文档视界 最新最全的文档下载
当前位置:文档视界 › 理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的复频域分析
理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的

复频域分析

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析

(综合型实验)

一、实验目的

1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。

3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1.拉普拉斯变换

连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞

--∞

=?

(1)

拉普拉斯反变换为1

(t)(s)e 2j st j x X ds j σσπ+∞

-

=

? (2)

MATLAB 中相应函数如下:

(F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s

的结果表达式。

(F,t)L laplace =用t 替换结果中的变量s 。

()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量

为t 的结果表达式。

(,)F ilaplace L x =用x 替换结果中的变量t 。

拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比:

110

1

10

...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式

1212(s)...N N

r r r

X s p s p s p =

+++--- (4) 再通过查找常用拉氏变换对易得反变换。

利用residue 函数可将X(s)展成(4)式形式,调用格式为:

[r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分

别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数

连续时间系统的系统函数是指系统单位冲激响应的拉氏变换

(s)(t)e st H h dt +∞

--∞

=

?

(5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。

(s)(s)/X(s)H Y = (6)

单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数

110

1

10

...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析

系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

r=roots(c),c为多项式的系数向量,返回值r为多项式的根向量。

求取零极点以及绘制系统函数的零极点分布图可以采用pzmap函数,调用格式如下:

pzmap(sys)绘出由系统模型sys描述的系统的零极点分布图。

[p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。

还有两个专用函数tf2zp和zp2tf可实现系统的传递函数模型和零极点增益模型的转换。调用格式如下:

[z,p,k]=tf2zp(b,a)

[b,a]=tf2zp(z,p,k)

研究系统函数的零极点分布不仅可以了解系统冲激响应的形式,还可以了解系统的频率特性以及判断系统的稳定性。

1)零极点分布与冲激响应的关系

系统的极点位置决定着系统冲激响应h(t)的波形,冲激响应的幅值是由系统函数的零点和极点共同确定的,系统的零点位置只影响冲激响应的幅度和相位,不影响波形。

2)零极点分布与系统频率响应的关系

系统函数的零极点分布不仅决定了系统函数H(s),也决定了系统的频率响应()

H ,根据系统的零极点分布情况,可以由几何矢量法分析系统的频率响应。

3)零极点分布与系统稳定性的关系

稳定性是系统的固有性质,与激励信号无关,由于系统函数(s)

H包含了系统的所固有的性质,因而可以根据系统函数的零极点分布判断系统的稳定性。因果系统稳定的充要条件是(s)

H的全部极点位于s的左半平面。

三.实验内容

(1)已知系统的冲激响应(t)u(t)u(t2)

x=,试采用

h=--,输入信号(t)u(t)

复频域的方法求解系统的响应,编写MATLAB程序实现。

代码:

%

syms t

h=heaviside(t)-heaviside(t-2);

x=heaviside(t);

H=laplace(h);

X=laplace(x);

Y=H*X;

y=ilaplace(Y)

>> DFTfifth_2_1

y =

t - heaviside(t - 2)*(t - 2)

所以系统的响应为y(t)=t-(t-2)*u(t-2)

(2)已知因果连续时间系统的系统函数分别如下:

1)32

1

(s)221

H s s s =

+++ 2)54321

(s)23332

H s s s s s =+-+++

试采用MATLAB 绘出其零极点分布图,求解系统的冲激响应h(t)和频率响应()H ω,并判断系统是否稳定。 1) >> b=[1]; >> a=[1 2 2 1]; >> sys=tf(b,a); >> [p,z]=pzmap(sys)

p =

+

-

z =

Empty matrix: 0-by-1

>> pzmap(sys)

所有极点都位于s 平面的左半平面,所以系统是稳定的。 >> syms s

>> Hs=1/(s^3+2*s^2+2*s+1);

P ole-Zero Map

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1)

>> h=ilaplace(Hs)

h =

exp(-t) - exp(-t/2)*(cos((3^(1/2)*t)/2) - (3^(1/2)*sin((3^(1/2)*t)/2))/3)

所以系统的冲激响应为2

(t)[e (cos t sin t)]u(t)232t t

h e --=--

绘制时域和频域的曲线: b=[1]; a=[1 2 2 1]; sys=tf(b,a); subplot(311); impulse(sys); xlabel('t'); title('h(t)'); subplot(312); [H,w]=freqs(b,a);

plot(w,abs(H)); xlabel('w');

ylabel('Magnitude'); title('abs(H)'); subplot(313); plot(w,angle(H)); xlabel('w'); ylabel('phase'); title('phase(H)');

2)

>> b=[1 0 1]; >> a=[1 2 -3 3 3 2]; >> sys=tf(b,a)

sys =

s^2 + 1

-------------------------------------

s^5 + 2 s^4 - 3 s^3 + 3 s^2 + 3 s + 2

Continuous-time transfer function.

>> [p,z]=pzmap(sys)

p =

+ - +

-

z =

0 + 0 -

t (seconds)

A m p l i t u d e

w

M a g n i t u d e

abs(H)

w

p h a s e

phase(H)

>> pzmap(sys)

由于s 平面有半平面有极点,所以是不稳定系统。 绘制冲激响应和频域响应的图形 方法同上一题 图形如下:

(3)已知连续时间系统函数的极点位置分别如下所示(设系统无零点):

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1)

w M a g n i t u d e

abs(H)

w

p h a s e

phase(H)

28

h(t)

t (seconds)

A m p l i t u d e

分别绘制以下六种不同情况下,系统函数的零极点分布图,并绘制相应冲激响应的时域波形,观察并分析系统函数极点位置对冲激响应时域特性的影响。

1)p=0

>> b=[1];

>> a=[1 0]; >> sys=tf(b,a) sys =

1

-

s Continuous-time transfer function.

>> pzmap(sys)

1

(s)(t)u(t)

H h

s

=?=

>> syms t

>> h=heaviside(t); >> ezplot(h,[-5 5]) >> title('h(t)')

2)p=-2 >> b=[1]; >> a=[1 2];>> sys=tf(b,a)

sys =

P ole-Zero Map

Real Axis (seconds-1) I

m

a

g

i

n

a

r

y

A

x

i

s

(

s

e

c

o

n

d

s

-

1

)

t

h(t)

1

-----

s + 2

Continuous-time transfer function.

>> pzmap(b,a)

21

(s)(t)e *(t)2

t H h u s -=?=+

>> syms t

>> h=exp(-2*t)*heaviside(t); >> ezplot(h)

3)p=2 >> b=[1]; >> a=[1 -2];

>> sys=tf(b,a)

sys =

1 -----

s - 2

Continuous-time transfer function.

>> pzmap(b,a)

P ole-Zero Map

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1)

t

exp(-2 t) heaviside(t)

21

(s)(t)*(t)2

t H h e u s =?=-

>> syms t

>> h=exp(2*t)*heaviside(t); >> ezplot(h)

4) 122,2p j p j ==- >> b=[1]; >> a=[1 0 4];

>> sys=tf(b,a)

sys =

1 -------

s^2 + 4

Continuous-time transfer function.

>> pzmap(b,a)

P ole-Zero Map

Real Axis (seconds -1)

I m a

g i n a r y A x i s (s e c o n d s -1)

4

t

exp(2 t) heaviside(t)

211

(s)(t)sin(2t)*(t)42

H h u s =?=+

>> syms t >>

h=(1/2)*sin(2*t)*heaviside(t); >> ezplot(h)

5) 1214,14p j p j =-+=-- >> b=[1]; >> a=[1 2 17];

>> sys=tf(b,a)

sys =

1 --------------

s^2 + 2 s + 17

Continuous-time transfer function.

>> pzmap(b,a)

P ole-Zero Map

Real Axis (seconds -1

)

I m

a g i n a r y A x i s (s e c o n d s -1)

t

(sin(2 t) heaviside(t))/2

211(s)(t)sin(2)(t)2172

t

H h e t u s s -=?=++

>> syms t >> h=(1/2)*exp(-t)*sin(2*t)*heaviside(t); >> ezplot(h)

6) 1214,14p j p j =+=- >> b=[1]; >> a=[1 -2 17];

>> sys=tf(b,a)

sys =

1 --------------

s^2 - 2 s + 17

Continuous-time transfer function.

>> pzmap(b,a)

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1

)

t (sin(2 t) exp(-t) heaviside(t))/2

211(s)(t)sin(2)(t)

2172t

H h e t u s s =?=-+

>> syms t >>

h=exp(t)*sin(2*t)*heaviside(t)/2;

>> ezplot(h)

极点在左半平面时呈衰减趋势,在左半平面坐标轴上时呈指数衰减,在非坐标轴位置上时成衰减振荡;在右半平面时成增加趋势,在右半平面坐标轴上时呈增加趋势,在非坐标轴上时呈增幅振荡;在纵轴上时,在非原点时呈等幅振荡,在原点时为单位阶跃响应。

(4)已知三个连续时间系统的系统函数,极点相同,零点不同,试用MATLAB 分别绘制系统的零极点分布图及相应冲激响应的时域波形,观察并分析系统函数零点位置对冲激响应时域特性的影响。

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1

)

t

(sin(2 t) exp(t) heaviside(t))/2

1)21

(s)217

H s s =

++

>> b=[1]; >> a=[1 2 17]; >> sys=tf(b,a)

sys =

1

-------------- s^2 + 2 s + 17

Continuous-time transfer function.

>> pzmap(b,a)

2

11(s)(t)sin(4t)u(t)2174

t

H h e s s -=?=++

>> syms t >> h=(1/4)*exp(-

t)*sin(4*t)*heaviside(t);

>> ezplot(h)

>> axis tight

2)2

8

(s)217

s H s s +=

++ >> b=[1 8]; >> a=[1 2 17];

Real Axis (seconds -1)

I m a g i n a r y A x i s (s e c o n d s -1

)

t

(sin(4 t) exp(-t) heaviside(t))/4

>> sys=tf(b,a)

sys =

s + 8 --------------

s^2 + 2 s + 17

Continuous-time transfer function.

>> pzmap(b,a)

>> syms s

>> H=(s+8)/(s^2+2*s+17); >> h=ilaplace(H)

h =

exp(-t)*(cos(4*t) + (7*sin(4*t))/4)

2

87(s)(t)[cos(4t)sin(4t)]u(t)2174

t

s H h e s s -+=?=+++

>> clear >> syms t

>>h=exp(-t)*(cos(4*t)+(7*sin(4*t))/4)*h eaviside(t);

>> ezplot(h) >> axis tight

Real Axis (seconds -1)

I m a g i n a r y A x i s (s e c o n d s -1)

3)28

(s)217

s H s s -=

++

>> b=[1 -8]; >> a=[1 2 17]; >> sys=tf(b,a)

sys =

s - 8 --------------

s^2 + 2 s + 17

Continuous-time transfer function.

>> pzmap(b,a)

>> syms s

>> H=(s-8)/(s^2+2*s+17);

t

exp(-t) heaviside(t) (cos(4 t) + (7 sin(4 t))/4)

Real Axis (seconds -1

)

I m a g i n a r y A x i s (s e c o n d s -1)

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

实验五 信号与系统的复频域分析

实验五 信号与系统的复频域分析 王靖 08通信 12号 实验目的 (1)掌握利用MA TLAB 进行连续时间信号与系统的复频域分析。 (2)掌握利用MA TLAB 进行离散系统的复频域分析。 实验环境 安装MATLAB7.0以上版本的计算机 实验内容 1. 利用help 命令了解以下命令的基本用法 residue ,roots ,pzmap ,cart2pol ,residuez ,tf2zp ,zplane 2. 部分分式展开的MATLAB 实现 用部分分式展开法求X(s)的反变换。 2321 ()452s X s s s s +=+++ 步骤一:建立新的m 文件,保存并命名为program1.m 。 步骤二:输入以下命令,理解每条命令的含义。 %program1,部分分式展开法求反变换 [10 1];[1452];[,,](,) n u m d en r p k resid u e n u m d en === 步骤三:保存程序并运行,记录得到的结果。 如右图所示 步骤四:由得到的结果可以直接获得X(s)展开表示式 25 4 2 ()21(1)X s s s s =-++++: 步骤五:由此可得到X(s)反变换的原函数,记录。 X(t)=(5exp(-2*t)-4exp(-t)+2texp(-t)) 思考:将其转换成极坐标形式,应该如何使用cart2pol 命令?离散系统的部分分式展开,如何使用命 令residuez ,得到的结果如何利用? 将笛卡尔坐标转化为极坐标用 [angle,mag]=cart2pol(real(r),imag(r)) [r,p,k] = residuez(nun,,den)

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

3-系统分析实验报告

管理信息系统实验报告 实验3 系统分析 课程名称:管理信息系统 指导教师:王玮 班级:信管1401 学号: 姓名:唐赛赛 时间: 2016.04.06 地点: 3 号机房

一、实验目的 1.了解开发Visio解决方案的基本概念和关于Visio工具的一些基本的操作和应用; 2.掌握系统分析阶段数据流程图的画法; 二、实验步骤和实验结果: 使用Visio中提供的“组织结构图”模具,绘制下面例题的组织结构图,附在图后。 2、使用Visio绘制“业务流程图模具”和“数据流程图模具”(1)创建“业务流程图模具” 先在“框图”-〉“基本形状”中找到圆角矩形,右击选择“添加到我的形状”-〉“添加到新模具”。之后出现“另存为”对话框,把新模具命名为“业务流程图”,把圆角矩形形添加到了新模具“业务程图”中。用同样的思路,先在“框图”-〉“基本形状”中找到圆形,右击选择“添加到我的形状”-〉“添加到模具“业务程图”中;在“框图”-〉“基本形状”找到矩形,在“流程图”中的“IDEFO图表形状”找到动态连接线,在“流程图”中的“SDL图表形状”中找到文档,多文档,添加到模具“业务程图”中。可以通过设置“动态连接线”属性来改变其形状。如下图:

添加完成后,我们就可以在画业务流程图时打开该模具,业务流程图所有的元素都会在一个模具中显示出来。(2)创建“数据流程图模具”先在“框图”-〉“基本形状”中找到圆形(或是“流程图”中的“混合流程图形状”中找到外部实体2 ),右击选择“添加到我的形状”-〉“添加到新模具”(注,使用外部实体2来表示外部实体的时候,请将之旋转180度使用)。之后出现“另存为”对话框,把新模具命名为“数据流程图”,这样我们就把圆形形添加

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为 (s)(t)e st X x dt +∞ --∞ = ? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ -∞ =? (2) MATLAB 中相应函数如下: (F) L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 () F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 (,) F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数 110 110 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++= +++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下: r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。 求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。 [p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。 还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。调用格

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

北京理工大学信号与系统实验实验5连续时间系统地复频域分析报告报告材料

实验5 连续时间系统的复频域分析 一、实验目的 1.掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握连续时间系统系统函数的定义及复频域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号)(t x 的拉普拉斯变换定义为 )1.....(..........)()(dt e t x s X st ? +∞ ∞ --= 拉普拉斯反变换定义为 )2....(..........)(21)(ds e s X j t x j j st ?∞ +∞ -=σσπ 在MATLAB 中,可以采用符号数学工具箱的laplace 函数和ilaplace 函数进行拉氏变换和反拉氏变换。 L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 L=laplace(F,t)用t 替换结果中的变量s 。 F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 F=ilaplace(L,x)用x 替换结果中的变量t 。 除了上述ilaplace 函数,还可以采用部分分式法,求解拉普拉斯逆变换,具体原理如下: 当 X (s )为有理分式时,它可以表示为两个多项式之比: )3.(..........)()()(0 110 11a s a s a b s b s b s D s N s X N N N N M M M M +?+++?++==---- 式(3)可以用部分分式法展成一下形式 )4.....(.............)(2211N N p s r p s r p s r s X -++-+-= 通过查常用拉普拉斯变换对,可以由式(1-2)求得拉普拉斯逆变换。 利用 MATLAB 的residue 函数可以将 X (s )展成式(1-2)所示的部分分式展开式,该 函数的调用格式为:[r,p,k] = residue(b,a) 其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数

系统分析实验报告

天津职业技术师范大学课程设计大学学籍管理系统的设计与开发 专业:软件工程 班级学号:软件1002-17 学生姓名:靳利强 指导教师:龚良波老师 二〇一三年七月

一.需求分析 1.课程名称:大学教务信息系统的设计与开发 2.设计目的: 为方便学校做好学生学籍管理工作,设计一个学生学籍管理系统,在设计过程中作了系统分析和总体设计,软件设计采取模块化的设计思路。 3.需求概述 该学生学籍管理系统主要对学生学籍信息、成绩信息进行管理,提供一个平台,供学籍管理人员增删改查学生信息、学生成绩信息。系统分为学生信息管理、学生成绩管理、信息查询等几个模块。学籍管理人员登录成功后可以对学生信息管理、学生成绩管理、信息查询等模块进行操作,如学生信息添加、修改、删除和查询;学生成绩登记、修改、删除和查询;查询信息等。 4功能需求: 1)功能齐全:界面操作灵活方便,设计包括以下基本功能: 2)学生信息管理、教师信息管理、财务信息管理、班级信息管理、课 程信息管理、成绩信息管理、打印信息管理、教室信息管理、综合信息查询、系统管理等,至少实现其中的三个功能,且每个功能至少包括两个子功能。 3)按照软件工程的要求进行分析、设计和开发。 4)界面友好:界面友好、输入有提示、尽量展示人性化。 5)可读性强:源程序代码清晰、有层次、主要程序段有注释。

6)健壮性好:用户输入非法数据时,系统应及时给出警告信息。 二.概要设计 1.功能模块: 2数据流图: (1)学生端

(2)管理员端

学生端功能: A 登录,学生登录后,验证成功,进入其信息展示页。 管理员端功能: B 登录,管理员登录后,验证成功,进入学生信息列表,可以对学生信息进行修改,删除,按班级查询,按学号查询,按名字查询。上传图片,更新图片等操作。 三.详细设计及实现 数据库设计: 学生表: 教师表:

实验六-信号与系统复频域分析

实验六信号与系统复频域分析 一、实验目的 1.学会用MATLAB进行部分分式展开; 2.学会用MATLAB分析LTI系统的特性; 3.学会用MATLAB进行Laplace正、反变换。 4.学会用MATLAB画离散系统零极点图; 5.学会用MATLAB分析离散系统的频率特性; 二、实验原理及内容 1.用MATLAB进行部分分式展开 用MATLAB函数residue可以得到复杂有理分式F(s)的部分分式展开式,其调用格式为 其中,num,den分别为F(s)的分子和分母多项式的系数向量,r为部分分式的系数,p为极点,k为F(s)中整式部分的系数,若F(s)为有理真分式,则k为零。 例6-1 用部分分式展开法求F(s)的反变换 解:其MATLAB程序为 format rat; num=[1,2]; den=[1,4,3,0]; [r,p]=residue(num,den) 程序中format rat是将结果数据以分数形式显示

F(s)可展开为 210.536()13 F s s s s --=++++ 所以,F(s)的反变换为 3211()()326t t f t e e u t --??=--???? 2.用MATLAB 分析LTI 系统的特性 系统函数H (s )通常是一个有理分式,其分子和分母均为多项式。计算H (s )的零极点可以应用MATLAB 中的roots 函数,求出分子和分母多项式的根,然后用plot 命令画图。 在MATLAB 中还有一种更简便的方法画系统函数H (s )的零极点分布图,即用pzmap 函数画图。其调用格式为 pzmap(sys) sys 表示LTI 系统的模型,要借助tf 函数获得,其调用格式为 sys=tf(b,a) 式中,b 和a 分别为系统函数H (s )的分子和分母多项式的系数向量。 如果已知系统函数H (s ),求系统的单位冲激响应h(t)和频 率响应H ω(j )可以用以前介绍过的impulse 和freqs 函数。 例6-2 已知系统函数为 321221 s s s +++H(s)= 试画出其零极点分布图,求系统的单位冲激响应h(t)和频率响应H ω(j ),并判断系统是否稳定。 解:其MATLAB 程序如下: num=[1];

实验八 系统的复频域分析

实验八系统的复频域 分析

一、实验目的 1、掌握系统的复频域分析方法。 2、掌握测试系统的频率响应的方法。 二、预习内容 1、系统频响的方法。(见第四章波特图的介绍) 三、实验原理 1. N 阶系统系统的传递函数 用微分方程描述的N 阶系统为: 根据零状态响应(起始状态为零),则对其进行拉氏变换有: 则系统传递函数可表达为: 用差分方程描述的N 阶系统为: 根据零状态响应(起始状态为零),则对其进行拉氏变换有: 则系统传递函数可表达为: 2.根据系统传递函数的零极点图分析系统 零点:传递函数分子多项式的根。 极点:传递函数分母多项式的根。 根据零极点图的不同分布分析系统。 3.涉及到的Matlab 函数 (1)freqz 函数:实验六中出现过,可用来求单位圆上的有理z 变换的值。调用格式:同实验六 (2)zplane 函数:得到有理z 变换的零极点图。 调用格式:zplane(num,den)

其中,num和 den是按z ?1 的升幂排列的、z 变换分子分母多项式系数的行向量。 (3)roots 函数:求多项式的根。 调用格式:r=roots(c), c 为多项式系数向量;r 为根向量。 四、实验内容 1.系统零极点的求解 (1)求解系统和的零极点,验 证下面程序的运行结果,根据系统零极点图分析系统性质。 b=[1,0,-1]; a=[1,2,3,2]; zr=roots(b); pr=roots(a); plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'linewidth',2); grid; legend('零点','极点'); figure; zplane(b,a); (2)参考上述程序,绘制系统和 的零极点图,并分析系统性质。与用zplane 函数直接绘制系统零极点图(注:圆心的圆圈并非系统的零点)做比较。

系统分析实验报告2016

本科实验报告 课程名称:系统分析与设计 实验项目:《》实验实验地点: 专业班级:学号: 学生姓名: 指导教师: 2016年11月日

一、实验目的 通过《系统分析与设计》实验,使学生在实际的案例中完成系统分析与系统设计中的主要步骤,并熟悉信息系统开发的有关应用软件,加深对信息系统分析与设计课程基础理论、基本知识的理解,提高分析和解决实际问题的能力,使学生在实践中熟悉信息系统分析与设计的规范,为后继的学习打下良好的基础。 二、实验要求 学生以个人为单位完成,自选题目,班内题目不重复,使用UML进行系统分析与设计,并完成实验报告。实验报告(A4纸+电子版)在最后一次上课时提交(10周)。 三、实验主要设备:台式或笔记本计算机 四、实验内容 1 选题及项目背景 学生填写自选题目 2 定义 学生填写(对自选项目系统进行描述200-400字) 3 参考资料 学生填写 4 系统分析与设计 4.1需求分析 4.1.1识别参与者 学生填写 4.1.2 对需求进行捕获与描述 学生填写时删除以下括号内容 (内容要求1:对每个用例进行概要说明,参考以下格式: 用例名称:删除借阅者信息执行者:管理员 目的:完成一次删除借阅者信息的完整过程。) (内容要求2:选择其中一个用例(如下订单)给出其用例描述。格式参考下表

) 4.1.3 用例图 通过已掌握的需求,初步了解系统所要完成的功能。下面给出用例图。 4.1.4 分析与讨论 1)建模用例图的步骤、方法? 2)如何识别系统的参与者?应该如何划分用例,应注意哪些问题? 3)心得 4.2 建立对象模型 4.2.1 候选类的数据字典 学生填写 4.2.2定义类 (内容以“书籍信息”类为例列出该类的属性和操作如下: “书籍信息”类 ?属性 国际标准书号(ISBN):文本(String) 书名(name):文本

(完整word版)连续时间信号分析答案

实验一 连续时间信号分析 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 一台电脑、winXP 系统、matlab7.0软件 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: clear all;close all;clc; K=2;a=3; t=0:0.01:3; ft=K*cos(a*t+pi/4); plot(t,ft),grid on axis([-5,5,-2.2,2.2]) title('2cos(3t+4π)')

-5 -4 -3 -2 -1 1 2 3 4 5 -2-1.5-1-0.500.511.5 22cos(3t+4π) (2) )t (u )e 2(t -- -3 -2-10123 -3 -2 -1 1 2 3 指数信号与阶跃信号的乘积

代码: 函数文件: function f=uCT(t) f=(t>=0); 命令文件: clear all;close all;clc; a=-1; t=-5:0.01:5; ft=(2-exp(a*t)).*uCT(t); %y=2-exp(a*t); %plot(t,y),grid on plot(t,ft),grid on axis([-3,3,-3,3]); title('指数信号与阶跃信号的乘积') (3))]2()(u )][t (cos 1[--+t u t π

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

连续系统的复频域分析

实验四:连续系统的复频域分析 一、实验目的: 1、掌握连续与离散时间系统的正反复频域与Z域变换 2、掌握利用MATLAB进行零极点分析,进一步了解零极点对整个系统的影响 3、掌握simulink环境下系统建模与仿真以及系统求解。 二、实验内容: 1、已知某连续系统的系统函数为: (1)利用[r, p, k]=residue(num, den),求H(s)的极零点以及多项式系数; (2)画出系统的零极点分布图,判断系统得稳定性。 (3)求h(t),判断系统得稳定性。 2、已知某离散系统的系统函数为:, (1)利用[r, p, k]=residuez(num, den)求H(z)的极零点以及多项式系数; (2)画出零极点分布图,判断系统得稳定性。 (3)求单位函数响应用impz(b, a),判断系统是否稳定; 3、已知线性时不变微分方程 在Simulink环境下搭建起系统的仿真模型,并查看仿真结果曲线。(1)写出传递函数H(s),绘出系统模拟框图; (2)当f(t)分别为,,的零状态响应;且当与课本P81的结果进行比较(3)方程的初值为, ,求全响应; 4、已知某信号,n(t)为正态噪声干扰且服从N(0,0.22)分布,对此信号进行采样,采样间隔为0.001s,之后对此信号进行Botterworth低通滤波,从信号中过滤10HZ的输出信号,试对系统进行建模与仿真。 三、实验数据处理与结果分析: 第一题:题1_1:

>> num=[2,5]; den=[1,1,3,2]; [r,p,k]=residue(num,den) r = -0.5750 - 0.7979i -0.5750 + 0.7979i 1.1499 p =-0.1424 + 1.6661i -0.1424 - 1.6661i -0.7152 k =[]

管理信息系统分析实验报告

《管理信息系统》 实验二 题目:系统分析 专业:信息管理与信息系统 班级:1106班 姓名 ************************* 指导教师:贺玉珍老师 完成日期:2014.4.28

运城学院超市管理系统设计分析说明书 一、系统目标:随着小超市规模的发展不断扩大,商品数量急剧增加,有关商品的各种信息量也成倍增长。超市时时刻刻都需要对商品各种信息进行统计分析。而大型的超市管理系统功能过于强大而造成操作繁琐降低了小超市的工作效率。 超市管理系统是市场上最流行的超市上常用的系统之一,它主要包含以下几个模块:系统权限的设定、原始数据录入、数据的汇总及查询等。从而,实现对进货、销售及员工信息等实现全面、动态、及时的管理。 本文系统的分析了软件开发的背景以过程;首先介绍了软件的开发环境,其次介绍了本软件的详细设计过程:数据库的设计、各个模块的设计和实现,以及具体界面的设计和功能。 二、系统的初步调查 通过实地参观和学习,对超市的整体情况进行调研。了解超市的组织机构划分,充分了解超市进销存的流程的整体情况,对开发新系统的态度等。通过召开座谈会和个人访谈方法了解各个部门的主要职能及具体运作方式、过程等。 进行初步调研的具体内容为: (1)员工的规模:大约有多少员工,有多少是稳定的,有多少是浮动的; (2)员工管理人员的数量; (3)超市的商品销售状况 (4)客户编码方式; 三、可行性分析: 1.技术可行性研究,在IT行业中从业的工作人员一般都要求掌握计算机技术,具有一定的软硬件基础,会使用各种管理软件,熟悉IT产品。因为,有的超市对员工的素质要求比较高,从管理层到下面的销售人员,都要求具有一定的计算机基础,所以在新系统投入使用时,只要对员工进行少量的培训,系统的功能和使用方法就基本上能够是系统顺利运行。 2经济可行性研究,因为通过网络传递销售信息可以不受距离的限制,因此可以借阅许多的人力和物力,方便管理,由此可以减少不必要的开支,同时该系统可以提高超市的销售效率,即提高了超市的经济效益,所以从经济上完全是可行的,(1)超市有能力承担系统开发费用,(2)新系统将为企业带来经济效益3操作可行性研究,本系统采用基于Windows的图形用户界面,而该系统是大家熟悉的操作系统,对于那些有一般的计算机知识的人员就可以轻松上手。而整个超市管理系统采用最友好的交互界面,简介明了,不需要对数据库进行深入的

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

管理信息系统实验报告分析

实验报告 课程:管理信息系统 一、实验目的 验证有关概念和理论,加深对概念和知识的理解和认识;熟悉和掌握Visual Basic 6.0 软件的使用方法;初步具备信息管理知识和制作数据字典、系统数据流程图的能力。运用课程讲授的管理信息系统的系统分析方法、模块化系统设计方法以及系统的调试方法进行人事档案管理信息系统的分析、设计、开发、实现与调试。 二、实验方法 面向对象法 三、实验环境及开发工具 1.硬件环境 在最低配置的情况下,系统的性能往往不尽如人意,但现在的硬件性能已经相当的出色,而且价格便宜,因此通常给服务器的配置高性能的硬件。 处理器:Interl Pentium II 266 MX 或更高 内存:64M 硬盘空间:2 GB 显卡:SVGA 显示适配器 显示器:液晶17寸 2.软件环境 操作系统:Windows/98/ME/2000/XP或更高版本 数据库:Microsoft Access 2000 3.实验开发工具:Visual Bisic 6.0程序系统 四、实验内容

(一)、系统分析 1、系统数据流程图 2、数据字典 3、系统中所有实体(包括实体的属性)以及实体之间的联系类型分析 人员的个人资料经过专业的处理部门的处理形成个人档案。档案包括自然情况,工作情况,简历,政治情况等各方面信息,内容比较庞大复杂。将档案信息传送到人员信息库。同时还综合考虑档案管理工作的性质,总结归纳出所需实现

的功能。为人事档案进行服务,对人事的变动、人事资料、以及人事资料的查询,统计等功能。总体上说具有编辑,查询,用户管理,图表统计等功能。然后将最终结果提交到人力资源管理部门,由人力资源管理人员进行审查,以便于对职工的调配。 4、典型处理的表达 档案完整添加用户档案到档案库 个人信息成功添加到档案库 修改用户档案信息 失败退回用户档案 退回用户档案 (二)、系统设计 1、子系统划分(或功能划分或模块划分) 功能划分 1、用户管理 功能:设置使用人事管理系统的用户及其使用权限。整个人事管理系统由多个功能模块组成,不同的模块完成不同的功能,所以可以为不同的职工分配不同的功能,使其具有不同的权限,完成其权限所对应的功能,从而很好地管理好整个系统。 2、辅助表管理 功能:通过它的这个功能可以有效的对本单位人事部门的扩充进行及时的计算机管理。只要管理员进行简单的数据字段添加即可。辅助表管理功能是高级管理员及中级管理员拥有的权限,它的功能是对数据库进行新表的添加。 3、档案编辑 功能:档案编辑模块中有4个子模块。他们是档案卡片、个人简历、家庭成员、历史档案等功能。这些功能因管理员的权限不同所表示出的功能使用也不同,普通管理员没有数据修改及删除的权利。在这些功能里详细的记录了所有单位员工的资料。 4、档案查询 功能:对档案卡片的查询功能,在这里可以查到符合程序要求的任何信息。

信号与系统报告 实验5 连续系统的复频域分析实验

信号与系统 实验报告 实验五连续系统的复频域分析 实验五连续系统的复频域分析 一、实验目的 1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。 2会求几种基本信号的拉氏变换。 3 掌握用MATLAB绘制连续系统零、极点的方法。 4 求解系统函数H(s)。 二

1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 syms t; ft=sin(t)*heaviside(t); Fs=Laplace(ft); a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); c=a+i*b; d=ones(size(a)); c=c.*c; c=c+d; c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c) axis([-0.5,0.5,-2,2,0,10]) colormap(hsv

) 2求[(1-e^(-at))]/t的拉氏变换。 syms t s a f1=(1-exp(-a*t))/t; F=laplace(f1,t,s) F = log(s+a)-log(s) 3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a F =log(s+a)-log(s); f1=ilaplace(F,s,t) f1 = (1-exp(-a*t))/t

4已知某连续系统的系统函数为: H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。 b=[1 3 2]; a=[8 2 3 0 5]; zs=roots(b); ps=roots(a); hold on plot(real(zs),imag(zs),'o'); plot(real(ps),imag(ps),'x'); grid axis([-2.5,1,-1,1]) 5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。 syms t s H=(s+1)/(s^2+s+1); f1=ilaplace(H,s,t); f2=heaviside(t);

电力系统分析实验报告金科

学生实验报告 (理工类) 课程名称:专业班级: 学生学号:学生: 所属院部:指导教师: 20 13 ——20 14 学年第二学期 金陵科技学院教务处制 实验一电力系统分析计算 实验项目名称:电力系统分析计算实验学时: 2

同组学生:实验地点: C208 实验日期: 2014 6 23 实验成绩: 批改教师:静批改时间: 一.实验目的 1.掌握用Matlab软件编程计算电力系统元件参数的方法. 2.通过对不同长度的电力线路的三种模型进行建模比较,学会选取根据电路要求选取模 型。 3.掌握多级电力网络的等值电路计算方法。 4.理解有名制和标幺制。 二.实验容 1.电力线路建模 有一回220kV架空电力线路,导线型号为LGJ-120,导线计算外径为15.2mm,三相导线水平排列,两相邻导线之间的距离为4m。试计算该电力线路的参数,假设该线路长度分别为60km,200km,500km,作出三种等值电路模型,并列表给出计算值。 2.多级电力网络的等值电路计算 部分多级电力网络结线图如图1-1所示,变压器均为主分接头,作出它的等值电路模型,并列表给出用有名制表示的各参数值和用标幺制表示的各参数值。 线路额定电压电阻 (欧/km) 电抗 (欧/km) 电纳 (S/km) 线路长度 (km) L1(架空线)220kv 0.08 0.406 2.81*10-6 200 L2(架空线)110kV 0.105 0.383 2.81*10-6 60 L3(架空线)10kV 0.17 0.38 忽略15 变压器额定容量P k(kw) U k% I o% P o(kW) T1 180MVA 893 13 0.5 175 T2 63MVA 280 10.5 0.61 60 三.实验设备 1.PC一台 2.Matlab软件 四.实验记录 1.电力线路建模 电阻电抗电纳电阻电抗电纳电阻电抗电纳

连续系统的频域分析

第三章傅立叶变换 时域分析:f(t) y f(t)=h(t)*f(t) ↓分解↑ 基本信号δ(t)→LTI →h(t) 频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt ↓分解↑ 基本信号 sinωt →LTI →H(jω)e jωt e jωt H(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关. 主要内容: 一、信号的分解为正交函数。 二、周期信号的频域分析?付里叶级数(求和),频谱的特点。信号 三、非周期信号的频域分析?付里叶变换(积分),性质。分析 四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析) 五、抽样定理:连续信号→离散信号.

§3.1 信号分解为正交函数 一、正交: 两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。 二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j; K i 当i=j. 三、完备正交函数集:在{φ1(t)…φn(t)}之外, 不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n). 例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt, sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期. 满足: cosmΩtcosnΩtdt= 0 m≠n T/2 m=n≠0 T m=n=0 sin(mΩt)sin(nΩt)dt= 0 m≠n T/2 m=n≠0 sin(mΩt)cos(nΩt)dt= 0. 所有的m和n. 结论:三角函数集是完备正交集。 推导: cosmΩtcosnΩtdt =(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt =(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt =(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0] +(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0] =0 当m≠n时.

相关文档
相关文档 最新文档