文档视界 最新最全的文档下载
当前位置:文档视界 › 雷达故障分析

雷达故障分析

雷达故障分析
雷达故障分析

波导开关和波导管导致的雷达故障分析

作者:万海焰杨祝平

进入夏季,雷雨频发,气象雷达作为飞机自备的气象导航设备,对于飞行员饶飞雷雨区、保障飞行安全的重要性不言而喻,其作为飞行员的眼睛的作用非常突出,本文从实际例子出发,简述波导开关和波导管导致的气象雷达故障,文章结尾提出维修建议,仅做参考。

一、故障现象:

机组空中反映右气象雷达故障,空中选择右侧雷达时无雷达图像,该机前一航班已反映该故障,并在北京更换右雷达收发机,且测试正常。

二、故障处理过程

地面在CMC上测试右侧气象雷达通过,但选择气象位测试右侧雷达却无雷达图像,判断波导电门故障,更换电门后测试雷达图像正常。这不禁让人疑惑,为什么CMC上测试能通过,而实际上右侧气象雷达失效,下面就雷达系统原理简要作一分析。同时此次飞机故障还发现了从波导开关出来的第一段公共波导管裂开损伤,已经穿透波导管,如下图所示,因无波导管备件,临时修复执飞两个航班正常,后因波导管在振动情况下裂开程度加大,导致了波导在波导管里传输时射频能量损失,出现波形失真,当损失足够大时,就会导致发射的雷达射频波能量很少,从而接收的雷达回波经过二次损失也会很弱,进而导致无雷达图像情况的出现,这也是在平时维护过程中应极力避免的,因为每次拆装波导开关都需要拆装该波导管。

三、故障原理分析

747-400飞机的雷达系统是一个相对独立的系统,其输入信号有惯性基准组件IRU、大气数据计算机ADC、无线电高度表RA、EGPWS 和TCAS等,其中,左和中IRU给左雷达收发机提供稳定信号,右和中IRU给右雷达收发机提供天线稳定信号;ADC提供空速、地速和偏流角以计算风切变;RA提供高度信号以自动启动前位风切变;EGPWS、TCAS和WXR三者的警告有相互级别不同的抑制作用。

747-400飞机的雷达系统由雷达收发机、雷达控制面板、EFIS控制面板“WXR”开关、波导管、波导开关、雷达罩、天线和天线驱动组件组成。

因为本次故障现象中,左侧气象雷达使用正常,这就排除了两部雷达收发机收发回路公共部分故障的可能性了,即波导管公共部分(波导开关出来至天线部分)、天线和天线驱动组件均无故障。故障的可能性集中在雷达收发机、控制面板、波导开关和下图的从波导开关至右侧雷达收发机之间的雷达反馈波导”R/T FEEDER W A VEGUIDE”,通过串件或地面CMC测试都可以排除雷达收发机、控制面板的故障可能性。下面重点分析下波导电门。

如上图所示,波导开关连接从两个雷达收发机出来的雷达反馈波导,同时连接波导管公共部分。

波导开关里面有一个收发互锁电门,当选择一部雷达收发机R/T 时,波导电门互锁逻辑输入一个地信号给收发机R/T,这个地信号可以开启该R/T,该R/T再将28V DC送至雷达控制面板。28V DC从雷达控制面板输入至波导开关互锁电门,波导开关让射频通过其到达波导公共部分,并进入天线。如下图所示:

波导开关的设置使它可以失效在左边的位置,即波导电门故障的情况下它是与左侧雷达收发机相连,所以我们在航线维护中必须要保证左侧雷达收发机的工作正常,以备波导开关失效时两部雷达均不工作的情况。实际情况下,还有遇到波导开关失效在中间位置的情况,即由于波导开关导致的两部雷达不工作的情况,这主要是属于返修质量不高所致,这种是最致命的故障,两部雷达失效,如果天气不好,飞机就只能停场排故了。

下面再来谈下测试不同带来的结果不同的原因。

通过WDM34-43-22(下图)所示:

可以看出,右雷达收发机和波导开关之间只是通过前面所述的波导反馈管加上一根地信号反馈线(插头DB139,线W3835-24)相连,在CMC上进行如下测试时:

该测试也在测试前条件最后一步提示了,对于波导开关故障和雷达校准故障,本测试方法无效,这也在上面的线路图中得到说明,CMC地面测试只是测试了雷达收发机和后面的驱动组件、天线和控制面板等故障,却不能测试波导管和波导开关的故障,而波导开关在前面的描述中确实影响右侧雷达收发机的正常作用,故在排除飞机右侧雷达失效故障时必须要考虑波导开关失效的情况。对于右侧雷达故障,如果没有故障代码,因为其他部分是公共部分,没有故障。可以先串件雷达收发机判断是否是雷达收发机故障,然后再通过开启雷达至气象位,看选择右侧时是否有雷达图像,跟选择左侧时比较,做出雷达开关故障的准确判断,减少误拆。

四、维修建议

1、航材建议:据调查,这次拆下的波导开关为前不久747客机气象雷达故障拆下的返修件,据了解只是对该波导开关进行了清洁,对于此种影响航班运行的重要部件,送修厂家应该慎重,这种高风险件的序号应该跟踪,必要的时候不用多次返修仍装机就导致故障的部件。从上面分析可以看出,若波导开关失效在中间位置,两部雷达都失效,运行压力可见而知。

2、维修工作建议:严格按照手册操作,因为波导开关是在右爬行舱,位置比较狭窄,而且只适合一个人拆装,该部件需要拆开电子架才能接近,不按手册操作只能走弯路,没有捷径可走,拆装的时候需要检查与波导开关相连的相关公共部分的波导管,应极力避免对波导管的损伤,有损伤了要采取扎实可行的处理方法,因为波导管很少坏,全世界民航的备件都少,很难订到航材。

浅谈倒车雷达工作原理及常见故障分析

浅谈倒车雷达工作原理及常见故障分析 [摘要]本文简要的分析了超声波倒车雷达的原理,并对常见故障现象进行分析。[关键词]倒车雷达、工作原理,超声波,故障分析 引言 倒车雷达又称泊车辅助系统,一般由超声波传感器(俗称探头)、控制器和显示器等部分组成,现在市场上的倒车雷达大多采用超声波测距原理,驾驶者在倒车时,启动倒车雷达,在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出警示信号,得到及时警示,从而使驾驶者倒车时做到心中有数,使倒车变得更轻松,预防事故的发生,保障行车安全. 一、工作原理 倒车雷达由超声波传感器(俗称探头),控制器和显示器(或蜂鸣器)等部分组成.倒车雷达一般采用超声波测距原理,在控制器的控制下由传感器发射超声波信号,当遇到障碍时,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出其他警示信号.从而达到安全泊车的目地.

二、超声波工作原理: 利用超声传感器产生的超声波对车后发射,如在一定范围内碰到物体,就有一反射波返回发射源(超声传感器的表面),主机利用发射波和反射波之间的延迟时间和声波速度就能测得距离。 [超声波信号发射] 当汽车处于倒车状态时,倒车雷达开始启动,控制器控制探头发射超声波信号后,再检测超声波的回波信号.超声波的发射是由控制器发射一串脉冲信号,经放大电路放大后,通过探头发射出去. [超声波的接收] 当超声波发射完成后,控制器立即检测是否有经障碍物反射回来的超声波信号,通过主机上的滤波电路,并计算发射的时间,利用S=T*V/2就可以得出障碍物距离。 三、倒车雷达工作原理框图 MCU通过预定的程序设计,控制相应电子模拟开关驱动发射电路,使超声波传感器工作。超声波回波信号通过专有的接收滤波放大电路进行处理后,由MCU的IO口对其进行检

某型机载气象雷达显示器常见故障检测与维修

长沙航空职业技术学院毕业设计(论文) 题目:某型机载气象雷达显示器常见故障检测与维修 学生姓名李海勇 系别航空装备维修工程系 专业飞机控制设备与仪表 班级机载0901班 学号200900141052 指导教师尹倩倩老师 职称讲师 二0一二年五月二十日 长沙航空职业技术学院

长沙航空职业技术学院 2012 届毕业生毕业设计(论文)任务书 学生姓名李海勇学号200900141052系别航空系班级机载0901 指导教师尹倩倩老师 设计(论文)题目:某型机载气象雷达显示器常见故障检测和维修1.总体设计提纲: (1)机载气象雷达系统的组成及其各部分的作用; (2)气象雷达的探测原理和显示器的显示原理; (3)气象雷达显示器的组成和工作原理; (4)举例分析了气象雷达显示器常见故障的检测和维护; (5)彩色显示器常用的检修方法。 2.阶段设计任务: 第一阶段:拆装某型飞机机载设备,查找相关实物及资料; 第二阶段:查找相关文献资料,写出初步设计论文大纲; 第三阶段:开始论文的落实,并将论文初稿交老师修改; 第四阶段:再次查找资料并进行论文的查错及补漏; 3、技术和量化要求: 机载气象雷达显示系统是机载重要的显示系统之一。雷达显示系统需要数据采集器/集中器,显示管理处理器,字符/图形发生器,显示单元等组件。所以要想做好气象雷达显示器常见故障的检修工作就必须了解或掌握气象雷达整个系统的工作原理,除了这些还得需要掌握显示器组成和各个部分工作的电路原理,掌握必要的故障检测方法。 4、参考文献和资料目录:[1] 空客飞机制造公司飞机维护手册 [2]民用航空电子系统 [3]彩色显示器常见故障及检修

雷达液位计常见故障及其处理方法.doc

雷达液位计常见故障及其处理方法 雷达液位计常见故障及其处理 近年来,雷达液位计以其液位测量死区小、连续测量精度高、受介质特性影响小、测量范围大、耐高温高压能力强和采用非接触式测量方式等优点,在化工行业得到广泛的推广和应用。 由于被测对象比较复杂,受高温高压高腐蚀,还有泡沫、搅拌、蒸汽等诸多原因的严重破坏,雷达液位计频繁出现故障,仪表维护量大,严重影响了生产装置。因此,了解雷达液位计日常故障问题及其处理方法,就变得很有必要。下面,仪控君就为大家整理了雷达液位计的故障问题处理方法,希望能对大家有所帮助。 雷达液位计常见故障之检查供电是否正常 如果生产现场发现雷达液位计在液位升到一定值后变化非常缓慢,应该立即检查雷达液位计的供电情况是否正常,相关工作人员也要在日常的维护中,详细检查雷达液位计的通电情况,通电后有无正常输出。液位变化缓慢或者根本没有变化,需要在第一时间检查设备的保险丝是否烧坏,如果并无电流输出,则基本可以判断是仪表出现问题,应视情况更换或者维修。此外,应该在仪表安装调试的环节加强管理,防止仪表参数设置不准确而影响生产。相关工作人员也需要加强日常的维护工作,定期的进行停运检修,从而保证雷达液位计仪表的正常运行。 雷达液位计常见故障之检查通讯设备是否正常 一旦发现通讯设备不正常,可以通过安装雷达调试软件,读取雷达的组态数据,监控雷达传感器的状态。主要检查雷达传感器能够准确的判断反射回波与假回波的区别,反射波的强度是否达到预定的标准,如果上述测试没有问题,则需要检查其他的电子元件,如果判断出雷达液位计的通讯单元出现损坏,则需要视情况更换元件,从而保证雷达液位计的通讯正常。相关工作人员在日常的维护工作中,也应该加强对雷达液位计的通讯情况的

雷达故障分析

波导开关和波导管导致的雷达故障分析 作者:万海焰杨祝平 进入夏季,雷雨频发,气象雷达作为飞机自备的气象导航设备,对于飞行员饶飞雷雨区、保障飞行安全的重要性不言而喻,其作为飞行员的眼睛的作用非常突出,本文从实际例子出发,简述波导开关和波导管导致的气象雷达故障,文章结尾提出维修建议,仅做参考。 一、故障现象: 机组空中反映右气象雷达故障,空中选择右侧雷达时无雷达图像,该机前一航班已反映该故障,并在北京更换右雷达收发机,且测试正常。 二、故障处理过程 地面在CMC上测试右侧气象雷达通过,但选择气象位测试右侧雷达却无雷达图像,判断波导电门故障,更换电门后测试雷达图像正常。这不禁让人疑惑,为什么CMC上测试能通过,而实际上右侧气象雷达失效,下面就雷达系统原理简要作一分析。同时此次飞机故障还发现了从波导开关出来的第一段公共波导管裂开损伤,已经穿透波导管,如下图所示,因无波导管备件,临时修复执飞两个航班正常,后因波导管在振动情况下裂开程度加大,导致了波导在波导管里传输时射频能量损失,出现波形失真,当损失足够大时,就会导致发射的雷达射频波能量很少,从而接收的雷达回波经过二次损失也会很弱,进而导致无雷达图像情况的出现,这也是在平时维护过程中应极力避免的,因为每次拆装波导开关都需要拆装该波导管。

三、故障原理分析 747-400飞机的雷达系统是一个相对独立的系统,其输入信号有惯性基准组件IRU、大气数据计算机ADC、无线电高度表RA、EGPWS 和TCAS等,其中,左和中IRU给左雷达收发机提供稳定信号,右和中IRU给右雷达收发机提供天线稳定信号;ADC提供空速、地速和偏流角以计算风切变;RA提供高度信号以自动启动前位风切变;EGPWS、TCAS和WXR三者的警告有相互级别不同的抑制作用。 747-400飞机的雷达系统由雷达收发机、雷达控制面板、EFIS控制面板“WXR”开关、波导管、波导开关、雷达罩、天线和天线驱动组件组成。 因为本次故障现象中,左侧气象雷达使用正常,这就排除了两部雷达收发机收发回路公共部分故障的可能性了,即波导管公共部分(波导开关出来至天线部分)、天线和天线驱动组件均无故障。故障的可能性集中在雷达收发机、控制面板、波导开关和下图的从波导开关至右侧雷达收发机之间的雷达反馈波导”R/T FEEDER W A VEGUIDE”,通过串件或地面CMC测试都可以排除雷达收发机、控制面板的故障可能性。下面重点分析下波导电门。

雷达信号处理

雷达信号处理技术与系统设计 第一章绪论 1.1 论文的背景及其意义 近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。 雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。固定杂波的中心频率位于零频,很容易设计滤波器将其消除。但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术 2.1 引言 雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。 脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。这种情况在实际工作中是不允许的。采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。 2.2 数字脉压实现方法 用数字技术实现脉冲压缩可采用时域方法或频域方法。至于采用哪种方法。 要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。 2.2.1 时域卷积法实现数字脉压 时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。 用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积

雷达故障检测与诊断技术探讨

雷达故障检测与诊断技术探讨 随着科技的不断发展,雷达在气象领域应用越来越广泛。本文主要根据雷达运行实际,首先介绍了常见的雷达故障检测方法,并重点探究了雷达故障检测与诊断技术,以供相关人士参考。 标签:雷达故障;故障检测;故障诊断 引言 近年来,随着科技的迅猛发展,雷达开始在气象学领域得到广泛的应用。气象雷达对强降雨、雷暴、冰雹、台风等天气系统进行探测的重要工具之一[1]。为了获得准确、完整、可靠的天气实况,就要确保雷达的稳定运行。一旦发生雷达故障,要及时进行排除。随着雷达设备的不断更新换代,其自动化以及智能化水平也得到快速提高,给雷达维护保障工作也带来了极大压力。虽说我国的故障诊断研究起步较晚,但近几年来取得了较大的突破,推动了雷达保障业务的发展。本文主要对常见的雷达故障检测与诊断技术进行分析,为今后更高效地排除雷达故障,提升雷达保障水平提供指导。 1雷达故障检测方法 雷达属于精密性仪器,大部分雷达装置主要由天线、馈线、电源、发射机、信号处理机、接收机等部分构成。雷达检测比较繁琐。通常情况下,雷达检测方法包含2类:同步检测与异步检测。同步检测主要指的是以雷达实际工况为重要参考开展的实时故障检测;异步检测指的是不以雷达的工况为参考,不分检测时间的故障检测。在雷达检测过程中,必须根据不同状况采取针对性的检测方式。下面结合雷达装置实际情况来阐述这同步检测与异步检测2类检测方式。 1.1同步检测 在雷达设备的特定功能结构中,检测设备将检测信号发送到雷达设备。设备接收到反馈信号后,将通过雷达设备的各个模块以检查其工作条件。性能检测是从实际应用的角度出发,通常通过同步检测来实现。在此过程中,能够发现每个模块的输入和输出之间具备了映射关系。但是,由于目标信号的随机性导致每个模块的输入强度的随机性,因此模块在输出端的反射也会呈无序状态。如果在输入过程中注重分析几组常规信号、数据亦或信息之间是否存在冲突,则可以找出故障出现区域。尤其需要注意的是,在雷达工作期间无法进行相应的测试。输入测试信号或测试数据有2种特定方法。一种是强制触发检测。这种检测方法为被动检测的类别。它的特点是依赖手动触发检测。检测数据是从要检查的模块的输入端中输入的,模块的输出端具有相应的监视特性。该方法可以检测雷达信号处理器的多个模块,但是仅限于较短的雷达检测时间要求。此类检测方法的缺点是在实践中,如果数据流比较长,在会对检测工作带来不利影响。所以,在具体实施过程中,应压缩相关数据流以使数据流变短,之后获得相应的特征码,经过分

雷达液位计的原理选型常见故障及解决方法

雷达液位计的原理选型常见故障及解决方法 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

雷达液位计的原理、特点、安装、维护及常见故障1.雷达液位计的测量原理 雷达液位计采用发射--反射--接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 VEGAPULS雷达液位计采用脉冲微波技术,其天线系统发射出频率为、持续时间为的脉冲波束,接着暂停278ns,在脉冲发射暂停期间,天线系统将作为接收器,接收反射波,同时进行回波图像数据处理,给出指示和电信号。

2.雷达液位计的特点 (1)雷达液位计采用一体化设计,无可动部件,不存在机械磨损,使用寿命长。 (2)雷达液位计测量时发出的电磁波能够穿过真空,不需要传输媒介,具有不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发的介质如粗苯的液位测量。(3)雷达液位计几乎能用于所有液体的液位测量。电磁波在液位表面反射时,信号会衰减,当信号衰减过小时,会导致雷达液位计无法测到足够的电磁波信号。导电介质能很好地反射电磁波,对VEGAPULS雷达液位计,甚至微导电的物质也能够反射足够的电磁波。介电常数大于的非导电介质(空气的介电常数为也能够保证足够的反射波,介电常数越大,反射信号越强。在实际应用中,几乎所有的介质都能反射足够的反射波。 (4)采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 (5)测量范围大,最大的测量范围可达0~35m,可用于高温、高压的液位测量。 (6)天线等关键部件采用高质量的材料,抗腐蚀能力强,能适应腐蚀性很强的环境。 (7)功能丰富,具有虚假波的学习功能。输入液面的实际液位,软件能自动地标识出液面到天线的虚假回波,排除这些波的干扰。 (8)参数设定方便,可用液位计上的简易操作键进行设定,也可用HART协议的手操器或装有VEGA Visual Operating软件的 PC机在远程或直接接在液位计的通信端进行设定,十分方便。

雷达气象期末复习整理版分析

雷达气象期末复习整理版 雷达气象 第一章 第一节 1 雷达的含义,雷达气象含义及其用处 Radar :通过无线电技术对目标物进行探测和定位,确定目标位置和强度的技术。 气象雷达:是用于探测气象要素和各种天气现象的雷达,常称为“千里眼、顺风耳”。 雷达气象:利用气象雷达,进行大气探测和研究雷达波与大气相互作用的学科,是大气物理学、大气探测和天气学共同研究的一个分支。雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。 2 气象雷达的特点 气象雷达是雷达中的一个重要成员,探测的对象是覆盖整个地球的大气,不受季节、昼夜和天气条件的影响,能全天时、全天候工作,不受能见度,探测条件的影响。采用大功率发射机、高增益天线、高灵敏接收机,可增加雷达威力,探测数百公里外的目标。现代化的雷达机,与计算机技术结合,使其数据处理技术进一步提高,测定目标的精度更高。 3 我国雷达分布情况 根据天气现象: ? 沿海地区:暴雨台风多,S波段(5cm)为主 ? 内陆地区:一般性降水,C波段(10cm)为主 电磁特性:暴雨,S波段穿透能力强,衰减小;一般性降水,S波段反射弱,C波段反射强4 我国天气雷达的应用 强对流天气的监测与预警:灾害性大风、冰雹和暴洪。天气尺度和次天气尺度降水系统的监测。 应用:人工影响天气、降水测量、风的测量、数据同化。 第二节 1 我国新一代雷达的组成部分----雷达的硬件系统 新一代天气雷达系统的三个部分: (1)数据采集子系统(RDA); 定义:用户所使用雷达数据的采集系统。 功能:产生和发射电磁波,接收目标物对这些电磁波的散射能量,并形成数字化的基数据。

多普勒天气雷达常见故障分析与维修

多普勒天气雷达常见故障分析与维修 发表时间:2018-10-23T15:34:09.080Z 来源:《科技研究》2018年8期作者:汪鸿滨 [导读] 并提出相应的维修维护措施,以确保多普勒天气雷达始终可以保持正常运行状态。 (甘肃省天水市气象局甘肃天水 741000) 摘要:本文主要根据甘肃省天水市气象局多普勒天气雷达运用实际,对多普勒天气雷达运行中常见故障进行分析,并提出相应的维修维护措施,以确保多普勒天气雷达始终可以保持正常运行状态。 关键词:多普勒天气雷达;常见故障;分析;维修维护 引言 多普勒天气雷达是综合气象观测系统的重要构成部分。随着科学技术的不断发展,多普勒天气雷达已经在我国大多数区域广泛运用,多普勒天气雷达的使用大幅度提升了气象要素以及各类天气现象探测业务的准确性,为中短期临近天气预报、灾害性天气的监测预测等气象业务的开展提供了更为有价值的资料依据,在气候监测以及气象预报中占据着举足轻重的地位。但是,在多普勒天气雷达实际运行过程中,有时候也会发生一些故障问题,在很大程度上影响了探测业务的顺利开展。基于此,本文针对多普勒天气雷达运行的常见故障以及维修维护措施进行分析,以进一步提升地方气象探测业务水平。 1.多普勒天气雷达组成以及运行原理 多普勒天气雷达属于一种高性能的数字化雷达,它主要由天线、天线罩、发射机、接收机、信号处理器、伺服系统、波导管以及显示器等部分组成。多普勒天气雷达采取全相干体质,共有七种型号,其中S波段有三种型号,分别为SA、SB、SC;C波段有四种型号,分别为 CINRAD-CB、CC、CJ 和 CD。 多普勒天气雷达运行原理:主要利用电磁波探测同目标物之间的距离和特性的无线电设备,散射是雷达探测大气的基础,天气雷达主要是在检测大气中散射波对目标物的性质进行测定。散射是电磁波照射到折射指数不均匀的物质上造成波传播方向发生变化的现象,其实质就是电磁波激发物质内部振动发射的次波不能被完全抵消。雷达在接收到散射电磁波的振幅、频率、相位等的信息后,可以很容易的获取到相关的天气系统。 2.雷达天线故障分析与维修 雷达天线在运行中时常会发生一些故障,所以需要注意日常维修维护。(1)雷达长时间运行,天线罩内部的机械部件会出现锈蚀,使得雷达运行出现故障。所以需要确保空气处于干燥状态且要求通风良好,防止机械部件出现锈蚀问题;(2)应对天线转轴部位实行年检,时常对油脂进行更新,及时查看磨损状态。对于俯仰箱内的轴承以及方位主轴等关键部件应该着重进行维修维护。在对油脂进行更新的时候应该注意,更新之前,应该提前利用汽油对残余油脂进行清洗,避免磨损之后的金属杂质被又一次带入轴承。此外,流环上的绝缘层特别容易因天线的转动时间长而出现磨损铜屑,进而致使出现短路,产生打火被烧毁。最科学合理的防御方法是采取酒精对汇流环以及弹簧触片进行清洗,在进行清洗时防止弹簧触片变形。在重新装设时重新对其压力进行调整,导致弹簧触片受力比较均匀,呈良好的接触状态。(3)为了避免发生故障时无法及时对相关部件维修更换,对气象探测业务造成不利影响,气象站应提前准备好方位电机的碳刷等配件。 3.发射机系统故障分析与维修 雷达发射系统故障通常有以下几个方面。(1)发射机无法正常运行,调制脉冲故障、调制脉冲过流。故障分析及维修方式:出现处理故障后,及时对雷达作系统故障复位,则故障得到排除,系统也能够正常运行,这表明监控系统所检测到为虚故障,也即是是因为对雷达系统内的部分检测点所设定的开关量比较灵敏,若检测值与设定值不一致,常常会形成虚报故障,但是系统的元件并没有损坏,因此,雷达监控系统一旦检测到有故障时,通常应先采取故障复位的措施进行处理,假如无法恢复正常,则需要对故障问题认真检查处理。(2)雷达系统作出“准加高压”的提示之后,而加高压时候雷达电源空气开关跳闸。故障分析及维修方式:通过分析发现,调制机柜内部的禁止脉冲信号出现接头接触不良的情况,导致脉宽调制器没有脉冲信号输进,致使调脉冲取样信号以及输出电压在短时间内均产生极大变化,导致调制脉冲波特别不稳,波形起伏较大,烧毁调制器IGBT模块,由此形成一反馈脉冲电流烧坏驱动板的驱动模块EXB841,还有二极管,系统中的控保电路为了避免器件发生损坏,将电源切断。针对上述故障,维修人员应该及时更换受损器件;对于输入禁止脉冲信号的接头需要利用酒精进行清洗之后旋紧,确保良好接触;采用示波器对EXB841进行更换之后需要调整好调制器触发脉冲。 为了减少发生发生系统故障的发生频率,需要定期将高频柜打开,清理灰尘、杂质,确保绝缘度;查看各监测仪数据显示是否正常,查看全部的插件是否插接良好,各类电缆接头位置是否旋紧,特别是高压点应该保持紧固,查看是否存在打火的状况,一旦发现故障问题应及时进行维修处理;此外,需要确保机房的干燥性,避免金属器件受潮氧化生锈而受损引发故障。 4.接收系统故障分析与维修 监测子系统没有故障提醒,但是终端没有回波显示。故障分析与维修:没有故障提示,表明系统内所设定的监测点的器件运行正常,在查看的时候暂且不考虑,需要先检查没有设置监测点的器件。通过对故障表现形式分析能够判断故障可能发生在没有设定监测点的回波通道上。对接收机的回波通道进行分析能够找出故障发生原因。接收机的前置放大器采取的IFD,但接收机前段模拟部分总增益只有43DB,所以测试接收机信号时,均无法像采取模拟接收机那样,直接检测接收机,需要在终端以及信号处理器观察以及检测。通过小功率计检测可知MSTC前能够接受到回波信号,在这之后则没有信号输出,由此可以判断MSTC微波组合有所损坏。因此,需要及时更换受损的MSTC微波组合,之后在终端上选择MSTC微波组合的控制状态。 5.伺服系统故障分析与维修 伺服系统经常会发生天线动态错误报警,导致雷达强制待机的故障问题。一般发生此类故障的原因比较多。因此,工作人员需要采取由难到易的方法展开检测。首先需要对雷达碳刷以及滑环进行清洗,若故障仍然没有得到有效排除,可采取 RDASOT 软件对不同方位以及仰角的连续转动情况进行检测;若有错误信息存在,但是方位准确,仰角发生抖动以及角码闪烁的时候则表明仰角有问题,需要继续对电

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无 关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

雷达故障自动检测系统

雷达故障自动检测系统 李更祥 (中国航天科工集团公司二院23所,北京 100854) 摘要:本文介绍了雷达故障自动检测系统设计。对雷达故障自动检测系统提出了总体设计任务和目标、构成、功能、性能、技术指标。对雷达自动检测系统硬件设计、软件需求分析、软件概要设计、详细设计的具体内容做了较详细的设计说明和要求。 关键词:雷达;计算机;自动检测;故障 1 引言 随着武器装备的现代化、电子产品的高科技化和复杂化,计算机硬件、软件及信息综合处理的快速化,这些特点在现代雷达技术中的应用非常突出,现代战争实际上就是高科技综合技术的对抗战,谁拥有快速反应、能持续保持战斗力的武器装备,谁就占有取得战争胜利的主动权。雷达综合保障体系的一切工作是为了提高雷达平均无故障工作时间。雷达故障自动检测系统是为了对雷达快速、准确、隔离故障到可更换单元(LRU),以便快速维修,达到降低雷达修复时间的目的,先进的军用雷达都具备完善的故障自动检测系统,该系统对提高雷达的总体性能、可靠性、可使用性、可维修性具有极其重要作用。 2 总体要求 雷达故障自动检测系统是采用现代计算机软件、硬件技术,现代电子测量和控制技术、测量仪器与仪器总线以及信息综合处理等技术,通过系统硬件的组成和软件的集成构成一个雷达故障自动检测系统,通过该系统对雷达信号的测量与采集,实现对雷达一系列电气参数的自动测量、分析、处理,快速、准确、完成故障隔离到LRU等功能。2.1 技术指标 系统自动测试内容的主要技术指标应包括对雷达电气参数的测量精度,对雷达系统、组合、可更换单元的故障检测率、隔离率、隔离深度、虚警率以及检测时间等。 主要技术指标如下: a.测试时间:实时测试时间服从雷达测试周期的时间调度要求,战前功能测试时间应小于3min,維修或维护测试时间应小于5min; b.虚警率: 对系统、组合、可更换单元的总虚警率应小于3%;系统应具有分析是雷达故障还是检测设备发生故障的能力; c.故障检测率:按设计要求,测试系统对分雷达系统机柜、组合级的故障检测率应达到100%,对各组合级可更换单元的故障检测率应达到95%以上; d.故障隔离深度:故障隔离深度为雷达系统的可更换单元;

319气象雷达的使用

飞行中 雷达使用 应当避免进入已知的颠簸并伴有积雨云区域。良好的雷达天线俯仰角度设置对于准确地判断和评估积雨云的垂直分布时非常关键的。通常增益应该在AUTO 位。不过,使用人工增益可帮助机组评估整体天气情况,特别时在大雨中,气象雷达图像已经饱和,使用人工增益是非常有效的,降低增益有助于机组识别降雨量最大的区域,通常这些区域与活动的积雨云团有关。使用人工增益后,应将其恢复至自动(AUTO)。以恢复最佳的雷达灵敏度。回波较弱不是机组低估积雨云的理由,因为只有积雨云的潮湿部分才能被探测到。必须尽早做出规避积雨云的决断,理想情况是在上风处20海里位置做水平避让。 气象雷达有两个主要功能: ? 气象探测功能 ? 地图功能 气象探测是主要的功能,雷达可以探测到降水的水滴。回波强度取决于水滴的大小、成分和数量(例如相同大小的水滴反射的回波强度是冰粒的五倍)。因此气象雷达不能探测到微小的水滴(比如云或雾)或者没有水滴(比如晴空颠簸)的气象情况。 地图成像模式是辅助功能,在此模式下,雷达比较发射信号和接收信号之间的差异。差异较大的容易绘图成像(比如山区或城市),差异较小的不易绘图成像(比如平静的海面或平坦的陆地)。飞行机组使用下面控制方法操纵雷达。

天线仰角雷达天线和地平线之间的夹角就是天线仰角,与飞机的俯仰和坡度角无关。使用惯性基准系统(IRS)数据使天线稳定。 为了帮助避开危险气象条件,考虑到飞行阶段和ND的范围,合理设定天线仰角很重要。通常回波显示在ND的顶部即表示天线仰角适当。如果扫描范围过大,当雷达波扫描雷暴云泡的上部时,可能无法探测或低估雷暴云泡。这是由于在高高度,云泡中可能有冰,因此反射较弱。在飞行中选择自动能确保合适的仰角管理。 注意:在巡航中,MULTISCAN提供前方天气的大范围扫描,也就是显示位于和低于飞行轨迹的天气云团。在前方天气不明朗或显示出乎意料的天气时,为了判明情况,机组可以暂时使用人工天线俯仰调节以确认天气是否与飞行轨迹有潜在冲突。 增益 当MULTISCAN选择器设置到AUTO时,必须使用人工增益选择(+8)。 可以人工调谐增益以探测在ND上显示红色的云团的最强部分。如果缓慢地降低 增益,红色区域(3级回波)缓慢变成黄色区域(2级的回波),同时黄色区域变 成绿色区域(1级)。云团最后转为黄色的部分是最强区域。 然后,增益必须重新设置到+8。 模式 操作模式有WX,WX+T,TURB,MAP。 WX+T或TURB模式是用来探测湿颠簸区域,TURB模式探测在40海里内的湿颠 簸,并且不受增益的影响。TURB模式被用于区分颠簸和强降水。 GCS

20种液位计工作原理及常见故障分析

2017-12-03给排水处理技术与应用 本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。 常见液位计种类 1、磁翻板液位计 2、浮球液位计 3、钢带液位计 4、雷达物位计 5、磁致伸缩液位计 6、射频导纳液位计 7、音叉物位计 8、玻璃板/玻璃管液位计 9、静压式液位计 10、压力液位变送器 11、电容式液位计 12、智能电浮筒液位计 13、浮标液位计 14、浮筒液位变送器 15、电接点液位计 16、磁敏双色电子液位计 17、外测液位计 18、静压式液位计 19、超声波液位计 20、差压式液位计(双法兰液位计) 常用液位计的工作原理 1、磁翻板液位计

磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。 原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。 2、浮球液位计 浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 3、钢带液位计 它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。 4、雷达液位计 雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。 5、磁致伸缩液位计 磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。

A320系列飞机气象雷达系统

A320系列飞机气象雷达系统介绍及机组操作建议 概述:机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。在显示器上用不同的颜色来表示降水的密度和地形情况。新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。本文主要针对我公司A320系列飞机机载气象雷达系统的组成、工作原理、显示特点及我公司A320系列飞机气象雷达的种类和机组操作建议进行了介绍。 一、机载气象雷达系统的组成 机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等,如图1-1所示:

雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。 雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。 显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。 控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。 波导系统:波导管作为收发机和天线之间射频信号桥梁通道。 二、气象雷达对目标的探测 机载气象雷达主要用来探测飞机前方航路上的气象目标和其他目标的存在以及分布状况,并

将所探测目标的轮廓、雷雨区的强度、方位和距离等显示在显示器上。它是利用电磁波经天线辐射后遇到障碍物被反射回来的原理,目标的导电系数越高,反射面越大,则回波越强。要清楚气象雷达如何工作的关键在于了解雷雨的反射率。一般来说,雷雨的反射率被划分成三个部分:雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。中间部分由过度冷却的水和冰晶组成,由于冰晶是不良的雷达波反射体,所以这部分的反射率开始减小了。雷雨的上部完全由冰晶组成,所以在雷达上几乎不可见。另外,正在形成的雷雨在其上部可能会形成拱形的紊流波,如图2-1所示:

美国气象部门实际使用气象雷达历史

美国气象部门实际使用气象雷达的历史 第一部分 新一代气象雷达出现之前时期 摘要 文章叙述美国军事和民用气象部门使用风暴监视雷达的历史。全文分两部分,本文是第一部分。有关雷达在气象学方面的研究已有很长历史而且很有成效。然而已有过详细介绍。所以本文和第二部分通过介绍最初两台多普勒气象雷达,重点论述实用雷达气象学自从第二次世界大战中形成以来的发展历史。本文介绍新一代气象雷达出现之前这一时期的历史。本文附录介绍全文涉及到的大多数雷达的主要技术特性,这都是作者曾掌握的。 1.前言 本文和第二部分叙述美国气象部门实际使用风暴监视雷达的历史。这是根据几位曾在不同时期参加或领导过实用气象雷达计划的人员的经验编写的。 使用雷达来进行气象观测是在二次大战时期对雷达技术进行广泛研究结果而发展的。对这些早期发展的历史以及雷达气象学研究方面的历史,希兹费尔特(Hitsfeld 1986)、阿特拉斯(Atlas 1990)、罗格(Rogers)与史密斯(Smith 1996)等人已进行详细论述。比尔格(Bilger)等人(1962)和比尔格(1981)总结了当时称作美国气象局所进行的气象雷达计划的历史和状况。本文对这些资料进行了修改和补充。本文还讨论了由目前气象业务部门所进行的蜒究工作。从这些研究线索已找到实用雷达气象学的实际使用途径或者已经给它带来了很大效益。这里我们主要集中在风暴探测雷达的应用历史,以便于实际应用,例如对强风暴的识别。 由于文章长度所限,除广泛使用着的单多普勒晴空风测量技术外,我们不讨论云层探测雷达,风廓线和大多数其它的应用。气象雷达在商业上的应用不在本文讨论范围内,乔金森(Jorgensen)和吉尔茨(Gerdes 1951年)举了一个很好的例子。 最初,各种雷达系统由于密级问题,限制了它们在军事气象部门的应用。后来由于它们价格太高和结构复杂,又限制了它们在政府部门、军事和民用气象部门中的实际应用。不过后来,由于有了气象雷达系统的远程显示系统,

X波段双偏振气象天气雷达故障分析

X波段双偏振多普勒天气雷达故障分析 XX 摘要:通过X波段双偏振多普勒天气雷达接收机故障的分析,提出相应的故障排除方法。 关键词:多普勒双偏振天气雷达、接收机故障、故障排除方法 1 引言 多普勒双偏振天气雷达用来测量一定范围内的气象目标,并根据回波信号来分析目标的强度以及平均径向速度,警戒强对流恶劣天气,从而预测天气。多普勒双偏振天气雷达由天馈分系统、发射分系统、接收分系统、终端处理等分系统组成。系统本身非常复杂,因此可能出现的故障点比较多,维修的难度也比较大。本文给出了接收机故障排除的详细过程,进而为雷达技术人员保障雷达提供一个参考。 2 工作原理 2.1接收机组成及其功能 如图1,接收机由接收通道、频率源、激励源、监控单元等组成。 接收机的主要功能是为发射分系统提供射频激励信号,同时对回波信号进行两次下变频,得到60MHz中频信号,数字中频接收机先对中频60MHz进行高速采样,采样后的数字信号经数字正交相干检波后得到I/Q信号,送到信号处理分系统。接收分系统中的监控单元对接收分系统进行功率检测、故障采集。 图1接收机原理框图 2.2频率源原理

频率源综合运用了PLL锁相倍频、直接合成、PDRO等多种成熟技术。同时各路信号耦合一部分,送给监控单元用来检测故障。 高稳定度的100MHz晶振信号作为基准源。如图2,晶体振荡器产生高稳定、高纯频谱的100 MHz信号送往基准单元,经过倍频、分频和滤波选频等综合处理,产生多种频率的信号源,包括DDS时钟信号(300MHz)、中频数字接收机时钟信号、基准时钟信号以及监控时钟信号(96MHz)和二本振信号。 一本振信号的产生过程:晶振100MHz进入PDRO倍频得到8100MHz。 二本振信号的产生过程:100MHz经过12次倍频、滤波放大、滤波,最后得到1200MHz。 时钟信号的产生过程:100MHz经过分频、滤波得到80MHz信号,再经过6 图2 频率源原理框图 3、故障分析 3.1故障现象 雷达接收分系统中的二本振故障灯报警,雷达无回波显示,并且激励信号比较小。 3.2故障分析 首先根据雷达接收分系统中的二本振故障灯报警,可以初步判断二本振信号可能出现问题,再根据雷达无回波且终端软件显示的激励功率异常,进一步分析频率源中的二本振信号出现故障,导致激励信号较小,发射功率不够,而且接收也无法进行下变频,所以终端看不到地物回波图,我们通过频谱分析仪来检测二本振信号的输出,从而排除接收机的故障。 3.2故障处理 3.2.1测试仪表功能设置 频谱分析仪Agilent E4440A是一种高性能频谱分析仪,其测试频段10KHz~20GHz。频谱分析仪在使用之前,需要对其进行简答的设置,其具体步骤如下: (1)中心频点(frequency)的设置;

CINRADSB雷达故障诊断分析及处理

CINRAD/SB雷达故障诊断分析及处理 1引言 新一代多普勒天气雷达(CINRAD/SB)(简称SB)由北京敏视达公司和南京十四所共同生产,它能够定量探测降雨回波强度、平均径向速度、速度谱宽等信息。其探测到的回波信息能为雷暴、暴雨等强对流天气的中小尺度结构特征分析提供重要依据,是目前其他大气探测手段无法取代的重要探测工具。目前,万州雷达已经在渝东北地区强对流天气短时临近预报业务中发挥了不可替代的作用。 万州新一代多普勒天气雷达自2009年2月16日投入试运行后,极大提高了对三峡库区流域降水定量估测及暴雨、风雹等灾害性天气的监测预警能力,成为保障三峡库区蓄水安全、防灾减灾的重要工具。本文主要结合万州雷达运行情况,将常见故障进行分析、总结,为雷达机务员处理常见故障提供参考,以便提高雷达保障技能。 2新一代多普勒天气雷达概述 常规天气雷达的探测原理是利用云雨目标物对雷达所发射电磁波的散射回波来测定其空间位置、强弱分布和垂直结构等。新一代多普勒天气雷达除能起到常规天气雷达的作用外,还利用物理学上的多普勒效应来测定降水粒子的径向运动速度,推断降水云体的移动速度、风场结构特征、垂直气流速度等。它可以有效地监测暴雨、冰雹、龙卷等灾害性天气的发生、发展;同时还具有良好的定量测量回波强度的性能,可以定量估测大范围降水;多普勒天气雷达除实时提供各种图像信息外,还可提供对多种灾害性天气的自动识别和追踪产品。 3雷达故障诊断分析及处理 3.1发射机部分 3.1.1发射机无法工作,调制器无高压输出。 发射机无法工作,调制器无高压输出,与厂家技术员沟通后判断为调制器高压组件问题。通过人工线整形后的脉冲电压为4400V,但此组件无高压输出。从调制器内部电路开始检测,用示波器测试人工线采样电压无波形显示,拆开调制器组件,按照电路流程逐步检测,发现调制器内扼流圈焊接断裂,重新焊接扼流线圈,发射机恢复正常。 3.1.2 发射机不能工作,报灯丝电源故障。 经过多次故障复位处理,故障仍然存在,仔细检查发射机控制面板的所有指示灯工作状态,发现除灯丝电流故障灯以外的其他指示灯全正确,初步确认为灯丝电源故障,紧接着开始检查灯丝电流的保险管,发现灯丝电流保险管其中一个熔断,及时更换新的保险丝,雷达开机,仍然报灯丝电源故障;与厂家技术人员取得联系后,结合厂家技术员的指导,开始逐级检查,测试灯丝电流保险管全是通路;查看灯丝电源的控制主板,发现主板异常,有被烧坏痕迹,更换灯丝电源主板后,发射机恢复正常工作。

相关文档