、ISA/PCI/AGP插槽、ECC糾錯等支持.

南橋芯片則提供對KBC(鍵盤控制器)、RTC(實時時鐘控制器)、USB(通電串行總線)、Ultra DMA/33(66)EIDE數據傳輸方式和ACPI(高級能源管理)等的支持.其中北橋芯片起著主導性的作用,也稱為主橋(Host

Bridge)

除了最通用的南北橋結構外,目前芯片組正向更高級的加速集線架構發展,INTEL的820、815系列芯片組就是這類芯片組的代表,它將一些子系統如IDE接口、音效、Modem和USB直接接入主芯片,能夠提供比PCI總線寬一倍的帶寬,達到了266MB/S0

五、什麼是AMR(Audio/Modem Riser)?

AMR(Audio/Modem Riser,音頻/調制解調器插卡)插槽是INTEL公司開發的一种擴展槽標準。由于聲卡、Modem和視頻卡上的接口電路和模擬電路部分集成在主板上有一定困難,如由于電磁干擾電話接頭的不同,Modem的調制解調電路和接口電路就不宜集成在主板上。

INTEL公司制訂AMR標準的目的就是解決上述問題,將模擬I/O電路留在AMR插卡上,而將其他部件集成在主板上。AMR標準的基本用途是將音頻和Modem的接口電路、模擬電路和解碼器制作在一張

Modem接口卡上。Modem接口的骨干是一個符合AC’97規格的AC 鏈路,最多支持4個解碼芯片解碼芯片可分別做在不同的組件上,比如音頻解碼芯片做在主板上,而Modem解碼芯片則可做在接口卡上。

基本AMR支持音頻及Modem子系統的硬件加速。加速器位于預處理數據源與處理數據目的地之間它直接從主內存取得預先處理好的數據再通過AC鏈路傳递給解碼芯片。具有AMR插槽的主板需配有相應驅動程序及BIOS代碼,方能對架構子系統的硬件資源進行管理。

在實際生產時,主板廠商常將音頻解碼芯片及其接口集成在主板上,而將Modem的調制解調電路及解碼芯留給AMR Modem接口卡。

六、PCI(見主機板結構介紹)略

七、ISA

ISA總線結構的特點:

ISA總線是采用80286 CPU的IBM PC/AT 機中使用的總

線。該總線同8位的PCXT總線保持了互換性(即兼容性)。它是在8位的PCXT總線的基礎上擴展而成的16位總線結構。這種總線結構是在不改變原來總線的前提下增加了數條信號線,並解決了尋址與數據傳榆上的問題,同時也增加了一些內存的控制信號。.總線時鐘設計的最大速度為8 MHz。比XT總線時鐘幾乎快了近一倍而最佳的數據傳輸率可達20MB/S。由于PC AT總線的開放性,使得兼容于這一標準的板卡大量的涌入PC市場,因此制定一個統一的標準是很必要的。為此國際電子電氣工程師協會成立了一個委員會,專門制定了以總線為標準的工業體系結構ISA。

八、BIOS:

所謂BIOS,實際就是微機的基本輸入輸出系統(其內容集成在微機主板上的一個芯片上主要保存著有關微系統最重要的基本輸入輸出程序等.

BIOS功用:

1.BIOS中斷服務程序:

BIOS中斷服務程序實質上是微機系統中軟件之間一個可編程接口,主要用于程序軟件功能與微機硬件之間實施銜接。

2.BIOS系統設置程序:

微機部件配置記錄是放在一塊可讀寫的CMOS RAM芯片中

的,主要保存着系統基本情況,CPU特性、軟硬盤驅動器、顯示器鍵盤等部件的信息。在BIOS的ROM芯片中裝有“系統設置程序”,主要用來設置CMOS ROM中的各項參數,這個程序在開機是按下“DEL”鍵即可進入設置狀態,並供操作人員使用。

3.POST上電自檢:

微機接通電源后,系統首先由POST(Power On Self Test,上電自檢)程序來對內部各個設備進行檢查。通常完整的POST自檢將包括對CPU、640KB基本內存,1MB以上的擴展內存、ROM 主板、CMOS存儲器、串並口、顯卡、軟,硬盤子系統及鍵盤進行測試,一旦在自檢中發現問題,系統將給出提示信息或鳴笛警告。

4.BIOS系統啟動自舉程序:

系統在完成POST自檢后,ROM BIOS就首先按照系統CMOS 設置中保存的啟動順序收尋軟硬盤驅動器及CD-ROM、網絡服務器等有效地啟動驅動器,讀入操作系統引導記錄,然后將系統控制權交給引導記錄,並由引導記錄來完成系統的順利啟動。

主機板零部件的介紹試題

姓名: 工號:成績:一、主機板的是個什麼樣的概念?

二、南北橋芯片的定義?

三、AMR的定義為何?

四、寫出下列專有名詞的全稱

PCI: IDE:

USB: DIMM: POST: COM:

ISA: LPT:

主板上各种芯片、元件的识别及作用

主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。 1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP 数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。 南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1

主板诊断卡工作原理

主板诊断卡工作原理 主板诊断卡也叫POST卡(Power On Self Test加电自检),其工作原理是利用主板中BIOS 部程序的检测结果,通过主板诊断卡代码一一显示出来,结合诊断卡的代码含义速查表就能很快地知道电脑故障所在。尤其在PC机不能引导操作系统、黑屏、喇叭不叫时,使用本卡更能体现其便利,事半功倍。 主板上的BIOS在每次开机时,会对系统的电路、存储器、键盘、视频部分、硬盘、软驱等各个组件时行严格测试,并分析硬盘系统配置,对已配置的基本I/O设置进行初始化,一切正常后,再引导操作系统。其显著特点是以是否出现光标为分界线,先对关键性部件进行测试,关键性部件发生故障强制机器转入停机,显示器无光标,则屏幕无任何反应。然后,对非关键性部件进行测试如有故障机器也继续运行,同时显示器显示出错信息当机器出现故障。当计算机出现关键性故障,屏幕上无显示时,很难判断计算机故障所在,此时可以将本卡插入扩充槽,根据卡上显示的代码,参照计算机所所属的BIOS种类,再通过主板诊断卡的代码含义速查表查出该代码所表示的故障原因和部位,就可清楚地知道故障所在。 诊断卡是一个能告诉我们故障大概发生在部件上的检测维修工具。拥有它可以让我们在确定电脑故障时省时省力少走很多弯路,让我们的工作变得更轻松。

详细概况如下: 一、DEBUG诊断卡的工作原理 DEBUG卡是一种可检测电脑故障的测试卡,本公司应用于台式机的有PCI、ISA和LTP三种接口,笔记本的有miniPCI和LTP两种接口,可以选择方便的接口上使用。当诊断卡插入相对应的接口后,启动电脑时卡上自带的显示屏就会根据启动的进度显示出各种检测代码。一般过如是: 主板加电后,首先要对CPU进行检测,测试它各个部寄存器是否正常;接着BIOS将对CPU中其他所有的寄存器进行检测,并判断是否正确;然后是检测和初始化主板的芯片组;接下来检测动态存的刷新是否正常;然后将屏幕清成黑屏,初始化键盘;接下来检测CMOS接口及电池状况。如果某个设备没有通过测试,系统就会停下来不再继续启动,而这时,诊断卡上所显示的代码也就不再变化了。这样,我们通过对照说明书查询代码所对应的硬件,就可较容易地判断出故障大概是出现在哪个部件上(不同的主板BIOS版本输出的代码都略有不同,所以有些代码在说明书上可能没有,这样一般只能参考说明书接近的代码查找故障)。所以诊断卡是众多DIY爱好者的必备工具之一。

主板的基本结构

讲解电脑主板 主板结构从大体上来分的话,可以分为以下几个部分(几乎每一块同档主板结构都基本一样): 1. 处理插座: 这自然是用来安装处理器(CPU)的。处理器插座的结构要根据相应主板所采用的处理器架构来具体决定。目前主要有两种处理器架构,即Socket和Slot。前者是在处理器芯片底部四周分布许多插针,通过这些针来与处理器插座接触,如图2左边所示的是Socket处理器插座,右边所示是Socket处理器背面图。采用这种处理器架构的主要有Intel 奔腾处理器、Socket 7、PⅢ和赛扬处理器的Socket 370、P4处理器的Socket 423和Socket 478;AMD处理器K6-2所用的Socket 7、Athlon 系列处理器用的Socket 462、最新Hammer处理器系列处理器也是用Socket架构,目前它可算是一种主流处理器架构,也是未来的发展方向。这么多Socke架构,往往不同的只是插针数及内部电路不同,外观基本一样。它有一个手柄,压下后处理器插针就可以与插座很好的接触。 注意这种架构的处理器在插入主板处理器插座时要注意方向,只有一个方向可以插入,要对准处理器与处理器插座的缺口位,千万别插反了,强行插入会把插针弄弯,甚至折断了。 另一种处理器架构就是Slot架构,它是属于单边接触型,通过金手指与主板处理器插槽接触,就像PCI板卡一样,在早期的PⅡ、PⅢ处理器中曾用到,Intel把它称之为“Slot 1”。AMD也过这种架构,称之为“Slot A”。两者不同的也只是具体接触边数量和内部电路有所区

别,外观基本一样。如图3所示的左图是华硕的一款支持Slot 1 PⅢ处理器的主板,右边图所示的是Slot 1架构的Intel处理器。要注意这种处理器的安装也有方向的,通常也只能有一个方向可以安装,类似于内存的安装,主要是看准缺口。 图3 说到处理器,就不能不说处理器的两个基本参数:(1)处理器主频(Frequency),也俗称“处理器速度”(Speed);(2)前端系统总线(Front System Bus,FSB)。前者是指处理器的实际工作频率,也即运行速度,就是指处理器的主频,如我们常说的2.6G\3.0G\3.06G等都是指处理器的主频,在一定程度上来说处理器的主频决定了处理器的性能,所以Intel在近两年利用它的处理器架构优势拼命拉开与AMD 差距就是这个原因。但也不是绝对的,处理器的综合性能还受许多因素制约,如缓存大小、总线频率等。 后者是指处理器总线的工作频率,它与处理器的核心频率相关。因自Intel P4处理器以来,在同一时间内,处理器可以在一个周期内的上升、下降沿各执行2次操作指令,所以它的总线频率就是核心频率的

主板上各种芯片元件的识别及作用.

主板上各种芯片、元件的识别及作用 一、主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。 1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的 945/955/975系列的82945P、82945G、82945GZ、82945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南

主板的工作原理

第二章主板的工作原理 2.1主板的工作原理概述 2.1.1主板的硬启动过程 主板的硬启动过程如下: ①主板插入ATX电源插头,主板加载SVSB。 ②按下主机上的电源开关(POWER BUTTON),通知南桥,然后南桥发出信号经过转换后产生PS_ON#信号。 ③POWER(ATX电源)输出SV、3.3V、12V等各路供电。 ④电源输出稳定后,发出POWERGOOD信号通知主板。 ⑤主板上产生各芯片和设备需要的电压,如1.5V、2.5V等。同时CPU也得到一个供电,拉低VRM芯片(CPU供电管理芯片)的VID信号。 ⑥VRM芯片控制产生VCORE(CPU核心供电,部分资料也称为VCCP)给CPU。 ⑦稳定的VCORE电压反馈给VRM控制芯片。VRM产生PWRGD信号,部分资料也称为VRM_GD、VCORE_GD等,专指CPU供电电源就绪。 ⑧同时VCORE经转换后,产生CLK-EN送给主板CLK(时钟芯片)电路,时钟电路开始工作,产生各设备所需的时钟。 ⑨南桥收到VRM产生的PWEGD和CLK电路送达的时钟信号后产生PCIRST#。 ⑩PCIRST#送达ACPI控制器或门电路,经转化后分别送出,送达北桥的PCIRST#(新款主板为PLTRST#),送达北桥后,北桥送出CPURST#。 ○11CPU收到CPURST#后,发出一个地址信号,这个地址信号固定为FFFFFFFOH,指向BIOS的入口地址,通过CPU到北桥的前端总线到北桥,北桥将该地址信号,经过HUB-LINK (新款Intel芯片组叫做DMI总线,不同厂家、不同产品的叫法不同)送达南桥。 ○12南桥收到地址信号后,将地址发送给BIOS,然后取得该地址存储的命令,并通过数据线将取得的BIOS命令送到北桥,再至CPU,CPU执行接收到的指令,执行运算和控制,发出一系列指令。

电脑主板各个部位介绍

全程详细图解电脑主板各个部位 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转

印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PT H)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe) 来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

主板各芯片图解

(图)全程图解主板(下) 初学菜鸟们必看 硬盘维修交流QQ:0 9(精英维修) 电源插座主要有AT电源插座和ATX电源插座两种,有的主板上同时具备这两种插座。AT插座应用已久现已淘汰。而采用20口的ATX电源插座,采用了防插反设计,不会像AT电源一样因为插反而烧坏主板。除此而外,在电源插座附近一般还有主板的供电及稳压电路。 此主题相关图片如下: 主板的供电及稳压电路也是主板的重要组成部分,它一般由电容,稳压块或三极管场效应管,滤波线圈,稳压控制集成电路块等元器件组成。此外,P4主板上一般还有一个4口专用12V电源插座。 11.BIOS及电池 BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输出系统是一块装入了启动和自检程序的EPROM或EEPROM集成块。实际上它是被固化在计算机

ROM(只读存储器)芯片上的一组程序,为计算机提供最低级的、最直接的硬件控制与支持。除此而外,在BIOS芯片附近一般还有一块电池组件,它为BIOS提供了启动时需要的电流。 此主题相关图片如下: 常见BIOS芯片的识别主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面一般印有“BIOS”字样,另外还有许多PLCC32封装的BIOS。 此主题相关图片如下: 早期的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用,因为紫外线照射会使EPROM内容丢失,所以不能随便撕下。现在的ROM BIOS多采用Flash ROM(快闪可擦可编程只读存储器),通过刷新程序,可以对Flash ROM进行重写,方便地实现BIOS升级。 目前市面上较流行的主板BIOS主要有Award BIO S、AMI BIOS、Phoenix BIOS三种类型。Award BIOS是由Award Software公司开发的BIOS产品,在目前的主板中使用最为广泛。Award BIOS功能较为齐全,支持许多新硬

图解电脑主板各个部位及安装

图解电脑主板各个部位及安装 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 --------------------------------------------------------------- 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金

主板的结构和工作原理

主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。

奔腾级 AT 主板的结构及工作原 理奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72 线内存条插槽 DIMM:168 线内存条插槽 PS/2:PS/22 鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电 路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM 芯片、LBX 芯片、SIO 芯片。

奔腾主板的工作原理PCI ISA 总线奔腾主板中,CPU 只与套片(芯片组)直接打交道,套片作为CPU 的全权代表,处理 CPU 与内存、高速缓存、PCI 插卡、ISA 插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache 控制器(PCMC)芯片 PCMC 是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理 PCI 总线、管理 Cache、管理内存。

由于 PCMC 内的二级 Cache 控制器只支持 256KB 或 512KB 的二级 Cache,于是采用 Intel 套片的主板就没有提供其它容量 Cache。如果你听到某个主板声称

电脑主板各类型芯片破解大全

电脑主板各类型芯片破解大全: 电脑主板上的芯片包括多种类型,每种芯片都具有各自的特征与功能,正确了解主板上各种芯片,对于电子工程师的产品研究开发与维修应用显得相当重要。本文是创芯思成工程师在对主板进行全面反向解析的基础上总结的主板芯片全破解。 主板芯片组(chipset)(pciset) :分为南桥和北桥 南桥(主外):即系统I/O芯片(SI/O):主要管理中低速外部设备;集成了中断控制器、DMA控制器。功能如下: 1) PCI、ISA与IDE之间的通道。 2) PS/2鼠标控制。(间接属南桥管理,直接属I/O管理) 3) KB控制(keyboard)。(键盘) 4) USB控制。(通用串行总线) 5) SYSTEM CLOCK系统时钟控制。 6) I/O芯片控制。 7) ISA总线。 8) IRQ控制。(中断请求) 9) DMA控制。(直接存取) 10) RTC控制。 11) IDE的控制。 南桥的连接: ISA—PCI CPU—外设之间的桥梁 内存—外存 北桥(主内):系统控制芯片,主要负责CPU与内存、CPU与AGP之间的通信。掌控项目多为高速设备,如:CPU、Host Bus。后期北桥集成了内存控制器、Cache高速控制器;功能如下: ① CPU与内存之间的交流。

② Cache控制。 ③ AGP控制(图形加速端口) ④ PCI总线的控制。 ⑤ CPU与外设之间的交流。 ⑥支持内存的种类及最大容量的控制。(标示出主板的档次) 内存控制器:决定是否读内存(高档板集成于北桥)。 586FX 82438FX VX 82438VX Cache:高速缓冲存储器。 (1)、high—speed高速 (2)、容量小 主要用于CPU与内存北桥之间加速(坏时死机,把高速缓冲关掉) USB总线: 为通用串行总线,USB接口位于PS/2接口和串并口之间,允许外设在开机状态下热插拔,最多可串接下来127个外设,传输速率可达480MB/S,P它可以向低压设备提供5伏电源,同时可以减少PC机I/O接口数量。 IEEE 1394总线: 是一种串行接口标准,又名火线,主要用于笔记本电脑,它采用“级联”方式连接各个外部设备,最多可以连接63个设备,它能够向被连接的设备提供电源。 AMR总线: AMR总线插槽其全称为AUDIO/MODEM RISER音效/调制解调器插槽,用来插入AMR规范的声卡和MODEM卡等,这种标准可通过其附加的解码器可以实现软件音频和调制解调器功能,AMR插卡用AC-LINK通道与AC’97(AUDIO CODEC’97,音频多频多媒体数字信号编解码器具1997年标准)主控制器或主板相连。 除AMR之外,一些新主板上出现了CNR和NCR插槽,CNRJ是用来替代AMR的技术标准,它将AMR上支持的AC97/MODEM扩充到支持1MB/S的HOMEPNA或10/100M 的以太网,提供两个USB接口;CNR的推出,扩展了网络应用功能,但它最大的踞在

显卡构造及工作原理

什么是显卡? 显卡的工作非常复杂,但其原理和部件很容易理解。在本文中,我们先来了解显卡的基本部件和它们的作用。此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。 显示卡(videocard)是系统必备的装置,它负责将CPU 送来的影像资料(data)处理成显示器(monitor) 可以了解的格式,再送到显示屏(screen) 上形成影像。它是我们从电脑获取资讯最重要的管道。因此显示卡及显示器是电脑最重要的部份之一。我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。

显卡的基本原理 显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存。不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。显卡决定如何使用屏幕上的像素来生成图像。之后,它通过线缆将这些信息发送到监视器。 显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色。 根据二进制数据生成图像是一个很费力的过程。为了生成三维图像,显卡首先要用直线创建一个线框。然后,它对图像进行光栅化处理(填充剩余的像素)。此外,显卡还需添加明暗光线、纹理和颜色。对于快节奏的游戏,电脑每秒钟必须执行此过程约60次。如果没有显卡来执行必要的计算,则电脑将无法承担如此大的工作负荷。 显卡工作的四个主要部件

主板芯片的分类及功能

主板各芯片地功能,名词解释及维修方法 主板各芯片地功能及名词解释 主板芯片组()() :分为南桥和北桥 南桥(主外):即系统芯片():主要管理中低速外部设备;集成了中断控制器、控制器.功能如下: ) 、与之间地通道. ) 鼠标控制. (间接属南桥管理,直接属管理) ) 控制().(键盘) ) 控制.(通用串行总线) ) 系统时钟控制. ) 芯片控制. ) 总线.本文引用自电脑软硬件应用网 ) 控制.(中断请求) ) 控制.(直接存取) ) 控制. ) 地控制. 南桥地连接: — —外设之间地桥梁 内存—外存 北桥(主内):系统控制芯片,主要负责与内存、与之间地通信.掌控项目多为高速设备,如:、.后期北桥集成了内存控制器、高速控制器;功能如 下: ①与内存之间地交流. ②控制. ③控制(图形加速端口)字串 ④总线地控制. ⑤与外设之间地交流. ⑥支持内存地种类及最大容量地控制.(标示出主板地档次) 内存控制器:决定是否读内存(高档板集成于北桥). :高速缓冲存储器. ()、—高速 ()、容量小本文引用自电脑软硬件应用网 主要用于与内存北桥之间加速(坏时死机,把高速缓冲关掉 总线: 为通用串行总线,接口位于接口和串并口之间,允许外设在开机状态下热插拔,最多可串接下来个外设,传输速率可达,它可以向低压设备提供伏电源, 同时可以减少机接口数量. 总线: 是一种串行接口标准,又名火线,主要用于笔记本电脑,它采用“级联”方式连接各个

外部设备,最多可以连接个设备,它能够向被连接地设备提供电源. 总线: 字串 接口有,传输速度可分别达到,,,主要连接硬盘,光驱等设备. 总线: 广泛应用于硬盘光驱扫描仪打印机等设备上,它适应面广,它不受限制,支持多任务操作,最快地总线有. 总线: 总线插槽其全称为音效调制解调器插槽,用来插入规范地声卡和卡等,这种标准可通过其附加地***可以实现软件音频和调制解调器功能, 插卡用通道与’(’,音频多频多媒体数字信号编***具年标准)主控制器或主板相连. 除之外,一些新主板上出现了和插槽,是用来替代地技术标准,它将上支持地扩充到支持地或地以太网,提供两个接 口;地推出,扩展了网络应用功能,但它最大地踞在于和不兼容,而是和等厂家推出地网络通讯接口标准,采用了反向插槽,其特点和差不多,但它与 卡完全不兼容 维修部分 不开机故障地检测方法及顺序 . 检查地三大工作条件 供电 字串 时钟 复位 . 取下查脚片选信号是否有跳变 . 试换,查跟相连地线路 . 查,上地数据线,地址线(及),中断等控制线(这样可直接反映南北桥问题) . 查,,座地对地阻值来判断北桥是否正常 供电内核电压 场效应管坏,开路或短路 滤波电容短路(电解电容) 电压无输出 ü无供电 ü电压坏 ü断线 工作电压相关线路有轻微短路 场效应管坏了一个,输出电压也会变低 反馈电路无作用 电压输出电压低 —,(电压) 电压无输出 和座相连地排阻坏

主板各组成结构介绍

主板各组成结构介绍 主板 打开机箱会看到里面有一块面积较大的电路板,这就是主板。主板以及安装在上面的插件(CPU、内存条、总线板卡等)是微型计算机的核心,也是费用最高的部分。从物理角度了解微型计算机的组成,首先应了解主板。主板一般包括以下组成部分: 1.CPU插座(或插槽) CPU插座用来安装CPU。不同类型的CPU采用的CPU插座不同。CPU从486以来先后使用了十种规格的插座和三种规格的CPU插槽。所谓CPU插座,是指CPU可以直接插在其上面。十种CPU插座分别是Socketl~Socket8、Socket370(有370个引脚)和SocketA,SocketA又称Socket462(有462个引脚)。每一种插座具有与相应CPU一致的引脚数目和引脚布局,并为CPU提供电压供给机制,如Socket8、Socket370和SocketA都具有自动VRM(Voltage Regulator Module)。所谓CPU插槽,是一种外形与总线插槽相类似的插槽。CPU插在一块专用的装有CPU插座的电路板上,或将CPU直接焊在上面,再将该板插入CPU插槽中。这种结构可减少主板的面积,也方便散热,但它的稳固性不如CPU插座。CPU插槽有三种:Slot1(又叫SC242)、Slot A和Slot 2(又叫SC330),前两种的引脚数都为242,而后一种的引脚数为330。 2.控制芯片组 前面已经看到,控制芯片组是协助CPU完成计算机各种控制功能和数据传送的一组超大规模集成电路芯片(目前多为三片或两片)。控制芯片组中集成了DRAM控制器、Cache控制器、CPU到各种总线的桥接电路、中断控制器、DMA控制器、定时器/计数器和电源管理单元等逻辑。 3.总线 总线是计算机各部件之间传送数据、地址和控制信息的公共通道。主板上有多种类型的总线。 4.总线插槽 总线插槽是内部总线的物理连接器,使总线板卡上的电路和主板上的总线相连。目前主板上的总线插槽一般有PCI、ISA和AGP等。但有一些机器不再提供ISA总线插槽。 5.内存插槽 内存插槽用来安装内存条。目前内存插槽一般为168线或184线。前者支持SDRAM DIMM,而后者支持DDR SDRAM DIMM。 6.驱动器接口 驱动器接口实际上是一些设备总线的接口(如IDE接口等),用来连接硬盘驱动器、光盘驱动器和软盘驱动器等。早期这些接口是以总线板卡形式出现的。 7.基本外设接口、USB总线接口(根集线器) 基本外设接口用来连接键盘、鼠标、打印机等传统外设,而USB总线接口用来连接USB设备。 8.BIOS 主板上的BIOS(Basic Input Output System)是操作系统基本输入/输出功能的固化部分。另一部分是以磁盘文件形式出现的,操作系统启动时被调入内存。BIOS被固化在EPROM或Flash RAM中,其中包括了一组例行程序,如基本输入/输出程序、系统信息配置程序、开机上电自检程序和系统启动自举程序,另外

主板上各种芯片

主板上各种芯片、元件的识别及作用 管理提醒:本帖被火凤凰执行置顶操作(2009-03-04) 本部分设定了隐藏,您已回复过了,以下是隐藏的内容

一、主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。

1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Ho st Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82 945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM 等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU 插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Arc hitecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。 南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用8231 7AB,而近两年的芯片组845E/845G/845GE/845PE等配置都采用ICH4南桥芯片,但也能搭配ICH2南

主板的结构工作原理

主板的结构工作原理 主板的结构/工作原理 主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。 奔腾级AT主板的结构及工作原理 奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72线内存条插槽 DIMM:168线内存条插槽 PS/2:PS/22鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口 显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM芯片、LBX芯片、SIO芯片。 奔腾主板的工作原理 PCI ISA总线奔腾主板中,CPU只与套片(芯片组)直接打交道,套片作为CPU的全权代表,处理CPU与内存、高速缓存、PCI插卡、ISA插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache控制器(PCMC)芯片 PCMC是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理PCI总线、管理Cache、管理内存。 由于PCMC内的二级Cache控制器只支持256KB或512KB的二级Cache,于是采用Intel套片的主板就没有提供其它容量Cache。如果你听到某个主板声称自己支持1024KB 的Cache,那就说明它用的肯定不是Intel的套片。 另外,在PCMC内还集成有DRAM控制器,负责DRAM的刷新、读写和被Cache。因此,主板支持的内存种类、内存的最大容量也不是任意的,主板生产商在这方面依然只能服从这些限制。 2.局部总线加速器(LBX)芯片 LBX是“Local Bus Accellerator”的缩写,它具有下列主要功能: ◇提供64位的DRAM界面,支持猝发式读写。支持的内存读写方式和读写周期也

主板电路工作原理

主板各电路工作原理 主要内容: 1、主板开机电路 含主供电及其他供电电路)) 主板供电电路((含主供电及其他供电电路 2、主板供电电路 3、时钟电路 4、复位电路 5.1 主板开机电路 5.1.1软开机电路的大致构成及工作原理 开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以 输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1) 当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。

图5-1 主板通电电路的工作原理图 5.1.2学习重点: ①主板软开机电路的大致构成及工作原理; ②软开机线路的寻找; ④主板不通电故障的检修; ⑤实际检修中需注意的特殊现象。 5.1.3实例剖析: 一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示 (图5-2) 通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不

能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。 注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏. 5.1.4目前主板中常见的几种开机电路图:

主板各芯片的功能及名词解释

主板各芯片的功能及名词解释 芯片组:(chipset)(pciset)有南桥北桥; (主外)南桥系统I/O芯片(SIO):管理外设,主要管理中低速设备;集成了中断控制器、DMA控制器、功能如下: ①PCI、ISA与IDE之间的通道。 ②PS/2鼠标控制(属间接管理,属SI/O直接管理) ③KB控制(keyboard)(键盘) ④USB控制。(通用串行总线) ⑤SYSTEM CLOCK系统时钟的控制。 ⑥I/O芯片的控制。 ⑦ISA总线。 ⑧IRQ控制(中断请求) ⑨DMA控制(直接存取) ⑩RTC控制。 11、IDE的控制。 南桥:ISA—PCI CPU—外设之间的桥梁 内存—外存 北桥:系统控制芯片,主要CPU与内存之间通信。 (主内)掌控项目多为高速设备,如:CPU、HOST、BUS。晚期北桥集成了内存控制器;cache高速控制器;功能如下: ①CPU与内存之间的交流。 ②CACHE控制。 ③AGP控制(图形加速端口) ④PCI总线的控制。 ⑤CPU与外设之间的交流。 ⑥支持内存的种类及最大容量的控制。(标示出主板的档次) 内存控制器:决定是否读内存(高档板集成于北桥)。 586FX 中可组82438FX VX 82438VX Cache:高速缓冲存储器。 (1)、high—speed高速 (2)、容量小 主要用于CPU与内存北桥之间加速(坏时死机,把高速缓冲关掉) IO芯片,input/output,(局部I/O)。 IO芯片管理:①LPI(并上,打印口,PP) ②COM(串口,鼠标口,SP)

③FDD(软驱); ④KB控制器(键盘) BIOS:基本输入输出系统。(Basic,Input,Output System) 主要负责软件,硬件的连接。既属于硬件,又属于软件,固化了开机自检的程序,及主板BIOS编写厂家的信息。主板的生产厂家(Compag、IBM、Asus)只读可编程存储器。内部固化的程序不会因掉电而丢掉。 BIOS的功用:①提供CMOS设置的等程序,各硬件的设置及主板的特殊功能的设定。 ②系统配置的分析(CPU的种类,内存的容量等)。 ③提供(POST)(开机自检) ④载入操作系统(98、NT、UNIX等) BIOS:软硬件连接POST(开机自检) ①固化了POST程序。②固化了写信息,厂家的信息。 ③固化了主板生产厂家的信息(如COMPAQ) ④提供了CMOS SETUP的设计。 ⑤提供中断服务程序。 RTC:实时时钟控制器(CMOS、RAM)互补金属氧化半导体。 ①属存储器的一种,用于储存CMOS设置的信息。 ②只需2.2v电压即可维持其内部资料不丢失。 ③工作方式:开关机都有电源供应。 ④IC型号:KS83C206Q318、M5818、HM6818P、PALLAS、DS128TI118T、UM82C206L、 OEC12B887A。 ⑤小晶振相连的IC即为RTC(标志)32768 COM口控制芯片是主板上唯一的一个用±12V1/2电源芯片。 I/O芯片:①FDD ②LPT ③COM(平口鼠标,串口) ④KB 老烧鼠标:1、电源。 2、COM口控制芯片。 3、COM口控制芯片旁的二极管。 时钟发生器:与晶振14.318MHZ相连的IC。晶振本质是一个很稳定的石英电容。 集成时钟放大器,时钟分频器作用:为各总线、芯片、CPU提供一个固定的匹配的时钟信号工作频率。 工作方式: 晶振14.318提供14.318M的频率给时钟发生器。 主机电源盒或主板电源部分提供 3.3V或3.5V给时钟发生器分频、放大提供给各总线(包括PCI、ISA、AGP、SIMM/O等)。 时钟发生器普通芯片: (1)WINBAMD W83194R—39A。 (2)IC89248XX—39。 (3)9250XX—08ICWORK。 (4)W485112—24X。 (5)W485111—14X (6)PHUSELINK PLL52C68—02 PLL52L6844 增强:ICS9248AF—90 超级:RTM520—390

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

相关文档