文档视界 最新最全的文档下载
当前位置:文档视界 › 激光等离子体相互作用的数值模拟

激光等离子体相互作用的数值模拟

激光等离子体相互作用的数值模拟
激光等离子体相互作用的数值模拟

第19卷第12期2007年12月

强激光与粒子束

HIGHPOWERLASERANDPARTICLEBEAMS

V01.19。No.12

Dec.。2007

文章编号:lOOl一4322(2007)12—2039一04

激光等离子体相互作用的数值模拟‘

张海鸥1,王琨2,王桂兰2

(1.华中科技大学数字装备制造与技术国家重点实验室,武汉430074;

2.华中科技大学塑性成形模拟与模具国家重点实验室,武汉430074)

摘要:基于激光等离子体相互作用的复杂物理过程的数学模型,采用P1C方法分别研究了P极化和S极化非均匀短脉冲强激光入射均匀分布的稠密等离子体时引起的空泡、成丝等物理现象。模拟了激光脉冲在

真空中的3维传播形貌。由3维密度分布图发现:激光产生的巨大的有质动力向两侧推动粒子,形成等离子体

密度通道;当激光脉冲入射等离子体区域后,纵向加速的电子速度峰值出现在电流峰值处。

关键词:激光等离子体;数值模拟;激光脉冲形貌;脉冲宽度

中图分类号:TN248.7;0242.1文献标识码:A

激光等离子体相互作用物理是随着激光技术、激光聚变以及激光与等离子体相互作用研究的刺激而发展起来的新兴学科[1]。由于相对论激光等离子体相互作用过程具有强的非线性,波一粒子相互作用复杂且难以测试,解析求解十分困难,因此粒子模拟成为了其重要的研究手段之一[2]。在等离子体数值模拟方面和E1dridge等人[33创立了一种在微型计算机上易于实现的粒子模拟方法,S.Mahalingam等[41采用此方法模拟了离子引擎内的放电腔内的

2042强激光与粒子柬第19卷

3结论

本文通过对激光等离子体相互作用的数值模拟,研究了P极化,S极化强激光入射稠密等离子体的典型物理过程以及脉冲变化情况。结果表明当激光脉冲入射等离子体区域后,纵向加速的电子速度峰值出现在电流峰值处,这是激光与等离子体相互作用后进人等离子体中的激光波长会变长的物理现象以及局域振荡电子加热机制基本吻合。P极化和S极化激光分别与等离子体相互作用的电子在纵向速度峰值的出现位置相同,但s极化激光产生了成丝效应、空泡等不同现象。

参考文献:

[1]YinY.Theresearchofparticle-simulationintheinteractionofultra-shortultra—intenselaserpulseswith-overdenseplasma[D].changsha:NationalUniversityofDefenseTechn0109y,2003:3—4.

[2]曹莉华,常铁强,常文蔚,等.超强激光等离子体中J×口加热的2维粒子模拟[J].强激光与粒子束,1998,lo(1);80一83.(caoLH,ChangTQ,ChangWW,eta1.ParticlesimulationofJ×BheatinginplasmasproducedbyanuItrapowerfullaserpulse.Hig^PotwrLnsPr口”dP口竹站比B阳仇s,1998,10(1):80一83)

[3]EldridgeOC,FejxM.One_dimensionalplasmamodelattbe珊odynamicequⅢbrium口].P五yjjf5∥R“f出,1963,5(9);1076.

[4]MahalingamS,MenartJA.Computationalmodeltrackingprimaryelectrons,secondaryelectrons,andionsinthedischargechamberofanionengine[c]//413‘AIAA.2005.

[5]陆全明,钟方川,徐至展,等.超短超强激光和稠密等离子体相互作用的数值研究[J].光学学报,1998,18(10):1359—1361.(LuQM,zhongFC,xuzz,eta1.Anume“calstudyofinteractionbetweenhigh—intensityultrashortlaserandoVerdenseplasma.Ac抛(功£icns抽i—c口,1998,18(10):1359—1361)

[6]xuH,changww,ZhuoHB,eta1.Parallelprogrammingof2(1/2)一dimensionalP1Cunderdistribute出methodparallelenvironments[J].C^i竹P卵Jo“M“o,CDmp“缸£io月以P^ysics,2002,19(4):47—51.

[7]UmedaT,OmuraY,TominagaT,eta1.Anewchargeconservationmethodindectromagneticparticle_in—cellsimulations[J].cD仇p“£PrP^,sicsCo,雄,"“柙ic口fio卵s,2003,lS6(1):73—85.

[8]zepfM,CastroCM,ChambersD,eta1.Measurementsoftheholeboringvelocityfromdopplershiftedharmonicemissionfromsolidtargets[刀.P^ysP缸sm口5,1996,3(9)l3342.

[9]YoungPE,F00rdME,HormmerJH,eta1.Timedependentchannelformationinala8er_producedplasma[J].P^ysRP口LP越,1995,75(6):1083.

[10]马燕云,常文蔚,银燕,等.超强激光钻孔机制的粒子模拟研究[J].强激光与粒子束,2000,12(5):589—593.(MaYY,changww,YinY,eta1.Thepartidesimulationstudyofmechanismof1aserboringinoverdenseplasma.Hig^Pot‘懈rL口ser口”dP口竹ic如BPnms,2000,12(5):589—593)

[11]马燕云,常文蔚,黄卫,等.激光等离相互作用的局域振荡电子加热机制口].强激光与粒子束,2005,17(1):83—87.(MaYY,ChangwW,HuangW,eta1.Localoscillatingelectronheatingmechanismduringlaserplasmainteraction.Hig^Po伽rLnsPr4打dPn仃纠PB∞ms,Z005,17(1):83—87)

NumericalsimulationoflaserplasmainteractiOn

ZHANGHai-oul,WANGKun2,WANGGui-lan2

(1.S£口£8K8yLn6Dr口£oryo,Digi£口ZM口,l础.厂nc£“ri行gE白“ip,ne行£口竹dT_c^行DZDgy,H“n2^o咒gLki℃世rsn3,o,

SciP孢ce口挖d丁_c^卵oZogy,Ⅵ7l血口竹430074tC撬i,m;

2.S£口fPKPyLn6曰,-口toryo,Pz口5£ic.f砀门"i行gSi,n“Z口fiD,zD,SciP,2cPn咒d:nc^恕ozogy,

H“口l血ongUhi口er5ifyo,SciP行ce口佗d了■c.}l咒oZogy,肌^口竹430074,(流i72n)

Abstract:Amathematicalmodelwasdevelopedtoinvestigatethecomplexphysicalprocessoflaserplasmainteraction,a—doptingthePIC(particle—irl-cell)approachtostudythephenomenawhenheterogeneousultra’shortandultra?highlaserpulseprop—agatedthIDughover—denseplasma.Throughthesimulationof3Dlaserpulseappearanceinvacuum,itwasfoundthatachannelwasformedduetotheextremelylargepondemnlotiveforceassociatedwithlaserpulse.Thelengthwayselectronvelocityappearedinthepositionofthepeakelectriccurrentintensityandthewavelengthbecamelonger,whichiscoincidentwiththeIocaloscilla—tingelectmnheatingmechanismbasic矗lly.

K£ywords:Laserplasmainteraction;3Dsimulation;Laserpulseappearance;Pulsewidth

长脉冲激光与金属相互作用影响分析

第26卷第6期 2011年12月光电技术应用 ELECTRO-OPTIC TECHNOLOGY APPLICATION Vol.26,No.6 December,2011 1高功率激光对靶面的作用 高功率激光光束作用于靶材时,靶表面吸收大量激光能量,引起温度升高、熔融、气化、喷溅等现象。具体过程依赖于激光参数(能量、波长及脉宽等)、材料特征和环境条件。一般说来,在不同数量级的激光功率密度作用下靶表面发生的物理现象是[1]:103-104W/cm2104-106W/cm2106-108W/cm2108-1010W/cm2 加热熔融气化等离子体 激光与物质相互作用时产生两个典型效应:二次非线性光学效应和高压冲击波(光力学)效应。当高功率激光辐照在靶材上时,一部分被靶材表面反射,一部分通过靶材透射,一部分散射,而大部分则被靶材吸收[2]。 1.1强激光对物质作用的研究现状 国内外科学工作者在高功率激光与物质相互作用方面做了大量的研究工作。其中以美国和前苏联 ·激光技术· 长脉冲激光与金属相互作用影响分析 任天宇,王洋,薛阳 (长春理工大学,吉林长春130012) 摘要:通过使用1064nm,Nd:YAG长脉冲激光作用在金属材料从理论和数值模拟的角度研究各种因素对激光加热效应的影响。针对国内外目前长脉冲激光与物质相互作用研究的现状,分析和模拟了长脉冲激光与材料相互作用过程中的各种现象和问题,特别是对长脉冲激光与金属相互作用时的温度场及应力场进行了较全面的理论分析。就靶材物质对激光的反射、吸收和转化的基本机制,激光对金属材料加热的温度场、应力场及其熔融的温度场和固-液态界面的移动速度及液态质量迁移、激光引起材料的气化、烧蚀的质量迁移,进行了系统的讨论。 关键词:激光与金属相互作用;数值模拟;数值研究 中图分类号:TN249文献标识码:A文章编号:1673-1255(2011)06-0028-05 Analysis of Long Pulse Laser-metal Interaction REN Tian-Yu,WANG Yang,XUE Yang (Changchu University of Science and Technology,Changchun130012,China) Abstract:The effect of a variety of factors on the laser heating from the theory and numerical simulation, by using1064nm Nd:YAG long pulse laser interaction with metal.The phenomenon and problem in the pro?cess of the laser-matter interaction are analyzed and simulated,as for laser-metal interaction research at home and abroad,especially the temperature field and stress field of the long pulse laser-metal interaction are ana?lyzed theoretically.The effect of the basic mechanism of the laser reflection,the absorption and the transforma?tion on the target material,the temperature field,the stress field and the melting temperature of the metal mate?rial heated by the laser,the moving velocity of the solid-liquid interface,the liquid mass transfer,the material gasification and the ablation mass transfer are analyzed. Key words:laser-metal interaction;numerical simulation;numerical research 收稿日期:2011-12-10 基金项目:国家自然科学基金(61077024/F050205) 作者简介:任天宇(1983-),男,浙江绍兴人,博士研究生,研究方向为物理电子学;王洋(1982-),女,吉林长春人,博士研究生,研究方向为物理电子学.

激光诱导等离子体光谱分析

激光诱导等离子体光谱分析

激光光谱分析与联用技术 读书报告 日期:2011年5月25日 激光诱导等离子体光谱法

摘要:本文概述了激光诱导等离子光谱法的发展概况、基本原理、基本特性、仪器装置、应用方向和研究进展,并对该光谱法进行了展望。关键词:激光诱导等离子体光谱研究进展 前言: 激光诱导等离子体(LIP)近年来尤为受到关注,已经成为研究激光与物质相互作用的重要工具,在光谱分析,激光薄膜沉积和惯性约束核聚变等方面也有着广泛的应用。随着激光和阵列探测器的发展,激光诱导等离子体光谱技术(laser-induced plasma spectroscopy或者 laser-induced breakdown spectroscopy)在近30年内取得长足发展,成为原子光谱分析阵营中的一颗明星,犹如早些年的火焰原子吸收光谱法、光电直读光谱法和电感耦合等离子体发射光谱法,在很多领域得到广泛的应用。 1.发展概况 LIPS自1962年被报道以来,已被广泛地应用到多个领域,如钢铁成分在线分析、宇宙探索、

环境和废物的监测、文化遗产鉴定、工业过程控制、医药检测、地球化学分析,以及美国NASA 的火星探测计划CHEMCAM等,并且开发出了许多基于LIPS技术的小型化在线检测系统。 LIPS发展可以分为三个阶段:第一个阶段是至自1962年提出到70年代中期,主要是在于研发利用光电火花源产生等离子体的仪器。第二个阶段是从1980年开始,这种技术重新被人们重视,但实际应用仍然受到笨重的仪器阻碍。第三个阶段是1983年迄今,激光诱导等离子体光谱开始以缩写形式LIPS,开始被商业公司开发应用。这种趋势导致分析工作更加集中于发展坚固的、移动的仪器。此时光纤也被应用于LIPS系统中,主要用于将等离子体发射信息和激光脉冲耦合进光谱仪。 近20多年来,LIPS测量技术在各个行业都有不同程度的应用。通过改进实验LIPS装置来提高测量精度。到上个世纪90年代中期开始,一些商业公司便开发出便携式半定量的成品仪器,

激光与材料的相互作用

激光与材料的相互作用 发布日期:2007-10-04 我也要投稿!作者:网络阅读: [ 字体选择:大中小] 680 作为能量源的激光束可以聚焦成很小的一个光斑,无需直接接触,即可与材料发生相互作用。激光的性能不断提高,现在的激光具有各种不同的波长、功率和脉冲宽度,这些参数的不同组合适用于各种不同的加工需要。为了更好地了解激光的潜能,工程师们必须熟悉这种技术以及其中的细微差别。在决定使用何种激光前,工程师应该了解激光工作原理、激光与材料的相互作用、激光参数以及何时可利用激光进行医疗材料加工。了解这些知识后,工程师设计医疗器械时就能做出正确的决定。 激光在器械加工中的应用机会 激光可用于器械制造的许多加工环节中。例如,激光切割便是一种常见用途,常用于制造支架等小型器械。激光还可用于加工通沟或盲孔。该技术可用于加工医疗诊断设备的微流体通道以及给药用微量注射器的小孔。目前,人们正利用激光加工技术研制用于芯片实验室上的微型传感器和传动器上的硅制微型机械。激光焊接和打标常用于植入器械和手术器械的制造中。此外,激光还常用于表面纹理加工中,例如:可用于矫形外科植入物的表面处理上,提高表面的粘附性。 激光工作原理 激光的工作原理较为简单。通过一个光子激发其他光子,使大量光子以光束的形式一起发射出去。肉眼可能无法看见的光束由激光腔中发射出去,然后被传导至材料加工工作站中。根据激光波长的不同,光束可通过光纤传播或者经光学元件直接传播。 目前使用的激光大都早在20世纪60年代就已经问世,包括Nd:Y AG激光、二氧化碳激光和半导体激光。激光器集成到工业用机械中经过了数年的时间,尽管技术已经成熟,但激光器仍在不断改进,例如:人们研制出能产生很短脉冲宽度的如皮秒和飞秒激光器。此外,激光材料在光纤激光器、光碟激光器和焊接用绿光激光器内的独特排列进一步丰富了材料加工的方法。 表I. 材料加工中常用的激光波长。(点击放大) 材料加工所用激光波长从紫外线一直到红外线,包括了可见光谱。常用激光类型及其波长列于表I中。除激光类型外,选择激光时还要考虑其他许多方面,例如:激光腔的设计、光学传送元件和激光与材料相互作用。最为关键的是,医疗器械设计人员必须了解激光束如何与不同器械材料发生相互作用以及如何用于材料加工中。 激光与材料的相互作用

激光等离子体中一些基本过程及其应用

激光等离子体中一些基本过程及 其应用 郑春阳 北京应用物理与计算数学研究所 2008年10月16日北大

I.基本概念 II.黑腔激光等离子体相互作用过程(LPI)III.强场与“快点火”中LPI IV.激光天体物理

I.基本概念(1) 激光与非磁化等离子体相互作用主要涉及三种波:激光(电磁波)、电子等离子体波(Langmuir波)及离子声波 (1)电磁波:ω2=ωp 2+k 2c 2(光子似乎得到“质量”m*c 2=h ωp ) ωL = ωp 对应n c =1.1×1021/λL 2cm -3(稀薄或稠密)(2)Langmuir 波: ω2=ωp 2+3k 2λD 2(λD =v th,e / ωp ) 存在条件:v ph =ω/k ﹥﹥v th,e (Landau 阻尼) (3)离子声波:ω=c ia k, c ia =(Zk B T e /m i )1/2 (ZT e /T i )1/2>1 在实际应用中,对等离子体中存在的大量集体模式(波、不稳定性)的激发、非线性耦合、时空演化的理解是至关重要的。

I.基本概念(2) 不同强度、波长的激光等离子体相互作用性质差异可以很大。我们关心的是电子在激光电场中的振荡能量与它们的热能量可比较 ≈1021cm-3,T e≈1keV 考虑:n e I L~c|E L|2/8π~cn e K B T~1015W/cm2 v osc>v e 激光惯性约束聚变(ICF)激光装置产生的强度范围 激光强度I ~1018W/cm2,v osc~c属于相对论强场物理范围。 L 激光等离子体过程为高度非线性,必须动力学手段描述。

前沿物理讲座--浅析激光等离子体相互作用原理

浅析激光等离子体相互作用原理 一、摘要 超强激光脉冲与等离子体相互作用是近几年新兴的前沿学科,它在激光蒸发沉积、激光推进、新型的粒子加速器、超快高能X射线光源和“快点火”惯性约束聚变等方面,都有着广泛的应用前景。因此,激光等离子体相互作用的研究是十分必要的。 论文中我们阐述了激光等离子体的性质相互作用。通过建立简化的物理模型,即将部分电离的等离子体简化为类氢离子讨论了激光等离子体相互作用物理和超短超强激光等离子体相互作用。最后,我们根据得到的一些相关结论简单的描述了激光等离子体的一些应用。 关键词:激光等离子体 二、介绍 人类对等离子体的研究从气体放电开始。1879年,英国的Crookes首先发现气体放电管中的电离气体区别于固、液、气三态,将之称为“物质第四态”。1928年,美国的Tonks和Langmuir采用等离子体(Plasma)来描述这种新的物质形态。随后,Vlasov和Landau等人建立了等离子体的动力学描述,这也标志了等离子体物理学的正式建立。到了二十世纪五十年代,在受控热核聚变和空间技术发展的推动下,等离子体物理逐渐发展成熟,成为一个新的、独立的物理学分支。等离子体是一种由大量电子、离子等带电粒子和中性粒子(原子,分子,微粒等)组成的,并具有一定集体行为的、准中性的、非束缚态的宏观体系。与通常的固、液、气三态相比,等离子体的基本特征主要是“准电中性”和“集体行为”。 自1960年Maiman研制成功第一台红宝石激光器以来,激光技术的每一次发展都极大的拓展了物理学的研究领域。图1给出了激光强度随年代的增长及相关的物理学进展。 图1

激光等离子体物理,是随着超短超强激光脉冲技术发展而形成的一个新的分支学科。激光技术的每一次革命,都为激光与等离子体作用的研究开辟新的领域。随着激光强度的不断增强,激光等离子体物理经历了从线性响应到非线性光学,再到相对论的非线性作用的研究历程。在现有激光技术的推动下(强度S 1023VI//cm2,脉宽/S 量级),超短超强激光脉冲同等离子体的作用更是成为了当今物理学研究前沿的一个重要分支。 现代激光技术的发展,引发了人们研究超短超强激光脉冲同等离子体作用的浓厚兴趣。这一方面是出于探索自然物理规律特别是非线性问题的需要,另一方面则是源于激光等离子体作用可以用来充当各种光子、电子和离子源气由于激光的高能量密度,这些产生的粒子源具有更好的紧凑性和其它一些非常优秀的束流性质,如高亮度、低散射度、短脉冲等。而这样的粒子源存在很多新颖的实际应用,比如在离子束治疗癌症、生物照相、超快探测、快点火聚变等方面将会产生巨大的作用。目前,国际上激光等离子体物理的主要研究领域在如下几个方面:激光驱动的可控惯性约束核聚变,粒子桌面加速器,基于激光等离子体作用的电磁波辐射源研究,如X 射线源P 气阿秒脉冲,高次谐波和太赫兹辐射等。另外,利用超短脉冲激光在大气中传播形成的超长等离子通道来实现激光雷达和激光引雷等研究也得到了人们越来越多的关注。 三、激光等离子体相互作用原理 高功率激光束照射靶物质时,部分激光能量被吸收,导致靶物质被加热、电离而产生热等离子体,从而激光直接与等离子体相互作用。激光等离子体相互作用与激光参数、等离子体的材料特性和状态参数等密切相关,其中最具决定性因素的是激光强度人和等离子体密度,。激光强度(激光的聚焦功率密度)为: L L E I S τ= (1) 其中L E 是打到靶面的激光能量,S 是激光束辐照在靶上的面积(焦斑),r 是激光脉冲的时间宽度。激光强度也可以用电场来表示: 20012 L I c E ε= (2) 其中0ε是真空中的介电常数,c 为“光速。另一个常用来表示激光强度的物理量是激光场的无量纲化振幅002e eA a m c =,其中0A 为激光矢势A 的幅值, e m 为电子质量, e 为电子电量,对于线极化激光有: 0A =(3) 圆极化激光有: 0A = (4) 其中0λ为激光波长。强度不同的激光发生相互作用的机理可能完全不同,强度超过1016瓦特的激光称为相对论激光,这是由于电子在激光电场中的高速振荡速

8.第八章激光在医学中的应用

第8章 激光在医学中的应用 激光医学是激光技术和医学相结合的一门新兴的边缘学科。1960年,Maiman 发明第一台红宝石激光器,1961年,Campbell 首先将红宝石激光用于眼科的治疗,从此开始了激光在医学临床的应用。1963年,Goldman 将其应用于皮肤科学。同时,值得关注的是二氧化碳激光器的作为光学手术刀的出现,逐渐在医学临床的各学科确立了自己的地位。1970年,Nath 发明了光导纤维,到1973年通过内镜技术成功地将激光导入动物的胃肠道,自此实现了无创导入技术的飞速发展。1976年,Hofstetter 首先将激光用于泌尿外科。随着血卟啉及其衍生物在1960年被发现,Diamond 在1972年首先将这种物质用于光动力学治疗。在医学领域中,激光的应用范围非常广泛,不仅在临床上激光作为一种技术手段,被各临床学科用于疾病的诊断和治疗,而且在基础医学中的细胞水平的操作和生物学领域中激光技术也占有重要地位。另外,还可以利用激光显微加工技术制造医用微型仪器。再者,利用全息的生物体信息的记录及医疗信息光通信等与信息工程有关的领域,从广义来讲,也属于激光在医学中的应用。本章主要对医学临床,重点是激光对诊断和治疗领域中的应用进行论述。 由于诊断和治疗在本质上都是利用激光与生物体的相互作用,因此,有必要首先对这些基础进行介绍。在8.1节中归纳介绍了生物体的光学特性、激光对生物体的作用、激光在生物体中的应用特点等内容;然后在8.2节中通过典型的治疗应用实例,介绍了激光在外科、皮肤科、整形外科、眼科、泌尿外科、耳鼻喉科等领域中的治疗和光动力学治疗等;在8.3节中重点围绕诊断中的应用,介绍了生物体光谱测量、激光计算机断层摄影(光学CT )、激光显微镜等。在8.4节中,对激光在医学中的应用的激光装置与激光转播路线的开发动向进行介绍。最后8.5节对激光医学的前景作了展望。 8.1 激光与生物体的相互作用 8.1.1 生物体的光学特性 假设生物体中入射的单色平行光强度为0I ,若生物体是均匀的吸收物质,根据1.5节证明的(1-89)式,入射深度为x 处的光强度I 可用下述关系式表示 ()x a I I 00exp -= (8-1) 其中0a 为吸收系数(参见图8.1)。但是,由于生物体对光是很强的散射体,因此生物体内光的衰减不仅由于吸收,而且取决于散射的影响。在不能忽略散射的条件下,上式可用衰减

激光等离子体的受激Brillouin散射

第12卷 第1期 强激光与粒子束V o l .12,N o .1 2000年2月H IGH POW ER LA SER AND PA R T I CL E B EAM S Feb .,2000 文章编号: 1001—4322(2000)01—048—03 激光等离子体的受激Br illou i n 散射 Ξ 蒋小华, 郑志坚, 李文洪, 刘永刚(中国工程物理研究院核物理与化学研究所,高温高密度等离子体物理实验室,绵阳919-218信箱,621900) 郑 坚, 王以超 (中国科学技术大学近代物理系,合肥,230027) 摘 要: 研究了激光等离子体背向和侧向受激B rillou in 散射光谱结构。激光等离子体相互作用时,受激B rillou in 散射光谱受激光等离子体状态的影响而产生Dopp ler 效应。当激光以45°入射不同材料的平面靶时,等离子体运动产生不同的二维效应,高Z 材料产生的等离子体冕区主要沿靶法向运动,受激B rillou in 散射光谱在侧向产生较大蓝移,而低Z 材料则主要在激光入射方向产生较大蓝移。 关键词: 激光等离子体; 受激B rillou in 散射; Dopp ler 效应 中图分类号: O 437.2 文献标识码: A 受激B rillou in 散射(SB S )是激光等离子体中一个入射激光光波衰变为一个散射光波和一个离子声波的参量不稳定过程,它可发生在激光等离子体的整个次临界区[1,2]。在惯性约束聚变物理研究中,SB S 会带来不利的影响,另外它的发生和激光等离子体的状态密切相关,由SB S 产生的散射光将为诊断激光等离子体状态提供依据[1,3]。选择合适的激光2靶耦合方式控制激光等离子体状态的演变,将能有效降低聚变对激光器件的要求。因此,通过对不同角度的SB S 光谱结构的观测,来研究0.351Λm 激光与不同靶材作用对SB S 光谱结构的影响。 1 实验条件和结果 F ig .1 Experi m ent setup s 图1 实验装置布置图 星光 钕玻璃激光装置以三倍频输出,激光输 出波长为0.351Λm ,激光输出能量为70J ,激光脉冲 宽度为800p s ,激光入射靶面功率密度约为1×1014 W c m 2,激光以45°入射<600Λm 的平面盘靶,靶材 料分别为CH ,CH +A u 的多层靶(10层8nmA u + 3nm CH )及A u ,实验利用两台OM A 4光谱仪分别 在激光背向和侧向30°探测了SB S 的光谱结构。实 验布置如图1所示。 图2给出0.351Λm 激光作用平面CH 材料靶 时,在激光入射背向和侧向得到的红移SB S 光谱,在两方向上散射光谱结构完全一致,只是相对有一个平移,其中背向散射光谱相对侧向有0.4nm 的蓝移。 图3和图4是0.351激光与A u 盘靶和多层靶作用时,在背向和侧向得到的散射光谱,与CH 靶作用一样,各方向散射光谱结构相似,只是散射光谱变窄,但是侧向光谱相对背向出现了约0.1nm 的蓝移。 Ξ国家自然科学基金资助课题(19735002) 1999年7月28日收到原稿,2000年2月12日收到修改稿。 蒋小华,男,1968年8月出生,硕士,助研

等离子体中激光场的吸收机制

等离子体对激光的吸收机制: 超强激光在等离子体中传播时,在临界密度以下区域,激光能够直接进入,在 临界密度附近,激光被等离子体反射。激光在和等离子体的作用过程中,一部分电子被加速而引起电荷分离并产生静电场形成静电势阱,高速电子可以逃逸出此势阱进而增强电荷分离,电子可在此静电势阱中振荡并被加速,最后静电势阱被破坏把能量交给等离子体。 正常吸收: 逆韧致吸收:等离子体中的电子受激光场加速时,在等离子体的离子库仑场附近散射引起 的经典吸收过程。它对电子密度很敏感,它是短波长激光的主要吸收机制, 而且主要发生在临界面附近的地方。 非线性逆韧致吸收:当激光足够强时,电子的振荡速度会超过电子热速度,此时电子速度分 布就会和电场有关,变成非线性逆韧致吸收。此时,激光电场可以和原 子核的电场相比,还会发生多光子过程。非线性吸收系数大大偏离线性 吸收系数。但在激光核聚变的范围内不会有重要偏离。该系数与53 E 有关。 反常吸收:通过波-波相互作用和波-粒子相互作用使电子获得能量的过程 通过静电波加速和加热电子 通过朗道阻尼和波的破裂把波的能量交给电子 这主要发生在小于和等于临界密度区-----晕区物理 共振吸收;受激散射;成丝现象;参量不稳定性吸收 共振吸收(RA):随着激光强度的增加,共振吸收变得重要。当平面极化激光斜入射时发生共 振吸收,由于在临界面处共振激发电子等离子体振荡,故称共振吸收。斜入 射的P 极化(电场平行于入射面)激光束激发等离子体波,在临界面附近可 以发生共振吸收。沿着电子密度梯度方向的激光电场将导致等离子体电荷分 离,引起等离子体振荡。在临界点处的等离子体频率等于激光频率,因而发 生共振,使电场强度(这应该是等离子体中的电场强度)的振幅变得很大, 导致激光共振吸收。它是波的模式的一种转换,横向的电磁波变成了纵向的 静电波。此静电波沿电子密度梯度方向向低密度等离子体中传播(共振处的电场强度最大,逆着激光传播方向,电场强度依次降低,使得静电波逆着激光传播方向进行传播),群速度逐渐增加,电场强度的振幅逐渐减少。某些电 子在这个静电波的电场中得到加速,达到很高的速度。这些很高速度的电子 的加速导致“波破裂”,释放出超热电子。共振吸收是产生超热电子的重要机 制之一。入射激光与临界密度面的反射光叠加,在临界密度以下区域形成局域 驻波, 产生的强有质动力在低密区驱动电子形成周期性密度结构Bragg 光 栅 反常表面吸收:激光垂直入射于过密等离子体时,电子离开等离子体表面薄层(该薄层内电 磁场不为零)的过程中,可以从电磁波中获得能量而得到加热。反常表面吸收是激光与过密等离子体作用时发生的。

激光与物质相互作用的研究进展讲解

激光与物质相互作用的研究进展 黄庆举 (广东石油化工学院物理系, 广东茂名 525000 引言 1960年激光问世后 , 对我国的工业、 军事等领域产生重要影响 , 激光与物质相互作用也成为了人们主要研究的课题 , 人们运用新技术、新设备 , 对激光的性质、状态进行研究 , 并且应用与各种领域 , 产生重要作用。在激光与物质的相互作用下 , 激光已经成为了探索物性的主要手段 , 在材料与能源上有着应用前景 , 无论是对物理学、化学还是生物、材料学 , 都进行了相互渗透 , 成为重要的研究领域。当 今社会 , 激光与物质相互作用的研究受到各国科研人员的重视 , 人们投入大量的人力、物力、财力, 运用新方法、 新手段进行研究。 1激光与物质相互作用的基础理论非线性光学、激光光谱学以及激光化学是构成激光与物质相互作用的基础理论 , 该理论不仅向人们阐述了激光与物质相互作用的 特点、性质 , 并且对未来的发展做出了相应预测 , 是对激光与物质相互作用的主要研究手段 , 在近几年 ,

三大学科得到了迅速发展 , 对人们的研究产生了良好的理论基础。 1.1非线性光学的表现 非线性光学是激光与物质相互作用的主要理论依据 , 在一定程度上 , 该理论向人们阐述了激光与物质相互作用的主要特点以及过 程。作为新兴学科 , 非线性光学在阐明激光特点的同时, 形成了非线性光学效应, 这种效应, 在以探讨、 观测为基础的同时, 对物质本身进行了研究。非线性研究的对象不仅仅是固体, 现如今以及涉及到气体、液体等物质中。它研究时出现的效应丰富多彩 , 在具备二阶效应的同时, 也产生了瞬间效应。 在非线性光学与物质的不断研究中 , 要注意以下几点 :(1 非线性光学表面与界面的研究 非线性光学表面与界面的研究 , 是对物力与化学研究的表现 [1], 在进行研究时, 表面波与表面光得到了重要研究 , 人们在了解、观察表面波的频率以及斯托克斯喇曼效应时, 对喇曼散射表面的现象进行了研究。在长约 10年的研究中 , 人们发现了表面二次谐波的反射 现象 , 对超晶体的研究也正在进行。 (2 对光学稳态的研究

激光对生物体的作用及这方面的应用

激光也是一种光,从本质上讲它和普通光源如太阳、白炽灯、火焰等所发出的光没有什么区别,因此它具有普通光所具有的性质。由于它是一种电磁波,所以又具有波粒二象性。它遵守反射、折射的定律,在传播中会出现干涉、衍射、偏振等现象。但是,激光又有着和普通光显著不同的特点,如它的单色性、相干性、方向性极好,亮度极高等。因此,它与生物体作用时会产生许多特殊的效应,这也是激光可以用来诊治疾病的原因之一。 激光美容的原理是通过组织吸收高能量的激光后所产生的光热反应,使局部温度在数秒内骤然升高到数百度或更高,组织发生凝固性坏死,甚至碳化或汽化,与此同时,由于急剧发热,组织的水分突然剧烈丧失,聚焦后,可用以切割或烧灼病变组织。常用于皮肤的激光有二氧化碳激光、红宝石激光、染料激光等。激光美容的优势是显而易见的:操作简便、省时、可同时止血,对于有些大面积斑、痣无须手术切除,自体植皮,可以起到美容和保留原有皮肤功能的双重效果。但是它同其他治疗方法一样,也会有一些副作用,在清除病变组织的同时,对正常组织也有不同程度伤害,最常见的是遗留表浅疤痕、色素减退或沉着斑。 激光的生物作用机理及生物效应 激光对生物体的作用有五种:热作用、光化作用、机械作用、电磁场作用和生物刺激作用。激光和生物体相互作用以后所引起生物组织方面的任何改变都称为“激光的生物效应”。激光与生物体作用后,不仅会引起生物效应,而且激光本身的参数(波长、功率、能量等)也可能会改变。由于激光的生物效应是“五作用”所致,故这“五作用”即为激光生物效应的机理。 一、医用强激光与弱激光 在医学上,由于强、弱激光的生物作用机理不同,所以临床应用时其目的和方法也不同。在医学领域里,不以激光本身的物理参量(如功率和能量)来衡量激光的强弱,而是以它对生物组织作用后产生生物效应的强弱来区分的。它的定义是:激光照射生物组织后,若直接造成了该生物组织的不可逆损伤,则此受照表面处的激光称为强激光;若不会直接造成不可逆损伤者,称为弱激光。

激光与物质相互作用复习大纲

1、从激光束的特性分析,为什么激光束可以用来进行激光与物质的相互作用? 答:(1)方向性好:发散角小、聚焦光斑小,聚焦能量密度高。 (2)单色性好: 为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。 (3)亮度极高:能量密度高。 (4)相关性好:获得高的相关光强,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来。 总之,激光能量不仅在空间上高度集中,同时在时间上也可高度集中,因而可以在一瞬间产生出巨大的光热,可广泛应用于材料加工、医疗、激光武器等领域。 2、透镜对高斯光束聚焦时,为获得良好聚焦可采用的方法? 答:用短焦距透镜; 使高斯光束远离透镜焦点,从而满足l>>f、l>>F; 取l=0,并使f>>F。 3、什么是焦深,焦深的计算及影响因素? 答:光轴上其点的光强降低至激光焦点处的光强一半时,该点至焦点的距离称为光束的聚焦深度。光束的聚焦深度与入射激光波长和透镜焦距的平方成正比,与w12成反比,因此要获得较大的聚焦深度,就要选长聚焦透镜,例如在深孔激光加工以及厚板的激光切割和焊接中,要减少锥度,均需要较大的聚焦深度。 4、对于金属材料影响材料吸收率的因素有哪些? 答:波长、温度、材料表面状态 波长越短,金属对激光的吸收率就越高 温度越高,金属对激光的吸收率就越高 材料表面越粗糙,反射率越低,吸收率越大。 5、简述激光模式对激光加工的影响,并举出2个它们的应用领域? 答:基模光束的优点是发散角小,能量集中,缺点是功率不大,且能量分布不均。 应用:激光切割、打孔、焊接等。 高阶模的优点是输出功率大,能量分布较为均匀,缺点是发散厉害。应用:激光淬火(相变硬化)、金属表面处理等。 6、试叙述激光相变硬化的主要机制。 答:当采用激光扫描零件表面,其激光能量被零件表面吸收后迅速达到极高的温度,此时工件部仍处于冷态,随着激光束离开零件表面,由于热传导作用,表面能量迅速向部传递,使表层以极高的冷却速度冷却,故可进行自身淬火,实现工件表面相变硬化。 7、激光淬火区横截面为什么是月牙形?在此月牙形区相变硬化有什么特点? 特点:A,B部位硬化,C部位硬化不够 原因:A,B部位接近材料部,热传导速率大,可以高于临界冷却速度的速度冷却,因此

激光等离子体加速器研究综述

第11卷 第4期强激光与粒子束V o l.11,N o.4 1999年8月H IGH POW ER LA SER AND PA R T I CL E BEAM S A ug.,1999  文章编号: 1001—4322(1999)04—0499—06 激光-等离子体加速器研究综述Ξ 高 宏, 刘盛纲 (电子科技大学高能电子学研究所,成都,610054) 摘 要: 综述了有关激光尾场加速器、等离子体拍频波加速器、多束激光脉冲驱动的尾 场加速器以及自调制激光尾场加速器的概念及其基本特性,概述了近期的实验结果。介绍了等 离子体波的产生机理及等离子体波中电子的俘获和加速,并讨论了存在于激光2等离子体加速 器中的一些限制和今后发展前景。 关键词: 激光2等离子体加速器; 等离子体波; 电子俘获和加速 中图分类号: TN248 文献标识码: A 激光2等离子体加速器源于20年前T aji m a和D aw son[1]提出的用激光束激发等离子体波来加速电子的想法。但限于当时的激光技术,研究工作多以理论为主。最近几年,由于激光技术的飞速发展,特别是基于啁啾脉冲放大技术的紧凑T瓦级激光系统的发展,使激光2等离子体加速器的研究又趋活跃并获巨大进展。目前人们在实验上已观察到高达100M eV能量的加速电子[2],并从理论上揭示了激光尾场加速器和等离子体拍频加速器的机制。 激光2等离子体加速器之所以引起人们的浓厚兴趣是因为它能保持非常大的加速梯度。而传统的直线加速器(R F L inacs)由于击穿电压的限制,加速梯度大约在100M V m的量级。由激光脉冲激发的等离子体波的电场可以高达非相对论波裂场(w aveb reak ing field)的量级,即E0=c m eΞp e,或E0 V?c m-1≈0.96[n0 c m-3]1 2,其中Ξp=(4Πn0e2 m e)1 2为等离子体电子频率,n0是环境电子密度。E0的意义是当所有的等离子体电子都以Ξp频率振荡时的最大等离子体波场。可以估计当n0=1018c m-3时,E0≈100GV m,这比传统的直线加速器高3个量级。 F ig.1 Schem atic of the p las m a w ave generati on in L aser2p las m a accelerato rs: (a)LW FA,the dashed curve is a p las m a w ave w h ich w as driven by a sho rt laser pulse(so lid curve);(b)PBWA; (c)M L P2LW FA;and(d)S M2LW FA,in w h ich an initially long pulse(dashed curve)break s up into a series of sho rt pulses and resonantly drives a p las m a w ave.T he laser pulses are moving to the righ t 图1 激光等离子体加速器中等离子体波产生示意图。(a)LW FA,虚线代表由激光脉冲激发的等离子体波;(b)PBWA; (c)M L P2LW FA;(d)S M2LW FA,初始长脉冲激光(虚线)裂解成一系列的短脉冲共振激发等离子体波,激光脉冲向右运动 Ξ电子科技大学青年科学基金资助课题 1998年11月9日收到原稿,1999年5月17日收到修改稿。 高 宏,男,1969年5月出生,博士后

激光-等离子体相互作用

?部分相关论文: ? B. Hao et al., Phys. Rev. E 79, 046409 (2009).? B. Hao et al., Phys. Rev. E 80, 066402 (2009). ?W. J. Ding et al., Phys. Plasmas 16, 042315(2009).?S.M. Weng et al., Phys. Rev. E 80,056406 (2009). ?S.M. Weng et al., Phys. Rev. Lett. 100, 185001 (2008). ?S. Kahaly et al., Phys. Rev. Lett. 101, 145001(2008).?W.M. Wang et al., Phys. Plasmas 15, 030702 (2008).?S. M. Weng et al., Phys. Plasmas 13, 113302 (2006) .?陈民等,计算物理25, 43 (2008).? 翁苏明等,计算物理24, 134 (2007). 强激光和等离子体作用理论与模拟 Theory and Simulation on Relativistic Laser-Plasmas Fokker-Planck 模拟程序的发展及其应用 Fokker-Planck (FP )模拟作为一种动理学模拟方法,与PIC 模拟一样得到广泛应用,特别是用于惯性约束聚变中的热流输运、快点火聚变中的高能粒子输运、等离子体中波加热等。我们发展了一维坐标二维速度空间的FP 模拟程序,它考虑完整的电子-电子碰撞和电子-离子碰撞,可以用于分布函数高度偏离平衡态的情况。下面是两个采用该程序得到的典型结果。 强直流电场下的等离子体电导率:当外加直流电场强度足够小时,等离子体中的电子分布函数接近于平衡态下的麦克斯韦分布,此时产生的电流与电场强度成正比,由Spitzer 理论来描述。在惯性约束核聚变的快点火方案中在高能电子输运过程中就会产生很强的直流电场,此时传统的Spitzer 理论不再适用。我们利用自行开发的FP 模拟程序对等离子体在各种强度的直流电场下的电子分布函数进行了详细的分析,并推导出了一组类似于流体力学方程的公式。它可以正确地描述在强直流电场下的等离子体电流和电场之间的关系,并且像Spitzer 的计算公式一样简单易用。强激光场下的逆韧致吸收率:利用速度空间二维的FP 模拟程序对激光场中的逆轫致吸收过程,在此基础上推导了新的逆轫致吸收算子。它适用于任意强度的激光场中的逆轫致吸收并且与Langdon 形式的吸收算子一样可方便地集成到各种大型的等离子体模拟程序中,从而具有很高的实用价值。 粒子模拟(PIC)程序KLAP 的发展和应用 在过去10年,我们在中科院物理所独立发展了相对论多维粒子模拟程序KLAP 。在一维和二维粒子模拟程序中,我们还加入了考虑光离化,碰撞离化及两体碰撞效应的子程序,并将其应用于短脉冲激光与中性物质相互作用的研究中。在三维程序中,为了研究加速能量达GeV 的长距离激光尾波场加速问题,我们发展了具有移动窗口特性的程序,使得模拟尺度可以达到厘米量级。这些模拟程序对发展激光等离子体相互作用理论、揭示新物理现象、解释实验现象起了关键作用。 碰撞效应对相对论性成丝和双流不稳定性的影响 在快点火中,当高能电子向靶丸中心传输时,会导致成丝、双流和斜向不稳定性,这三种不稳定性对电子输运的影响是快点火中最关键的问题之一。在靶心区域,背景粒子之间的碰撞频率可以远大于不稳定性的增长率,因此必须考虑碰撞效应对这些不稳定性的影响。我们在全动理学框架下研究了碰撞效应对成丝不稳定性、双流不稳定性、斜向模式不稳定的影响。研究发现,碰撞效应对斜向不稳定性的静电部分起抑制作用,而对其电磁部分起着促进作用。在快点火中的参数下,当背景等离子体达到固体密度附近,静电性的斜向不稳定性将被完全抑制。在致密靶心区,成丝不稳定性将成为最不稳定的模,其产生的准静态磁场对电子的输运起着重要的导引作用。 二维粒子模拟揭示激光与固体靶作用表面电子发射的机制-逆自由电子激光加速机制。上图为实验结果,右图为数值模拟结果。 电子束在高密度等离子体中传输模拟。上图是不考虑无碰撞效应,下图是考虑碰撞效应。 x/λ y /λy /λ 中国科学院物理研究所光物理实验室 强激光高能量密度物理研究组 Group for Intense-Laser-Driven High Energy Density Physics

激光等离子体相互作用仿真软件VORPAL

Modeling Laser Wakefield Particle Accelerators with VORPAL What is LPA? An intense,short laser pulse propagating through a plasma can lead to the separation of electrons and ions capable of producing accelerating electric fields of hundreds of GV/m.This field strength is thousands of times greater than those produced by radio frequency accelerators, which makes them attractive as compact next- generation sources of energetic electrons and radiation. VORPAL is capable of simulating laser plasma accelerators(LPA)using several different models; fluid, envelope and full particle-in-cell (PIC). Full PIC models take advantage of VORPAL scaling The full PIC model of laser-plasma interaction includes the most physics of any of the models available in VORPAL. Because these models are the highest fidelity,they are also the most computationally intensive.By exploiting the ability of VORPAL to scale to tens of thousands of processors, one can still perform even the most challenging LPA simulations. Full PIC modeling resolves the laser wavelength. Due to the fine resolution, the acceleration of the particles can be followed until full laser energy depletion. Any waves that can result from the interaction of the laser with the plasma are also resolved which is vital to see if their effect is important.

激光的生物学效应讲解

论文关键词:激光激光生物效应激光与生物分子 论文摘要:本文主要简介了激光与生物组织相互作用所产生的生物效应,概述激光与生物分子相互作用机理研究现状。为提高和发展激光技术在此领域的应用,有必要对激光的生物学效应及生物物理机理进行研究。 一、激光的发光原理及其生物学效应 1激光发光原理 把一段激活物质放在两个互相平行的反射镜构成的光学谐振腔中,处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外,轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增强。如果谐振腔内单程小信号增益G0l 大于单程损耗δ,则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子即自发辐射。同样的,当一个光子入射到一个能级系统并为之吸收的话,会导致原子从低能级向高能级跃迁即受激激吸收。然后,部分跃迁到高能级的原子又会跃迁到低能级并释放出光子即受激辐射。这些运动不是孤立的,而往往是同时进行的。当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,就会有光子射出,从而产生激光。 2激光生物学效应 由于激光具有能量和动量,激光作用于生物分子,就有可能使生物分子产生物理、化学或生物反应,这就是激光生物效应。目前,学术界认识比较一致的激光生物效应大致有五类:. 激光生物热效应、激光生物光华效应、激光生物压力效应、激光生物电磁效应和激光生物刺激效应。生物组织内的天然色素颗粒,对近紫外、可见光和近红外光谱区的激光有选择吸收作用。激光生物效应,目前已经在激光医疗、激光育种方面得到广泛、有效的应用。 (1)激光生物热效应

激光等离子体加速机制研究方案综述

激光等离子体加速机制研究综述 1 研究现状 随着激光技术的发展,激光强度不断增强,脉宽不断缩短,对激光等离子体相互作用的研究开辟出了许多新的领域。激光与等离子体相互作用与激光的强度、波长、脉宽,等离子体状态参数<最主要是密度)密切相关。随着激光强度变大,开始是线性响应,然后随着激光不断增强,非线性效应和相对论效应开始占主导。当强度超过1 018W/cm2电子的相对论效应必须考虑,加剧了理论研究难度但也催生了更多的物理现象产生。比如非线性波跛、超高能粒子产生、相对论孤子和涡旋。而根据等离子体的密度不同,激光与等离子体作用可以分为稀薄等离子体<同气体靶作用)和稠密等离子体<同液、固体作用)。对于1微M的激光,能在等离子体中传播的临界密度是1.1×1021cm- 3,介于气体密度与固液密度之间。激光脉宽的减小使得激光等离子体相互作用出现新的物理现象。fs级别的脉宽,对稀薄等离子体可以通过直接的LWFA来加速电子。超短超强激光驱动电子等离子体加速电子,可获得能量高达1GeV、电荷接近1 n c、方向性优良、能散度小的高性能电子束,从而在高能加速器、聚变物理、短脉冲高亮度X光源产生、实现小型化自由电子激光等领域都有重大的应用价值。研究激光同等离子体如何作用及粒子加速的机制具有非常重要的意义与价值。

图1、 激光 强度 在CP A技 术突 破后大幅增强 首先,激光同等离子体作用的第一步是材料对激光的吸收,除了普通的逆轫致吸收和共振吸收,在高强度相对论激光还有很多吸收机制,比如真空加热,J×B加热,有质动力直接加速离子,鞘场加速等等,下面根据加速粒子不同逐一介绍各种加速机制 1979年,Tajima和Dawson提出用强激光脉冲激发等离子体波来加速电子的机制,这就是直接激光尾场加速

相关文档