文档视界 最新最全的文档下载
当前位置:文档视界 › 散热器的选型与计算

散热器的选型与计算

散热器的选型与计算
散热器的选型与计算

散热器的选型与计算

以7805为例说明问题.

设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W

按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.

正确的设计方法是:

首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.

计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.

散热器的计算:

总热阻RQj-a=(Tjmax-Ta)/Pd

Tjmax :芯组最大结温150℃

Ta :环境温度85℃

Pd : 芯组最大功耗

Pd=输入功率-输出功率

={24×0.75+(-24)×(-0.25)}-9.8×0.25×2

=5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C

其中k:导热率铝为2.08

d:散热器厚度cm

A:散热器面积cm2

C:修正因子取1

按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13

算得散热器热阻RQd-a=4.1℃/W,

散热器选择及散热计算

目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。

散热计算

任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。功率器件安装在散热器上。它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间。若没有风扇以一定风速冷却,这称为自然冷却或自然对流散热。

热量在传递过程有一定热阻。由器件管芯传到器件底部的热阻为RJC,器件底部与散热器之间的热阻为RCS,散热器将热量散到周围空间的热阻为RSA,总的热阻RJA="R"JC+RCS+RSA。若器件的最大功率损耗为PD,并已知器件允许的结温为TJ、环境温度为TA,可以按下式求出允许的总热阻RJA。

RJA≤(TJ-TA)/PD

则计算最大允许的散热器到环境温度的热阻RSA为

RSA≤({T_{J}-T_{A}}over{P_{D}})-(RJC+RCS)

出于为设计留有余地的考虑,一般设TJ为125℃。环境温度也要考虑较坏的情况,一般设TA=40℃60℃。RJC的大小与管芯的尺寸封装结构有关,一般可以从器件的数据资料中找到。RCS的大小与安装技术及器件的封装有关。如果器件采用导热油脂或导热垫后,再与散热器安装,其RCS典型值为0.10.2℃/W;若器件底面不绝缘,需要另外

加云母片绝缘,则其RCS可达1℃/W。PD为实际的最大损耗功率,可根据不同器件的工作条件计算而得。这样,RSA可以计算出来,根据计算的RSA值可选合适的散热器了。

散热器简介

小型散热器(或称散热片)由铝合金板料经冲压工艺及表面处理制成,而大型散热器由铝合金挤压形成型材,再经机械加工及表面处理制成。它们有各种形状及尺寸供不同器件安装及不同功耗的器件选用。散热器一般是标准件,也可提供型材,由用户根据要求切割成一定长度而制成非标准的散热器。散热器的表面处理有电泳涂漆或黑色氧极化处理,其目的是提高散热效率及绝缘性能。在自然冷却下可提高10-15%,在通风冷却下可提高3%,电泳涂漆可耐压500800V。

散热器厂家对不同型号的散热器给出热阻值或给出有关曲线,并且给出在不同散热条件下的不同热阻值。

计算实例

一功率运算放大器PA02(APEX公司产品)作低频功放,其电路如图1所示。器件为8引脚TO-3金属外壳封装。器件工作条件如下:工作电压VS为18V;负载阻抗RL为4,工作频率直流条件下可到5kHz,环境温度设为40℃,采用自然冷却。

查PA02器件资料可知:静态电流IQ典型值为27mA,最大值为40mA;器件的RJC(从管芯到外壳)典型值为2.4℃/W,最大值为2.6℃/W。

器件的功耗为PD:

PD=PDQ+PDOUT

式中PDQ为器件内部电路的功耗,PDOUT为输出功率的功耗。PDQ=IQ(VS+|-VS|),PDOUT=V^{2}_{S}/4RL,代入上式

PD=IQ(VS+|-VS|)+V^{2}_{S}/4RL=37mA(36V)+18V2/44=21.6W 式中静态电流取37mA。

散热器热阻RSA计算:RSA≤({T_{J}-T_{A}}over{P_{D}})-(R_{JC}+R_{CS}})

为留有余量,TJ设125℃,TA设为40℃,RJC取最大值(RJC="2".6℃/W),RCS取0.2℃/W,(PA02直接安装在散热器上,中间有导热油脂)。将上述数据代入公式得

RSA≤{125℃-40℃}over{21.6W}-(2.6℃/W+0.2℃/W)≤1.135℃/W

HSO4在自然对流时热阻为0.95℃/W,可满足散热要求。

注意事项

1.在计算中不能取器件数据资料中的最大功耗值,而要根据实际条件来计算;数据资料中的最大结温一般为150℃,在设计中留有余地取125℃,环境温度也不能取25℃(要考虑夏天及机箱的实际温度)。

2.散热器的安装要考虑利于散热的方向,并且要在机箱或机壳上相应的位置开散热孔(使冷空气从底部进入,热空气从顶部散出)。

3.若器件的外壳为一电极,则安装面不绝缘(与内部电路不绝缘)。安装时必须采用云母垫片来绝缘,以防止短路。

4.器件的引脚要穿过散热器,在散热器上要钻孔。为防止引脚与孔壁相碰,应套上聚四氟乙稀套管。

5.另外,不同型号的散热器在不同散热条件下有不同热阻,可供设计时参改,即在实际应用中可参照这些散热器的热阻来计算,并可采用相似的结构形状(截面积、周长)的型材组成的散热器来代用。

6.在上述计算中,有些参数是设定的,与实际值可能有出入,代用的型号尺寸也不完全相同,所以在批量生产时应作模拟试验来证实散热器选择是否合适,必要时做一些修正(如型材的长度尺寸或改变型材的型号等)后才能作批量生产。

散热器选型,散热面积理论计算及风扇选择。

(2010-11-23 23:51:57)

转载

签:

杂谈

散热器选择的计算方法

一,各热参数定义:

Rja———总热阻,℃/W;

Rjc———器件的内热阻,℃/W;

Rcs———器件与散热器界面间的界面热阻,℃/W;

Rsa———散热器热阻,℃/W;

Tj———发热源器件内结温度,℃;

Tc———发热源器件表面壳温度,℃;

Ts———散热器温度,℃;

Ta———环境温度,℃;

Pc———器件使用功率,W;

ΔTsa ———散热器温升,℃;

二,散热器选择:

Rsa =(Tj-Ta)/Pc - Rjc -Rcs

式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,

Pc 是设计要求的参数,

Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。

(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc

(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc

ΔTsa=Rsa×Pc

(3)确定散热器

按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或

ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻曲线

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

三,散热器尺寸设计:

对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:

按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:

α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}

式中:

ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);

ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;

√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的

温升对α的影响;

以上参数可以查表得到。

计算两肋片间的表面所散的功率q0

q0 =α×ΔTfa×(2h+b)×L

根据单面带肋或双面带肋散热器的肋片数n,计算散热功率Pc′

单面肋片:Pc′=nq0

双面肋片:Pc′=2nq0

(单面肋,简单的说,就是一边带肋,一边是一个平面。利于在特定场合下的装配,例如在电源模块上。)

若Pc′>Pc 时则能满足要求。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 四,估算散热器表面积:

由Q=HA(T1-T2)结合修正系数推得:

S = 0.86W/(△T*a))

(平方米)

式中

△T——散热器温度与周围环境温度(Ta)之差(℃);

α(h)——换热系数,是由空气的物理性质及空气流速决定的。

α的值可以表示为:

α= Nu*λ/L

式中λ——热电导率由空气的物理性质决定;

L——散热器高度;

Nu——空气流速系数。

Nu值由下式决定

Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)]

式中 V——动黏性系数,是空气的物理性质;

V1——散热器表面的空气流速;

Pr——参数(见下表)。

温度t/℃动黏性系数热电导率Pr

0 0.138 0.0207 0.72

20 0.156 0.0221 0.71

40 0.175 0.0234 0.71

60 0.196 0.0247 0.71

80 0.217 0.0260 0.70

100 0.230 0.0272 0.70

120 0.262 0.0285

0.70

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~`

五,计算阻力压降:

计算流经散热器阻力压降:

在算出换热系数h(α)之后,根据预选的散热器表面的空气流速V,计算流经散热器的空气阻力压降:

△P=f*(L/D)*(1/2)*(ρV2)

式中:ΔP ——沿程压力损失,Pa;

V ——空气平均流速,m/s;

f ——沿程阻力系数;

ρ——空气密度,kg/m3;

L ——沿程长度,m;

D ——当量直径,m。(D=4散热器截面面积/截面周长)。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 六,计算流量:

计算流经散热器流量

Q=AV

式中

Q---流量

A--风量流经散热器截面积

V---风量流经散热器风速

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

七,风扇选择:

根据计算获得的Q和△P,选择风扇PQ曲线内包含Q与△P点即可。

风扇PQ曲线

Ⅰ、Ⅱ、Ⅲ三条曲线分别代表不同系统的特性曲线。系统特性曲线与风扇的特性曲线的交点就是该风扇的工作点,推荐系统工作在C 点,低阻力工作点。

芯片散热的热传导计算

技术分类:微处理器与DSP消费电子设计 | 2006-12-04

来源:电子产品世界 | 作者:3M中国有限公司北京技术中心方科

式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为:

T2=T1+P×R (6)

式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻。芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2。

实例

下面通过一个实例来计算芯片的工作温度。芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃。导热材料理论热阻R4为:

R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W (7)

由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻。假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为:

R3=R4/60%=1.93℃/W (8)

总热阻R为: R="R1"+R2+R3=5.18℃/W (9)

芯片的工作温度T2为: T2=T1+P×R=50℃+(5W × 5.18℃/W)=75.9℃ (10)

可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态。

如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内。

暖气片如何选型及计算

暖气片报价如何选型及计算 机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%; 换热器按0.1-0.15MPa估算; 设计裕量:10-20%。 1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa 循环水泵如何选择? 应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。 金旗舰散热器的工作压力定多少是合适的? 我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O (即0.7-0.9MPa)。所以散热器的工作压力取1.0MPa已够用了。关于个别城市热网直连的情况可作特殊处理。 系统运行前的压力测试如何进行? 在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。这一压力应该至少保持10分钟,压力下降

不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。具体测点位置及系统试压的压力值均应按施工验收规范要求确定。 热水供暖系统设计应强调哪些问题? 应从以下6方面考虑: 1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统; 2、必须强调供暖水质的处理及控制; 3、必须保证有足够的水量,足够的资用压头; 4、必须有良好的排气,保证水循环畅通; 5、必须考虑水力平衡,保证各组散热器均能通水; 6、对较长的直管段,必须考虑热补偿。 三散热器选择与比较 购房要注意有关供暖系统的哪些问题? 可以从7个方面加以考虑: 1、注意散热器的热负荷,即每平方米的散热量.华北地区的砖混结构住宅,一般配置70W/㎡;节能型保温建筑配置50W/㎡;华中及华东地区的独立供暖住宅,一般配置120~130W/㎡。 2、看散热器类型是否安全舒适.面积很大的房间最好选用R021B 1800的散热器,散热均匀又安全舒适;

给水箱的选型原则

给水箱的选型原则 任放刘敏崔长起 提要在编制给水箱标准图所进行的调研中发现,给水箱设计及工厂生产作的各种材质成品给水箱不 能很好满足使用要求。就此介绍了给水箱设计应遵循规范标准,材质的选择及其设计参数,附件作用和安装要求等。 关键词给水箱设计原则配管附件绝热卫生 在给水工程设计中,经常采用给水箱作为给水系统的高峰调节储水设备。它的特点是使体系运行经济、可靠、操作简单、管理方便。长期以来,给水箱以标准图的形式供设计选用,我院根据建设部建设[1998 ]13 号文〈关于印发《一九九八年国家建设标准设计编制工作计划》的通知〉,对原国家建筑标准设计《方形给水箱》、《装配式给水箱选用安装图》、《冲压钢板给水箱选用安装图》进行修编。在编制和调研过程中发现,给水箱设计及工厂生产制作的各种材质的成品给水箱在工程实际中没有很好满足使用要求,没有按有关规范、规定要求设计制作,对其基本设计原则有模糊之处。现就编制给水箱标准图过程中的体会,以生活饮用水箱为主,提出给水箱设计的原则。 1 应遵循的规范标准 给水箱设计应满足《建筑给水排水设计规范》( GBJ 15 - 88) 《, 二次供水设施卫生规范》( GB17051- 97) 《, 生活饮用水输配水设备及防护材料的安全 性评价标准》( GB/ T17219 - 98) 等国家和地方的有关规范、标准要求。 2 材质选择 给水箱材质可使用不锈钢板、搪瓷钢板、玻璃钢(SMC) 、热镀锌钢板、钢板内衬不锈钢板。各种材质均应在使用中不得对水质有污染,并应经卫生安全防疫的专门机构检测合格。 3 水箱有效容积和公称容积 水箱有效容积一般采用调节水量确定,其值应按最高日水箱进水量和用水出水量的逐时流量变化曲线求得。当缺少资料时一般可按最高日用水量的10 %左右计算。当给水系统为水泵O水箱方式时,如水泵为自动控制,水箱的有效容积可取最高日用水量的5 %; 如为人工控制, 则取最高日用水量的12 %[1 ] 。当水箱负有消防的储备水功能时,则有效容积还应包括按现行有关建筑设计防火规范确定的 水量。水箱公称容积为箱体的总容积。为确保水箱有效容积和尽可能缩小水箱公称容积,在设计选用水箱时设计者必须根据水箱的液位控制方式、溢流管位置、出水管位置及最低水位时管口淹没情况、箱底排水坡度和泄水管位置等情况来计算确定水箱公称容积。 4 应设置的配管和必要的附件 411 进水管

蒸汽散热器选型计算书

散热器选型计算说明书 一、根据客户提供的工艺参数: 蒸汽压力:10kgf/cm2温度:175℃ 热空气出风温度150℃温差按15℃,闭式循环 烤箱内腔尺寸:716*1210*4000MM 风量G=6000-7000M3/H 补新风量为20% 二、选型计算: 1.满足工艺要求的总负荷 Q1=0.24Gγ(Δt)=0.24×6500×0.9×15 =21060Kcal/h Q2=0.24Gγ(Δt2)=0.24×6500×20%×1.0×125 =39000 Kcal/h 总热负荷Q=Q1+Q2=60060Kcal/h 2.根据传热基本方程式Q=KA△Tm △T m=△Tmax - △Tmin ln△Tmax/△Tmin =(100-20)-(175-150) ln(75/30) =47.4℃ 则换热面积A=Q / ψK△Tm 根据我公司产品性能及工艺要求,初选换热系数K=33Kcal/h·m2·℃ 则换热面积A=60060 / 1.0×(33×47.4) =38.4m2 设计余量取18% 则总换热面积A=45m2

根据空气阻力小,风速较低,受风面积较大的原则,初选风速V=4m/s 则所需排管受风表面积=6500 /(3600×4)=0.45m2 根据客户提供空间尺寸,推荐参数800×500mm,受风面积为: 0.4m2 所以,初选散热器换热面积为45 m2 表面管数:11根. ¢18X2.0-38不锈钢铝复合管. 排数:8排. 3.性能复核计算: 1)此散热器净通风截面积为0.4m2 2)实际风速V=6500/(3600×0.4×0.55)=8.2m/s 查表知此温度下的空气比重γ=0.95KG/M3 5)根据我公司的散热管性能曲线图,当片距为3.0mm Vr=7.8kg/ m2·s时,散热管的空气阻力h=3.6mmWg 6)该散热排管8排,其空气阻力h=3.6×8=29mmWg 此空气阻力远小于900Pa 的风压,所以,我公司所选型号: SGL-8R-11-800-Y,换热面积为45 m2, 迎风尺寸:800X500mm。符合设计要求。 以上选型供参考。 广州捷玛换热设备有限公司 2017-03-02

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

设备散热器、风扇的选型和设计计算

散热、吸热,还是绝热重要? ________________________________________ 在这儿之前,有一个很重要的问题要问各位,您知道什么是"热"吗?在您选择一项产品之前.您得先知道您用钞票换得手中的宝贝要解决的是什么物理现象,千万别当了冤大头!"热(He at)"是能量吗? 严格来说它不算是能量,应该说是一种传递能量的形式.就好象作功一样.微观来看,就是区域分子受到外界能量冲击后,由能量高的分子传递至能量低的区域分子(就像是一种扩散 效应),必须将能量转嫁释放出来.所以能量的传递,就是热.而大自然界最根本的热产生方式,就是剧烈的摩擦(所谓摩擦生热如是说!).从电子(量子力学)学的角度而言,当电子束滑过电子信道时,会因为与导线(trace)剧烈摩擦而产生热,它形成一股阻力,阻止电子流到达另一端(就像汽车煞车的效果是一样的).我们统称作"废热". 所以当CPU的速度越高,表示它的I/O(Inp ut/Output)数越高,线路布局越复杂.就好比一块同样面积的土地上.您不断的增加道路面积; 不断的膨胀车流量,下场是道路越来越窄,而车子越来越多,不踩煞车,能不出车祸吗?当然热 量越来越高.信不信,冷飕飕的冬天,关在房里打计算机,你会爱死它,又有得杀时间,又暖和!只是不巧,炎炎夏日又悄悄的接近了…… "传热(Heat Transfer)":既然说热是一种传递能量的形式.那就不能不谈传递的方法了.总的来说整个大自然界能量传递的方式被我们聪明的老祖先(请记住.热力学Thermal Dynami c是古典力学的一种!)概分为三种,接下来我用最浅显易懂的方式分别介绍这门神功的三大基本奥义让各位知道: 1.)热传导(Conduction) 物质本身或当物质与物质接触时,能量传递的最基本形式(这里所说的物质包括气体,液体,与固体).当然气体与液体(我们统称为流体)本身因为结构不似固体紧密.我们又有另外一个专有名词来形容它,叫做热扩散(Diffusion).若诸位看官真有兴趣的话,不妨把下面的公式熟记,对以后您专业素养的养成,抑或是将来更深入的技术,探讨彼此的沟通都非常有帮助(这可是入门的第一招式,千万别放弃您当专业消费者的权益了!).另外,为了避免您一开始走火入魔,请容我先将所有的单位(Unit)都拿掉. Q = K*A*ΔT/ΔL 其中Q为热量;就是热传导所能带走的热量. K为材料的热传导系数值(Conductivity);请记住,它代表材料的热传导特性,就像是出生证明一样.若是纯铜,就是396.4;若是纯铝,就是240;而我们都是人,所以我们的皮肤是0.38,记住! 数值越高,代表传热越好.(详细的材料表我将于日后择篇幅再补述!) A代表传热的面积(或是两物体的接触面积.) ΔT代表两端的温度差;ΔL则是两端的距离. 让我们来看一下图标,更加深您的印象! 热传导后温度分布 铜材的导热系数高,经过热传导后,温度在铜材中分布就非常均匀,相反的,木材的导热系数偏低,于是相同的传导距离,木材的温度分布就明显的不均匀(温度颜色衰减的非常快;表示热量传导性不良.) 从上述的第一招式我们可以知道.热传导的热传量.跟传导系数,接触面积成正比关系(越大,则传热越好!)而跟厚度(距离)成反比.好,有了这个观念,现在让我们把焦点转到散热片身上,当散热片与热源接触,我们需要的是"吸热",能够大量的把热吸走,越多越好.各位可以到市面上看看最近有一些散热片的底部会加一块铜板不是吗?或甚至干脆用铜当散热片底板.就是

散热器如何选型及计算

散热器如何选型及计算 散热器如何选型及计算;【1】散热器基础;1、散热量计量单位的W是什么?;散热器技术性能中的W是热功率计量单位;金属热强度Q(W/KG.℃):是指金属散热器内热;各种散热器的金属热强度比较表;3、什么是散热器的传热系数?;散热器的传热系数K(W/㎡.℃):是指散热器内热;4、散热器的散热过程是什么样的?;当温度较高的热媒在散热器内流过时,热媒所携带的热;1、散热器如何选型及计算【1】散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。 2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量. Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。 各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散 热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热 量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的

散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面 情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散 热器不断地传给温度较低的室内空气,其散热过程为: 1、金旗舰铜铝复合散热器88/95散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度. 但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快, 便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。

暖气如何选型及计算

暖气如何选型及计算 散热器如何选型及计算 【1】金旗舰散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。 2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量.Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。 各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散 热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的 散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射

传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面 情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散热器不断地传给温度较低的室内空气,其散热过程为: 1、散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度.但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快,便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。 【注】:铝制散热器水容量最小,所以铝制散热器升温快,调节灵活,可实现人在快速升温,人离即可降温的间歇式供暖。

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

液压系统温升及散热器选型计算

液压系统温升及散热器 选型计算 The manuscript was revised on the evening of 2021

液压系统温升及散热器选型计算 液压系统油液温升计算及冷却器选型 摘要: 介绍了液压系统的系统损耗功率及油液温升的计

算。通过对两种冷却器的比较, 提出了正确的选型方法。 关键词: 液压系统; 油液温升; 冷却器; 损耗功率 1 前言 液压系统的压力、容积和机械损失构成总的能 量损失, 这些能量损失都将转化为热量, 使系统油温升高。油温的变化将直接影响液压元件的寿命; 油温升高将使油液氧化, 加速油液的变质; 油温过高还严重影响液压油的稳定性, 进而影响液压系统的寿命和传动效率。为此, 必须对系统进行发热与温升计算, 以便对系统温升加以控制。下面对液压系统的发热量及温升计算和冷却器的选择予以介绍。 2 系统损耗功率和温升计算 损耗功率计算 液压系统发热的主要原因是由液压泵和执行器 的功率损失以及溢流阀的溢流损失造成的。其系统的损耗功率即发热功率为: H=P( 1- η) 式中: P—系统泵组的总驱动功率; η—系统效率。 η=ηP ηC ηA 其中: ηP —液压泵的效率, 可从产品样本中查到; ηA —液压执行器总效率, 液压缸一般取~; ηC —液压回路的效率。 ηC

= Σp1 q1 Σp P q P 式中: Σp1 q1 —各执行器负载压力和负载流量即输入 流量乘积的总和; Σp p q p —各液压泵供油压力和输出流量乘积的 总和。 系统的损耗功率即发热功率H 也可按下式估 算, 由于热能的损耗总量约占泵组驱动功率的15% ~30%, 因此: H=( 15%~30%) P 油液温升计算 液压系统中产生的热量H, 由系统中各个散热 面散发至空气中, 其中油箱是主要散热面。因为管道散热面积相对较小, 且与其身的压力损失产生的热量基本平衡, 故一般略去不计。当只考虑油箱散热 时, 其散热量H O 可按下式计算: H O=KAΔt 式中: K—散热系数[ W(/ m2·℃) ] , 计算时可选用推荐值: 当通风很差( 空气不循环) 时, K=8[ W/ ( m2·℃) ] ; 通风良好( 空气流速为1m/s 左右) 时, K=14~20[ W(/ m2·℃) ] ; 风扇冷却时, K=20~25[ W(/ m2·℃) ] ; 用循环水冷却时, K=110~175[ W(/ m2·℃) ] 。 A—油箱散热面积, m2;

如何计算散热器的散热功率

如何计算散热器的散热功率 Calculation Corner Estimating Parallel Plate-Fin Heat Sink Thermal Resistance Robert E. Simons, Associate Editor, IBM Corporation As noted previously in this column, the trend of increasing electronic module power is making it more and more difficult to cool electronic packages with air. As a result there are an increasing number of applications that require the use of forced convection air-cooled heat sinks to control module temperature. An example of a widely used type of heat sink is the parallel plate configuration shown in Figure 1. Figure 1. Parallel plate fin heat sink configuration. In order to select the appropriate heat sink, the thermal designer must first determine the maximum allowable heat sink thermal resistance. To do this it is necessary to know the maximum allowable module case temperature, T case , the module power dissipation, P mod , and the thermal resistance at the module-to-heat sink interface, R int . The maximum allowable temperature at the heat sink attachment surface, T base , is given by

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

散热器如何选型及计算

散热器如何选型及计算 【1】散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量.Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散热器不断地传给温度较低的室内空气,其散热过程为: 1、散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度.但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快,便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。 【注】:铝制散热器水容量最小,所以铝制散热器升温快,调节灵活,可实现人在快速升温,人离即可降温的间歇式供暖。

单管系统和双管系统散热器选型分析

单管系统和双管系统散热器的选型分析摘要:本文对在实际工程中单、双管系统和不同水温下如何选取散热器进行了计算和分析。 abstracts:this paper in the actual project the single, dual system and how to select the radiator under different water temperatures are calculated and analyzed. 关键词:散热器,散热量,单管系统,双管系统 key words:radiator, heat dissipating capacity, single system, dual system 中图分类号: tu832.2+3 文献标识码:a文章编号: 我们知道采暖设计工况一般有几种,一种是标准工况,供回水温度95/70℃,室温18℃,也是散热器测量标准散热量的工况;还有85/60℃,室温20℃和80/60℃,室温20℃;现在工程设计中一般用后面两种工况作为设计工况。但在实际运行中由于运营方出于运行成本和节省能源的考虑供水温度经常达不到设计要求,供水温度经常为70℃、60℃甚至50℃,所以我们在采暖工程设计中就要充分考虑到这些因素,系统设计要合理,对散热器在不同系统不同工况下散热量的计算要准确掌握,否则就会导致散热器数量不够或散热器无法发挥最大散热效率,并导致整个建筑室温不达标。我们知道采暖系统一般分为单管和双管系统,两种散热器选择计算方法不同,双管系统每组散热器供回水温度均相同,单管系统同一立管上每组散热器供回水温度逐渐降低。下面我们以某铜铝复合散热器

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

散热器选择及散热计算

暖气片散热片选择及散热计算 热性能相同发热元器件布置:显示PCB上安装IC(0.3W),LSI(1.5W)时温度上升的实测值。按(a)排列,IC的温度上升值是18℃-30℃,LSI温度上升值是50℃。按(b)排列,LSI温度上升值是40℃,比(a)排列还要低10℃。 因此,具有相同水平的耐热元件混合排列时,基本排列顺序是:耗电大的元件、散热性差的元件应装在上风处。 2 高发热器件加散热器、导热板 当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。将散热罩整体扣在元件面上,与每个元件接触而散热。但由于元器件装焊时高低一致性差,散热效果并不好。通常在元器件面上加柔软的热相变导热垫来改善散热效果。 2通过PCB板本身散热 目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。 1 选用导热性良好的板材 现今大量使用的环氧玻璃布类板材,其导热系数一股为0.2W/m℃。普通的电子电路由于发热量小,通常采用环氧玻璃布类基材制作,其产生的少量热量一般通过走线热设计和元器件本身散发出去。随着元件小型化、高集成化,高频化,其热密度明显加大,特别是功率器件的使用,为满足这种高散热要求后来开发出了一些新型导热性板材。如美国研制的T-Lam 板材,它是在树脂内填充了高导热性的氮化硼粉,使其导热系数提高到4W/m℃,是普通环氧玻璃布类基材的20倍。美国Rogers公司开发的复合基材RO4000系列和TMM系列,它是在改性树脂中添加了陶瓷粉,使其导热系数提高到(0.6-1)W/m℃,是普通环氧玻璃布类基材的3—5倍,也是一种不错的选择。还有就是陶瓷基板,它是由纯度为92%-96%的氧化铝(AI2O3)制成,其导热系数提高到10W/m℃,是普通环氧玻璃布类基材的50倍,它大量使用在混合IC,微波集成器件以及功率组件中,是导热性良好基板材料。还有就是导热性较好的SiC和AIN等材料,其作为PCB基材应用还在进一步研究中。 2采用合理的走线设计实现散热 由于板材中的树脂导热性差,而铜箔线路和孔是热的良导体,因此提高铜箔剩余率和增加导热孔是散热的主要手段。 评价PCB的散热能力,就需要对由导热系数不同的各种材料构成的复合材料一一PCB用绝缘基板的等效导热系数(九eq)进行计算。PCB板的等效导热系数见图6所示。 从表2我们可以看出板厚度越小,铜箔越厚,铜箔剩余率越高,层数越多,其等效导热系数越大,P C B板的导(散)热效果越好。 PCB厚度方向的导热系数比表面的导热系数小得多。为了改善厚度方向的导热性,可采用导热孔。导热孔是穿过:PCB的金属化小孔(1.0mm-0.4mm)。其效果相当于一个细铜导管沿

散热器选型

散热器选型 1) 根据各房间的面积(架空大的可按体积计算)计算出采暖房间的采暖负荷Q,计算方法可参考采暖负荷计算方法; 2) 由采暖房间的采暖负荷Q计算出散热片的散热面积F,计算公式如下: F=Q/[K.(tpj-ta)] 式中:F——散热器的计算散热面积(m2); Q——采暖房间的采暖负荷(w); K——散热片的单位面积散热量,产品样本提供(w/m2.℃); tpj——散热器内热媒平均温度(℃),tpj=(Tin+Tout)/2,T in为散热片设计进水 温度,Tout为散热片设计出水温度; ta——室内设计温度(℃),一般设计为16-20℃; 3) 由换热面积F结合散热片单片换热面积F1便可确定散热片数量;注释: (1)以上计算方法未对散热器片数(长度)、连接方式、安装形式等修正以及房间内明装不保温管道散热修正等,实际设计时应对其进行适当修正,具体修正方法参照相关资料;(2)散热器传热系数应取设计工况下的计算值,在非设计工况下运行时应对散热系数进行指数修正,国内散热器传热系数指数修正计算公式为: K=a×(dt)b暖气散热器十大品牌

其中dt为散热器内热媒平均温度与室内设计温度之差,dt=tpj-ta; a、b为系数与指数,为实验数据,由散热器技术资料提供。 国内散热器按国家标准GB/T13754设计tin(进水温度)为95℃,t out(出水温度)为70℃,ta(室内平均温度)为18℃,dt=(tin+tout) /2-ta=64.5℃,国内一些常见散热器传热系数参见表14、表15; 表14:一些铸铁散热器规格及其传热系数K值 (1)散热器要求表面喷银粉漆,明装,同侧连接上进下出;(2)标准传热系数为dt=64.5℃时的传热系数; (3)修正计算实例:如对于四柱760型单片在tin=95℃,tout =70℃时(即dt=64.5℃时)K=8.49w/m℃,单片散热量为Q=K×F×d t=8.49×0.235 ×64.5=128.69w; 在tin=80℃,tout=60℃时,dt=(80+60)÷2-18=52℃,K=2.503d t52 0.2932=2.503×=7.96w/m℃,故可计算出此时单片散热量为Q’= 7.96×0.235×52=97.27w。 表15:一些钢制散热器规格及其传热系数 (1) 对于钢制板式散热器钢板厚度为1.5mm,表面涂调合漆; (2) 对于闭式钢串片散热器为相应流量依次为50kg/h、150kg/h、250kg/h的工况参数; (3) 标准传热系数为dt=64.5℃时的传热系数;

铝制散热片选择

SSR每安培电流发热量约为1.5W,三相SSR的发热量为三相负载之和。使用10A以上SSR必须选择按照与其匹配的散热器。 选择合适的散热器,不仅与散热器的大小有关,而且和地域、环境、温度(季节)、通风条件及安装密度等因素有关。SSR的底板与散热器连接处均匀涂超导热硅脂。 散热器效果的参考标准:SSR的底板与散热器相连接的接触面温度不得超过80℃模块散热器选择用户选配散热器时,必须考虑以下因素:①模块工作电流大小,以决定所需散热面积;②使用环境,据此可以确定采取什么冷却方式——自然冷却、强迫风冷、还是水冷;③装置的外形、体积、给散热器预留空间的大小,据此可以确定采用什么形状的散热器。一般而论,大多数用户会选择铝型材散热器。为方便用户,对我公司生产的各类模块,在特性参数表中都给出了所需散热面积。此面积是在模块满负荷工作且在强迫风冷时的参考值。下面给出散热器长度的计算公式:模块所需散热面积=(散热器周长)×(散热器长度)+(截面积)×2其中,模块所需散热面积为模块特性参数表中给出的参考值,散热器周长、截面积可以在散热器厂家样本中查到,散热器长度为待求量。在使用功率器件时最重要的是如何使其产生的热量有效地散发出去,以获得高可靠性。 散热的最一般方法是把器件安装在散热器上,散热板将热量辐射到周围的空气中去,以及通过自然对流来散发热量。 一般地说,从散热器到周围的空气的热流量(P)可由下例表示。 P=hAη△T 式中 h为散热器总的传热导率(W/cm2℃),A为散热器的表面积(cm2),η为散热器效率,△T为散热器的最高温度与环境温度之差(℃)。 上式中h是由辐射及对流来决定,η是由散热器的形状来决定。 总之,散热器的表面积越大,与环境温度之差越大,散热板的热量辐射越有效。 (1)辐射散热 下述近似式表示辐射散热 hr=2.3×10-11×ε(△T/2+237)3(W/cm2℃) 式中ε是表面辐射率,随散热器的表面状况而变化。表面研磨光洁的产品ε=0.05~0.1也就是说辐射率极差。然而,散热器表面涂以涂料,经氧化可使ε=1 (2)对流散热 功率器件安装在装置的框架上时,采用对流散热比辐射散热更有效。在一个大气压的空气中,采用对流散热器的传导率近似地由下式表示。 hc=4.3×10-4×(△T/H)1/4(W/cm2℃) 式中,H是散热垂直方向的高度。散热器的间隔高定在H1/4(cm)之内。总之,散热器的垂直方向长于水平方向更为有效。 (3)散热器效率η 若用薄材料制成散热器,则离热源越远,表面温度越低,散热效果也越差。上述公式是假定温度都是均匀分布的,而实际上在散热板的边缘部位表面温度越低。 这种由散热器本身温度确定的系数就是散热器效率,它表示散热板实际传递的热量与器材安装部位最高温度视为均匀分布时的热量之比。 η主要是由所用散热器的材料大小与厚度来决定的。一般地说,热传导率高的材料如铝 (2.12W/cm2℃)及铜(3.85W/cm2℃)而钢(0.46W/cm2℃)就相当差了。 另外,散热器的厚度以厚些为好,并以跟散热器的长度平方成比例为最佳。 根据上述各点,适用于功率器件的散热器应满足下列要求: (Ⅰ)表面积尽可能大些。 (Ⅱ)散热器表面阳极氧化,发黑处理。 (Ⅲ)散热器配置应使空气易于流通,以长边取垂直方向为佳。 (Ⅳ)使用热传导率良好的铝及铜作为散热器材料。 (Ⅴ)散热器厚些为好,厚度与长度平方成比例。四.订货须知(显示点击次数) 当你订货时,敬请依照下列的说明,参照具体型号、规格目录选择,按其顺序提供详细的加工资料,以便于彼此之间的统一、明了,为此,您可获得最迅速最满意的服务。

相关文档
相关文档 最新文档