文档视界 最新最全的文档下载
当前位置:文档视界 › 2020中考数学专题复习——相似三角形

2020中考数学专题复习——相似三角形

2020中考数学专题复习——相似三角形
2020中考数学专题复习——相似三角形

中考专题复习——相似三角形

一.选择题

1. (2008年山东省潍坊市)如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )

A.

35

x + B.45

x -

C.

72

D.

212125

25

x x -

A B

C

D

E P

2。(2008年乐山市)如图(2),小明在打网球时,使球恰好能打过网,而且落点恰好在 离网6米的位置上,则球拍击球的高度h 为( ) A 、

815 B 、 1 C 、 43 D 、85

3.(2008湖南常德市)如图3,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:

(1)DE=1,(2)AB 边上的高为3,(3)△CDE ∽△CAB ,(4)△CDE 的面积与△CAB 面积之比为1:4.其中正确的有 ( ) A .1个 B .2个 C .3个 D .4个

4.(2008山东济宁)如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是 1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )D A .24m B .25m C .28m D .30m

B

图3

5.(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( )B

6.(2008 重庆)若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )

A 、2∶3

B 、4∶9

C 、2∶3

D 、3∶2

7.(2008 湖南 长沙)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大

树的影长为4.8米,则树的高度为( ) C A 、4.8米

B 、6.4米

C 、9.6米

D 、10米

8.(2008江苏南京)小刚身高1.7m ,测得他站立在阳关下的影子长为0.85m 。紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶 ( ) A

A.0.5m

B.0.55m

C.0.6m

D.2.2m

9.(2008湖北黄石)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )B

10.(2008浙江金华)如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )B A 、6米 B 、8米 C 、18米 D 、24米

11、(2008湖北襄樊)如图1,已知AD 与VC 相交于点O,AB//CD,如果∠B=40°, ∠D=30°,则∠AOC 的大小为( )B

A.60°

B.70°

C.80°

D.120°

12.(2008湘潭市) 如图,已知D 、E 分别是ABC ?的AB 、 AC 边上的点,,DE BC //且

A .

B .

C .

D .

A

B

C

A .

B .

C .

D .

1ADE DBCE S S :=:8,V 四边形 那么:AE AC 等于( ) B

A .1 : 9

B .1 : 3

C .1 : 8

D .1 : 2

13.(2008 台湾)如图G 是?ABC 的重心,直线L 过A 点与BC 平行。若直线CG 分别与AB 、A L 交于D 、E 两点,直线BG 与AC 交于F 点,则?AED 的面积:四边形ADGF 的面积=?( )

D

(A) 1:2 (B) 2:1 (C) 2:3 (D) 3:2

14.(2008 台湾) 图为?ABC 与?DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点, 且AB // DE 。若?ABC 与?DEC 的面积相等,且EF =9,AB =12,则DF =?( ) B

(A) 3 (B) 7 (C) 12 (D) 15 。

15.(2008贵州贵阳)6.如果两个相似三角形的相似比是1:2,那么它们的面积比是( )

1:2 B .1:4 C

D .2:1

16.(2008湖南株洲)如图,在ABC ?中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于( )

A .5

B .4

C .3

D .2

二、填空题

1.(2008年江苏省南通市)已知∠A =40°,则∠A 的余角等于=________度.

2.(08浙江温州)如图,点12

A A ,123

B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213A B A ∥2B ,323A B B △的面积分别为1,4B

A C D

E

A

B

C

D

E

F

第4题

B

C

D E A

3.(2008福建省泉州市)两个相似三角形对应边的比为6,则它们周长的比为________。

4.(2008年浙江省衢州市)如图,点D 、E 分别在△ABC 的边上AB 、AC 上,且

AB C AED ∠=∠,若DE=3,BC=6,AB=8,则AE 的长为_________

5.(2008年辽宁省十二市)如图4,D E ,分别是ABC △的边AB AC ,上的点,

DE BC ∥,

2AD

DB

=,则:ADE ABC S S =△△ . 6.(2008年天津市)如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC ,则图中相似三角形共有 对.

7.(2008新疆乌鲁木齐市)我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m .

8.(2008江苏盐城)如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足 条件(写出一个即可)时,ADE ACB △∽△.

9.(2008泰州市)在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 m .

10.(2008年杭州市).在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形是 和 ;并写出它的面积比 .

三、简答题

1 2 3

4

第1题图

A

G E

H F J I B

C

D

B

A

E C

D

B 图4

1.(2008年陕西省)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种..

测量方案. (1)所需的测量工具是: ; (2)请在下图中画出测量示意图;

(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .

2.(2008年江苏省南通市)如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E. (1)求证:AB ·AF =CB ·CD

(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP

的面积为ycm 2

.

①求y 关于x 的函数关系式;

②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.

D P

A

E

F C

B

3.(2008 湖南 怀化)如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .

求证:(1)CG AE =;

(2).MN CN DN AN ?=?

4.(2008 湖南 益阳)△ABC 是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG ,使

正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上. Ⅰ.证明:△BDG ≌△CEF ;

第1题图

A

B C

D E F G 图 (1)

Ⅱ. 探究:怎样在铁片上准确地画出正方形.

小聪和小明各给出了一种想法,请你在...Ⅱ.a .和Ⅱ..b .的两个问题中选择一个你喜欢的..............问题解答..... .如果两题都解,只以.........Ⅱ.a .的解答记分.....

. Ⅱa . 小聪想:要画出正方形DEFG ,只要能计算出正方形的边长就能求出BD 和CE 的长,从而确定D 点和E 点,再画正方形DEFG 就容易了.

设△ABC 的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .

Ⅱb . 小明想:不求正方形的边长也能画出正方形. 具体作法是:

①在AB 边上任取一点G ’,如图作正方形G ’D ’E ’F ’;

②连结BF ’并延长交AC 于F ;

③作FE ∥F ’E ’交BC 于E ,FG ∥F ′G ′交AB 于G ,GD ∥G ’D ’交BC 于D ,则四边形DEFG 即为所求.

你认为小明的作法正确吗?说明理由.

5.(2008 湖北 恩施) 如图11,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆

放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若?ABC 固定不动,?AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.

(3)以?ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面

直角坐标系(如图12).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并通过计算验

A

B C

D E F

G 图 (3)

G ′

F ′ E ′ D ′ A B C

D E F

G 图 (2)

证BD 2+CE 2=DE 2.

(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若

不成立,请说明理由.

6. (08浙江温州)如图,在Rt ABC △中,90A ∠=o

,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长;

(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

7.(08山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .

(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?

(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?

8.(2008湖北咸宁)如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....

△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为2︰1.(答案如右图)

9.(2008安徽)如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,

BR 分别交AC CD ,于点P Q ,.

(1)请写出图中各对相似三角形(相似比为1除外); (2)求::BP PQ QR .

10. (2008年杭州市)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与

B 图 1

A B

C D E

R P H Q

A (第8题图)

B

O

A B C D E P

O

R

端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;

(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC

和△ABG 的面积分别为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。

11.(2008佛山)如图,在直角△ABC 内,以A 为一个顶点作正方形ADEF ,使得点E 落在BC 边上.

(1) 用尺规作图,作出D 、E 、F 中的任意一点 (保留作图痕迹,不写作法和证明. 另

外两点不需要用尺规作图确定,作草图即可); (2) 若AB = 6,AC = 2,求正方形ADEF 的边长.

12.(2008广东)如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线

CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.

(2)若四边形BDFE 的面积为6,求△ABD 的面积.

13.(2008山西太原)如图,在ABC V 中,2BAC C ∠=∠。

A B

C

F B

P

E H

(1)在图中作出ABC V 的内角平分线AD 。(要求:尺规作图,保留作图痕迹,不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由。

14.(2008湖北武汉)如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC 。 求证:△ABC ∽△FDE .

证明:略

15.(2008湖南常德市)如图7,在梯形ABCD 中,若AB//DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形.

(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)? (2)请你任选一组相似三角形,并给出证明.

16. (2008年山东省临沂市)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 2

1

⑴求证:△ABF ∽△CEB;

⑵若△DEF 的面积为2,求□ABCD 的面积。

17.(2008年山东省潍坊市)如图,AC 是圆O 的直径,AC=10厘米,PA ,PB 是圆O 的切线,A ,B 为切点,过A 作AD ⊥BP ,交BP 于D 点,连结AB 、BC. (1) 求证△ABC ∽△ADB;

(2) 若切线AP 的长为12厘米,求弦AB 的长.

F

E

D

C

B

A

F

A

D

E

B

C

A B

图7

相似三角形答案

一.选择题

2.C

3.D

4.D

5.B

6.B

7.C

8.A

9. B 10.B 11.B 12.B 13.D 14.B 15.B 16.C 二.填空题

1. 50;

2. 10.5;

3. 6;

4. 4;

5. 4:9;

6. 6;

7. 4.8;

8. ∠ADE=∠ACB (或∠AED=∠ABC 或AD AE

AC AB

=)9. 100;10.

三.解答题

1. 解:(1)皮尺、标杆. (2)测量示意图如右图所示.

(3)如图,测得标杆DE a =,树和标杆的影长分别为AC b =,EF c =. DEF BAC Q △∽△,

DE FE

BA CA ∴=

. a c x b ∴=. ab x c

∴=. 2. (1)证明:∵AD =CD ,DE ⊥AC ,∴DE 垂直平分AC ∴AF =CF ,∠DFA =DFC =90°,∠DAF =∠DCF.

∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ∴△DCF ∽△ABC ∴

CD CF AB CB =,即CD AF

AB CB

=.∴AB ·AF =CB ·CD (2)解:①∵AB =15,BC =9,∠ACB =90°, ∴AC =22AB BC -=22159-=12,∴CF =AF =6

∴1

(9)2

y x =

+×6=3x +27(x >0) ②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)可知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +PA ,故只要求PB +PA 最小. 显然当P 、A 、B 三点共线时PB +PA 最小.此时DP =DE ,PB +PA =AB.

A P D

B C

O C

D

E F

B

A

由(1),∠ADF =∠FAE ,∠DFA =∠ACB =90°,地△DAF ∽△ABC. EF ∥BC ,得AE =BE =

12AB =152,EF =92

. ∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15.∴AD =10.

Rt △ADF 中,AD =10,AF =6,∴DF =8. ∴DE =DF +FE =8+92=252

. ∴当x =

25

2

时,△PBC 的周长最小,此时y =1292

3. 证明:(1)Θ四边形ABCD 和四边形DEFG 都是正方形

,,90,AD CD DE DG ADC EDG ∴==∠=∠=o

,ADE CDG ADE CDG ∴∠=∠∴△≌△,

AE CG ∴=

(2)由(1)得 ,又CND ANM DCG DAE CDG ADE ∠=∠∠=∠∴???,,

AN MN

AN DN CN MN CN DN

=?=?,即

∴?AMN ∽?CDN

4. Ⅰ.证明:∵DEFG 为正方形,

∴GD =FE ,∠GDB =∠FEC =90°

∵△ABC 是等边三角形,∴∠B =∠C =60° ∴△BDG ≌△CEF (AAS )

Ⅱa .解法一:设正方形的边长为x ,作△ABC 的高AH ,

求得3=AH

由△AGF ∽△ABC 得:

3

32x

x -= 解之得:3

232+=

x (或634-=x )

解法二:设正方形的边长为x ,则2

2x

BD -=

在Rt △BDG 中,tan ∠B =

BD

GD

, ∴

32

2=-x x

A B C

D

E F

G

解图 (2)

H

解之得:3

232+=

x (或634-=x )

解法三:设正方形的边长为x ,

则x GB x

BD -=-=

2,2

2 由勾股定理得:2

22)2

2()2(x x x -+=- 解之得:634-=x Ⅱb .解: 正确

由已知可知,四边形GDEF 为矩形

∵FE ∥F ’E ’ ,

∴B

F FB

E F FE '='', 同理B

F FB

G F FG '=

'', ∴

G F FG

E F FE '

'=

'' 又∵F ’E ’=F ’G ’,

∴FE =FG

因此,矩形GDEF 为正方形

5. 解:(1)?ABE ∽?DAE , ?ABE ∽?DCA ∵∠BAE =∠BAD +45°,∠CDA =∠BAD +45° ∴∠BAE =∠CDA 又∠B =∠C =45° ∴?ABE ∽?DCA (2)∵?ABE ∽?DCA

CD

BA

CA BE =

由依题意可知CA =BA =2

n

m 22

=

∴m=

n

2 自变量n 的取值范围为1

n

2 ∴m=n=2

A

B

C

D E

F

G 解图 (3)

G ’

F ’

E ’ D ’

∵OB =OC =2

1

BC =1

∴OE =OD =2-1 ∴D (1-2, 0)

∴BD =OB -OD =1-(2-1)=2-2=CE , DE =BC -2BD =2-2(2

-2)=22-2

∵BD 2+CE 2=2 BD 2=2(2-2)2=12-82, DE 2=(22-2)2= 12-82 ∴BD 2+CE 2=DE 2

(4)成立

证明:如图,将?ACE 绕点A 顺时针旋转90°至?ABH 的位置,则CE =HB ,AE =AH , ∠ABH =∠C =45°,旋转角∠EAH =90°. 连接HD ,在?EAD 和?HAD 中

∵AE =AH , ∠HAD =∠EAH -∠FAG =45°=∠EAD , AD =AD . ∴?EAD ≌?HAD ∴DH =DE

又∠HBD =∠ABH +∠ABD =90° ∴BD 2+HB 2=DH 2 即BD 2

+CE 2

=DE 2

6. 解:(1)Q Rt A ∠=∠,6AB =,8AC =,10BC ∴=.

Q 点D 为AB 中点,1

32

BD AB ∴=

=. 90DHB A ∠=∠=o Q ,B B ∠=∠.

BHD BAC ∴△∽△, DH BD AC BC ∴=,312

8105

BD DH AC BC ∴==?=g .

(2)QR AB Q ∥,90QRC A ∴∠=∠=o

C C ∠=∠Q ,RQC ABC ∴

△∽△, RQ QC AB BC ∴=,10610

y x

-∴=, 即y 关于x 的函数关系式为:3

65

y x =-+. (3)存在,分三种情况:

①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.

A B

C

D E

R P H Q

M

2 1 Q

1290∠+∠=o Q ,290C ∠+∠=o ,

1C ∴∠=∠.

84

cos 1cos 105

C ∴∠==

=,45QM QP ∴

=, 1364251255

x ??

-+ ??

?∴=,185x ∴=. ②当PQ RQ =时,312655

x -

+=, 6x ∴=.

③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,

11

224CR CE AC ∴===.

tan QR BA

C CR CA ==

Q , 3

6

6

528

x -+∴=,152x ∴=.

综上所述,当x 为185或6或15

2

时,PQR △为等腰三角形.

7.

解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .

∴ △AMN ∽ △ABC .

∴ AM AN AB AC

=,即43x AN

=.

∴ AN =4

3

x . ……………2分

∴ S =2133

248

MNP AMN S S x x x ??==

??=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =2

1

MN . 在Rt △ABC 中,BC

. 由(1)知 △AMN ∽ △ABC .

∴ AM MN AB BC

=,即45x MN

=.

∴ 5

4

MN x =

, A B

C

D E R P

H

Q

B

D 图 2

Q

∴ 5

8

OD x =

. …………………5分 过M 点作MQ ⊥BC 于Q ,则5

8

MQ OD x ==.

在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC

=.

∴ 5

5258324

x

BM x ?=

=,25424AB BM MA x x =+=+=. ∴ x =

49

96

. ∴ 当x =49

96

时,⊙O 与直线B C 相切.…………………………………7分

(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.

∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC .

∴ △AMO ∽ △ABP .

∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:

① 当0<x ≤2时,2Δ83

x S y PMN ==.

∴ 当x =2时,233

2.82

y =

?=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .

∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,

∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .

∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .

∴ 2

PEF ABC

S PF AB S ????

= ?

??. ∴ ()2

322

PEF S x ?=

-. ……………………………………………… 9分 MNP PEF y S S ??=-=()2

22339266828

x x x x --=-+-.……………………10分

当2<x <4时,29668y x x =-+-2

98283x ??

=--+ ???

P

图 4

B

P 图 3

∴ 当8

3x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当8

3

x =时,y 值最大,最大值是2. …………………………12分

8.

9. [解] (1)BCP BER △∽△,PCQ PAB △∽△,PCQ RDQ △∽△,

PAB RDQ △∽△.

(2)

Q 四边形ABCD 和四边形ACED 都是平行四边形,BC AD CE ∴==,AC DE ∥,PB PR ∴=,

1

2

PC RE =.又PC DR Q ∥,PCQ RDQ ∴

△∽△. Q 点R 是DE 中点,DR RE ∴=.1

2

PQ PC PC QR DR RE ∴

===.2QR PQ ∴=. 又3BP PR PQ QR PQ ==+=Q ,::3:1:2BP PQ QR ∴=. 10. (1)∵△ABC 为等腰三角形 ∴AC=BC ∠CAB=∠CBA

又∵CH 为底边上的高,P 为高线上的点 ∴PA=PB

∴∠PAB=∠PBA

∵∠CAE=∠CAB-∠PAB ∠CBF=∠CBA-∠PBA ∴∠CAE=∠CBF (2)∵AC=BC

∠CAE=∠CBF ∠ACE=∠BCF

∴△ACE ~△BCF(AAS) ∴AE=BF (3)若存在点P 能使

S △ABC =S △ABG ,因为AE=BF ,所以△ABG 也是一个等腰三角形,这两

个三角形面积相等,底边也相同,所以高也相等,进而可以说明△ABC ~△ABG ,则对应边AC=AE,∠ACE=∠AEC,所以0°≤∠C <90°

11. 解:⑴ 作图:作∠BAC 的平分线交线段BC 于E ; …………………………………………………4分

(痕迹清晰、准确,本步骤给满分4分,否则酌情扣1至4分;另外两点及边作的是否准确,不扣分)

⑵ 如图,∵ 四边形ADEF 是正方形,

∴ EF ∥AB ,AD = DE = EF = FA. ……5分 ∴ △CFE ∽△CAB .

A

B

C 第11题图

D

E F

CA

CF

BA EF =

.…………………………………6分 ∵ AC = 2 ,AB = 6,

设AD = DE = EF = FA = x ,

662x

x -=

. ………………………………………………………………………………………………………7分 ∴ x =23.即正方形ADEF 的边长为2

3

. ………………………………………………………………8分

(本题可以先作图后计算,也可以先计算后作图;未求出AD 或AF 的值用作中垂线的方法找

到D 点或F 点,给2分) 12. (1)证明:

CF ACB ∠Q 平分,

∴ 12∠=∠. 又∵ DC AC =,

∴ CF 是△ACD 的中线, ∴ 点F 是AD 的中点. ∵ 点E 是AB 的中点, ∴ EF ∥BD, 即 EF ∥BC.

(2)解:由(1)知,EF ∥BD , ∴ △AEF ∽△ABD , ∴

2

()AEF ABD S AE S AB

??=. 又∵ 1

2

AE AB =

, 6AEF ABD ABD BDFE S S S S ???=-=-四边形, ∴

2

61()2

ABD ABD S S ??-= ,

∴ 8ABD S ?=,

∴ ABD ?的面积为8.

13. 提示:(1)如图,AD 即为所求。 (2)ABD CBA V :V ,理由如下:

AD 平分,2,BAC BAC C ∠∠=∠则BAD BCA ∠=∠,又B B ∠=∠,故ABD CBA V :V 。 14.

15. 解:(1)任选两个三角形的所有可能情况如下六种情况:

① ② ,①③, ①④, ②③, ②④, ③④……………2分 其中有两组(①③, ②④)是相似的.

∴选取到的二个三角形是相似三角形的概率是P=3

1

=

…………4分 (2)证明:选择①、③证明.

在△AOB 与△COD 中, ∵AB ∥CD,

∴∠CDB =∠DBA , ∠DCA =∠CAB,

∴△AOB ∽△COD ……………………………………………8分

选择②、④证明.

∵四边形ABCD 是等腰梯形, ∴∠DAB =∠CAB, ∴在△DAB 与△CBA 中有

AD=BC, ∠DAB =∠CAB,AB=AB,

∴△DAB ≌ △CBA,…………………………………………6分 ∴∠ADO =∠BCO.

又∠DOA =∠COB, ∴△DOA ∽△COB ………………………8分 16. 解:⑴证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD , ∴∠ABF =∠CEB ,

∴△ABF ∽△CEB. ………………………………………2分 ⑵∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥=

CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF ,……………3分 ∵CD DE 2

1

=

, ∴912

=??? ??=??EC DE S S CEB DEF ,4

12

=??? ??=??AB DE S S ABF DEF ,…………4分 ∵2=?DEF S ,

∴18=?CEB S ,8=?ABF S ,……………………………………6分 ∴16=-=??DEF BCE BCDF S S S 四边形,

∴24816=+=+=?ABF BCDF ABCD S S S 四边形四边形.…………7分 17. (1)证明:∵AC 是圆O 的直径,∴∠ABC=90 o

又∵AD ⊥BP ,∴∠ADB=90 o

,∴∠ABC=∠ADB , 又∵PB 是圆的切线,∴∠ABD=∠ACB , 在△ABC 和△ADB 中:

?

?

?∠=∠∠=∠ACB ABD ADB

ABC ,∴△ABC ∽△ADB; (2)连结OP,在Rt △AOP 中,AP=12厘米,OA=5厘米,根据勾股定理求得OP=13厘米,又由已知可证得△ABC ∽△PAO, ∴

OP AP AC AB =,得131210=AB ,解得AB=

13

120

厘米.

相似三角形全讲义(教师版)

相似三角形全讲义(教师版)

————————————————————————————————作者:————————————————————————————————日期:

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

初中数学相似三角形练习题附参考答案

经典练习题相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD 的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC.

求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=_________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论.

8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的 (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似若存在,求t的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

相似三角形典型模型及例题

:相似三角形判定的基本模型 (三)母子型 (四)一线三等角型: 1:相似三角形模型 (一)A字 型、 A字型(斜A字型) C (二)8字 型、 8字型 (平 行) (蝴蝶 型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是"一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: :相似三角形判定的变化模型

/ B E C 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCDK AD// BC对角线AC BD交于点O, BE/ CD交CA延长线于E. 例3 :已知:如图,等腰△ ABC中, AB= AC ADL BC于D, CG/ AB BG分别交AD AC于E、F. 求证:BE2 EF EG . 1、如图,已知AD^^ ABC的角平分线,EF为AD的垂直平分线.求证:FD2 FB FC . DEB DAC . ABC . A

2、已知:AD 是Rt △ ABC 中/A 的平分线,/ C=90 , EF 是AD 的垂直平分线交 AD 于M, EF 、 BC 的延长线 交于一点 M 求证:⑴△ AME^A NMD; (2)ND 2 =NC- NB 5已知:如图,在 Rt △ ABC 中,/ C=90°, B(=2, AC=4, P 是斜边 AB 上的一个动点,PD 丄AB 交边 AC 于 点D (点D 与点A C 都不重合),E 是射线DC 上一点,且/ EP[=Z A.设A 、P 两点的距离为 x , △ BEP 的 面积为y . (1)求证:AE=2PE (2) 求y 关于x 的函数解析式,并写出它的定义域; (3)当厶BEP-与^ABC 相似时,求△ BEP 的面积. 3、已知:如图,在△ ABC 中,/ ACB=90 , 求 证:EB- DF=AE DB CDL AB 于D, E 是AC 上一点,CF 丄BE 于F 。 4.在 ABC 中,AB=AC 高 AD 与 BE 交于 H, EF BC ,垂足为F ,延长AD 到G,使DG=EF M 是AH 的中点。 证:GBM 90 G

初三数学相似三角形练习题集

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 初三数学相似三角形练习题集 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

相似三角形练习题 1.如图所示,给出下列条件: ①;②;③;④. 其中单独能够判定的个数为() A.1 B.2 C.3 D.4 2.如图,已知,那么下列结论正确的是() A.B.C.D. 3. 如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为 1:4.其中正确的有:() A.0个B.1个C.2个D.3个 4.若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为() A.1∶4B.1∶2C.2∶1D.1∶ 5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值() D B C A N M O

A.只有1个 B.可以有2个 C.有2个以上但有限 D.有无数个 6.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD 的中点,连接OM、ON、MN,则下列叙述正确的是() A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 7.如图,在方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是() A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 8.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为() A.12.36cm B.13.6cm C.32.36cm D.7.64cm 9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米, AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 () A.3米B.0.3米C.0.03米D.0.2米 10、在比例尺为1︰10000的地图上,一块面积为2cm2的区域表示的实际面积是()

相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

相似三角形”A“字模型含详细答案经典

教师辅导教案 授课日期:年月日授课课时:课时

1 ?平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2 ?如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似?可简单说成:两角对应相 等,两个三角形相似. 3 ?如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成 比例,两个三角形相似. 5. 如 果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 6 ?直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明) 7 ?如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的 腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型 A字形 图①A字型,DE//BC ;结论: AD AE AB AC DE BC , 【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮 他 调整过来吗证明步骤正确的顺序是( ) 已知:如图,在△ ABC中,点D, E, 求证:△ ADE s^ DBF. 证明:①又??? DF// AC, ②??? DE/ BC, ③???/ A=Z BDF, ④???/ ADE=Z B, F分另【J在边AB, AC, BC上,且DE / BC, DF/ AC, ? △ADE s^ DBF. A.③②④① B.②④①③ C.③①④② D.②③④① 【解答】证明:②I DE / BC, ④ADE=Z B, ①又??? DF/ AC, ③A=Z BDF, ? △ ADE s^ DBF.故选:B. 国① 【练1】如图,在△ ABC中,/ ACB=90 , BC=16cm, AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8 秒时,△ CPQ 与厶ABC相 似. 【解答】解:CP和CB是对应边时,△ CPC SA CBA 所以, 16-2t t 16_12, 即 解得t=4.8; CP和CA是对应边时,△ CPC S^ CAB, 厂1口厂1门

相似三角形练习题精选

# 相似三角形练习题精选 相似三角形 例题: 1、(2007杭州)如图,用放大镜将图形放大,应该属于( ) A.相似 B.平移 C.对称 D.旋转 # 2、(2008天津)如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC ,则图中相似三角形共有 对. 跟踪练习: 1、(2007韶关)如图1,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有( ) 对 对 C. 2对 对 2、(2007上海)如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: . 相似三角形的判定 例题: 1.下列各组图形有可能不相似的是( ). A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形 ~ 2、(2007永州)如图,添上条件:_______,则△ABC ∽△ADE 。 3. (2009新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( ) 4.(2010临沂) 如图,12∠=∠,添加一个条件使 得ADE ?∽ACB ? . 跟踪练习: 1.(2010陕西西安)如图,在ABC ?中,D 是AB 边上一点,连接CD ,要使ADC ?与 ~ ABC ?相似,应添加的条件是 。 (只需写出一个条件即可) 2、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( ) 2 1E D C B A A. 图1 D C B A A B D \ F

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

九上学生相似三角形讲义全

第1讲相似图形与成比例线段 【学习目标】 1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。 2、了解成比例线段的概念,会确定线段的比。 【学习重点】相似图形的概念与成比例线段的概念。 【学习难点】成比例线段概念。 【学习过程】 知识点一:比例线段 定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两 条线段的比,如果a c b d ,那么就说这四条线段a、b、c、d叫做成比例线 段,简称比例线段。 例:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例? 解: 练习一: 1、如图所示:(1)求线段比AB BC、 CD DE、 AC BE、 AC CD (2)试指出图中成比例线段 2、线段a、b、c、d的长度分别是30mm、2cm、0.8cm、12mm判断这四条线段是否成比例? 3、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例? 4、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的

比是___________ 5、已知线段a= 12、 b =2+c=2若a c b x =,则x =_________若()0b y y y c =>, 则y =__________ 6、下列四组线段中,不成比例的是 ( ) A a=3 b=6 c=2 d=4 C a=4 b=6 c=5 d=10 知识点二:比例线段的性质 比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果 a c b d =,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形 b d a c =、a b c d =、c d a b = (2) 合比性质:如果 a c b d =,那么a b c d b d ±±= (3) 等比性质:如果 a c e m b d f n ====()0b d f n ++++≠,那么 a c e m a b d f n b ++++=+++ + 例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -= 练习二: 1、已知35a b =,求a b a b +- 2、若 234a b c ==,则23a b c a ++=_________ 3、已知mx ny =,则下列各式中不正确的是( ) A m x n y = B m n y x = C y m x n = D x y n m = 4、已知570x y -=,则 x y =_______

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

初中数学相似三角形专项练习题

初中数学相似三角形专项练习题 1 / 3 第18.1课时 相似三角形 一.填空题(基础) 1. 如图,ABC ?∽MNP ?,则它们的对应角分别是A ∠与∠___M__,∠B 与∠___N__, C ∠与∠___P__;对应边成比例的是________=_________=_________;若AB =2.7cm,cm MN 9.0=,cm MP 1=,则相似比=_________,=BC _________cm . B A G F E D C B A N P M (第2题) (第1题) 2. 如图,四边形ABCD 中,AD ∥EF ∥BC ,AC 交EF 于G .图中能相似的三角形共有 _______对,它们分别是_________、___________,小明通过这两对相似三角形推出了比例 式: AB BE AD FG =,对不对,为什么? 二.填空题 3. 如图,ABC ?和DEF ?的三边长分别为7、2、6和12、4、14,且两三角形相似,则A ∠与∠_____,∠B 与∠_____,C ∠与∠_____, ) ()()(AC DF AB ==。 (第5题) (第4题) (第3题) C G F E D C B A F E B A E F D C B A 4. 如图,ABC ?∽AEF ?,写出三对对应角:_________=_________,_________=________, ________=_________,并且 ) () ()()()(==AF ,若ABC ?与AEF ?的相似比是3:2,cm EF 8=,则________=BC 。 5. 如图,ABC ?中,点D 在BC 上,EF ∥BC ,分别交AB 、AC 、AD 于点E 、F 、 G , 图中共有______对相似三角形,它们是______________________________________.

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

相似三角形性质及其应用练习题

相似三角形性质及其应用 1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------, 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°, CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------, AD=---------- ,BD=-----------。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( ) 2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2,则这个地区的实际周长-------- m ,面积是----------m 2 3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个 三角形的周长为----------,面积是------------- 4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm , 则较大的三角形的周长是----------,若它们的面积之和为260cm 2,则较小的三角形的面积为 ---------- cm 2 5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练 1.两个三角形周长之比为95,则面积比为( ) (A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定 2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( ) (A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2 =AD ?AB (D )AB 2 =AC 2 +BC 2 4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA 的比值 是( ) (A )2 (B )3 (C )4 (D )5 5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

相似三角形几种基本模型

相似三角形基本模型 经典模型 “平行旋转型” 图形梳理: AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ F'C B B C AEF 旋转到 AE‘F’ A B C AEF 旋转到AE‘F’ 特殊情况:B 、'E 、'F 共线

AEF 旋转到AE‘F’C B A A B C E F E' F'AEF 旋转到AE‘F’ C ,'E ,'F 共线 AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ C B A 母子型 已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 相似三角形常见的图形 1、下面我们来看一看相似三角形的几种基本图形: (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图) (2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) A E A D E 4 1 B (3) D B (2) D

(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”) (4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。 (5)母子型 已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD. 2、几种基本图形的具体应用: (1)若DE∥BC(A型和X型)则△ADE∽△ABC (2)射影定理若CD为Rt△ABC斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB ; (3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB. (4)当AD AE AC 或AD·AB=AC·AE时,△ ADE∽△ACB. B E A C D 1 2 B B C(D )

《相似三角形》最全讲义(完整版).docx

相似三角形基本知识 知识点一:放缩与相似形 1?图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位?用、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括?立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小 得 到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形. 3?相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a. b的长度分別是m、n,那么就说这两条线段 a _ m 的比是a: b = m: n (或〃n) 2、比的前项,比的后项:两条线段的比a: b屮。a叫做比的前项,b叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 兰_ £ 3、比例:两个比相等的式子叫做比例,如芦° a _ £ 4、比例外项:在比例“ d(或a: b=c: d)中a、d叫做比例外项。 a _ c 5、比例内项:在比例〃〃(或a: b = c: d)中b、c叫做比例内项。 a _ c 6、第四比例项:在比例〃d(或a: b=c: d)中,d叫a、b、c的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为U(或a:b=b:c时,我们把b 叫做a和d的比例中项。 &比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

经典相似三角形练习题附参考答案(供参考)

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN. 6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比. 11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q. (1)求四边形AQMP的周长; (2)写出图中的两对相似三角形(不需证明); (3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论. 12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10. (1)求梯形ABCD的面积S; (2)动点P从点B出发,以1cm/s的速度,沿B?A?D?C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C?D?A方向,向点A运动,过点Q作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问: ①当点P在B?A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由; ②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由; ③在运动过程中,是否存在这样的t,使得以P、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由. 14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?

相关文档
相关文档 最新文档