文档视界 最新最全的文档下载
当前位置:文档视界 › 生物化学原理- 糖酵解

生物化学原理- 糖酵解

生物化学原理- 糖酵解
生物化学原理- 糖酵解

第十五章糖酵解

本章主线:

糖酵解

丙酮酸代谢命运

(乙醇发酵乳酸发酵)

糖酵解调控

巴斯德效应

3种单糖代谢

(果糖、半乳糖、甘露糖)

一、糖酵解

糖酵解概述:

●位置:细胞质

●生物种类:动物、植物以及微生物共有

●作用:葡萄糖分解产生能量

●总反应:葡萄糖+2ADP+2 NAD++2Pi →2 丙酮酸+2ATP+2NADH+2H++2H2O

具体过程:

第一阶段(投入A TP阶段):

1分子葡萄糖转换为2分子甘油醛-3-磷酸;投入2分子ATP。

○1

反应式:葡萄糖+ ATP→葡萄糖-6-磷酸+ADP

酶:己糖激酶(需Mg2+参与)

是否可逆:否

说明:

●保糖机制——磷酸化的葡萄糖被限制在细胞内,磷酸化的糖带有负电荷的磷酰基,可防

止糖分子再次通过质膜。(应用:解释输液时不直接输葡萄糖-6-磷酸的原因)

●己糖激酶以六碳糖为底物,专一性不强。

●同功酶——葡萄糖激酶,是诱导酶。葡萄糖浓度高时才起作用。

○2

反应式:葡萄糖-6-磷酸→果糖-6-磷酸

酶:葡萄糖-6-磷酸异构酶

是否可逆:是

说明:

●是一个醛糖-酮糖转换的同分异构化反应(开链?异构?环化)

●葡萄糖-6-磷酸异构酶表现出绝对的立体专一性

●产物为α-D-呋喃果糖-6-磷酸

○3

反应式:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP

酶:磷酸果糖激酶-I

是否可逆:否

说明:

●磷酸果糖激酶-I的底物是β-D-果糖-6-磷酸与其α异头物在水溶液中处于非酶催化的快

速平衡中。

●是大多数细胞糖酵解中的主要调节步骤。

○4

反应式:果糖-1,6-二磷酸→磷酸二羟丙酮+甘油醛-3-磷酸

酶:醛缩酶

是否可逆:是

说明:

●平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷酸不断地转化成丙酮酸,大大

地降低了甘油醛-3-磷酸的浓度,从而驱动反应向裂解方向进行。

●注意断键位置:C3-C4

○5

反应式:磷酸二羟丙酮→甘油醛-3-磷酸

酶:丙糖磷酸异构酶

是否可逆:是

说明:

●葡萄糖分子中的C-4和C-3 →甘油醛-3-磷酸的C-1;

葡萄糖分子中的C-5和C-2 →甘油醛-3-磷酸的C-2;

葡萄糖分子中的C-6和C-1 →甘油醛-3-磷酸的C-3。

●缺少丙糖磷酸异构酶,将只有一半丙糖磷酸酵解,磷酸二羟丙酮堆积。

第二阶段(产出A TP阶段):此阶段各物质的量均加倍

2分子甘油醛-3-磷酸转换为2分子丙酮酸;产出4分子ATP

○6

反应式:甘油醛-3-磷酸+NAD++Pi→1,3-二磷酸甘油酸+NADH+H+

酶:甘油醛-3-磷酸脱氢酶

是否可逆:是

说明:

●酵解中唯一一步氧化反应。是一步吸能反应,与第7步反应耦联有利于反应进行。

●NAD+是甘油醛-3-磷酸脱氢酶的辅酶

●1,3-二磷酸甘油酸中形成一个高能酸酐键。

●无机砷酸(AsO43-)可取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底物,生成一个不稳

定的1-砷酸-3-磷酸甘油酸,自动水解生成3-磷酸甘油酸和无机砷酸。1,3-二磷酸甘油酸产ATP的反应被破坏,所以砷酸参与的反应是潜在的致死反应。

○7

反应式:1,3-二磷酸甘油酸+ADP→3-磷酸甘油酸+ATP

酶:磷酸甘油酸激酶

是否可逆:是

说明:

●底物水平磷酸化作用:将磷酰基从一个高能化合物转移给ADP形成A TP的过程。底物

水平磷酸化不需要氧。

●红细胞中糖酵解的一个重要功能:1,3-二磷酸甘油酸除了转变为3-磷酸甘油酸外,还可

在二磷酸甘油酸变位酶催化下转换为2,3-二磷酸甘油酸(2,3-BPG)。2,3-BPG是血红蛋白氧合作用的别构抑制剂。2,3-BPG又可在2,3-BPG磷酸酶的催化下水解生成3-磷酸甘油酸,重新进入糖酵解途径,转化为丙酮酸。(与血红蛋白氧饱和曲线联系)

○8

反应式:3-磷酸甘油酸→2-磷酸甘油酸

酶:磷酸甘油酸变位酶

是否可逆:是

说明:变位酶催化分子内的一个功能基团从一个位置转移到另一个位置的反应。

○9

反应式:2-磷酸甘油酸→磷酸烯醇式丙酮酸+H2O

酶:烯醇化酶(需要Mg2+)

是否可逆:是

说明:

●脱水使2-磷酸甘油酸分子内能量重新排布,导致磷酸基团的标准自由能增加

○10

反应式:磷酸烯醇式丙酮酸+ADP→丙酮酸+ATP

酶:丙酮酸激酶(需要Mg2+)

是否可逆:否

说明:

●糖酵解中第二个底物水平磷酸化反应

●丙酮酸是糖酵解中第一个不再被磷酸化的化合物

总结:第1,3,10步反应不可逆

第7,10步反应为底物水平磷酸化反应

第6步反应是唯一一步氧化反应

净生成二分子ATP,还使得二分子的NAD+还原为NADH

二、丙酮酸代谢命运

作用:NADH必须重新氧化为NAD+,以保证糖酵解的产能反应继续进行。

乙醇发酵

条件:无氧

场所:酵母细胞

反应过程:1. 丙酮酸→乙醛+CO2 (丙酮酸脱羧酶)

2.乙醛+NADH+H+→乙醇+NAD+(醇脱氢酶)

总反应:葡萄糖+2Pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H2O

说明:在酿酒,制造面包时的应用——产生CO2

乳酸发酵(Cori循环)

条件:无氧

场所:绝大多数生物(缺少丙酮酸脱羧酶)

反应过程:丙酮酸+NADH+H+?乳酸+NAD+(乳酸脱氢酶)

总反应:葡萄糖+2Pi+2ADP+2H+→2乳酸+2A TP+2H2O

说明:与激烈运动时产能,肌肉酸痛及消除联系。

Cori循环:涉及肌肉、肝脏和血液。肌肉组织中的葡萄糖转化为乳酸,堆积的乳酸扩散到血液中,转运到肝脏,氧化为丙酮酸经糖异生生成葡萄糖,经血液转运会肌肉组织。

三、糖酵解的调控

3个主要调控部位,分别是己糖激梅、磷酸果糖激酶-I、丙酮酸激酶催化的反应。

⑴己糖激酶

己糖激酶同功酶中除葡萄糖激酶以外,都受到葡萄糖-6-磷酸的抑制。

葡萄糖-6-磷酸有几种命运,其中之一是进行糖酵解产生能量,当能量过剩时,葡萄糖-6-磷酸可作为糖原合成的前体。

当葡萄糖-6-磷酸积累和不再需要生产能量或进行糖原贮存时,即葡萄糖-6-磷酸不能快速代谢时,葡萄糖-6-磷酸抑制己糖激酶。

⑵磷酸果糖激酶-1(PFK-1)

是个别构调节酶,哺乳动物酶的相对分子量很大。

抑制剂:ATP和柠檬酸

ATP既是PFK-1的底物,又是该酶的别构抑制剂,可使酶对底物果糖-6-磷酸的亲和性降低。

柠檬酸水平的升高,表明有充足底物进入了柠檬酸循环。它对PFK-1的调节是一种反馈抑制,调节丙酮酸向柠檬酸循环的供给。

激活剂:AMP、果糖-2,6-二磷酸

果糖-2,6-二磷酸是在磷酸果糖激酶-2(PFK-2)催化下由果糖-6-磷酸磷酸化生成。哺乳动物中同一个PFK-2经被cAMP活化的蛋白激酶(cAMP-PK)磷酸

化后变成果糖-2,6-二磷酸酶(FBPsae-2)可催化果糖-2,6-二磷酸的脱磷酸化反应,

重新生成果糖-6-磷酸。PFK-2的活性受到胰高血糖素激素的调控

⑶丙酮酸激酶

在哺乳动物组织中存在着四种丙酮酸激酶同功酶,这些同功酶受到果糖-1,6-二磷酸激活和ATP的抑制。

由于果糖-1,6-二磷酸既是丙酮酸激酶的别构激活剂,又是PFK-1催化反应的产物,所以PFK-1的激活自然会引起丙酮酸激酶的激活,这种类型的调控方式称为前馈激活。

四、巴斯德效应

定义:氧存在下糖酵解速度降低的现象。因为在有氧条件下只需消耗少量的葡萄糖就可产生所需要的ATP量。

五、三种单糖代谢

⑴果糖→甘油醛-3-磷酸

在肌肉中,果糖在有ATP存在下经己糖激酶催化生成果糖-6-磷酸,进入糖酵解途径。

在肝脏中,果糖激酶催化果糖磷酸化生成果糖-1-磷酸,反应需要ATP。果糖-1-磷酸醛缩酶催化果糖-1-磷酸裂解生成甘油醛和磷酸二羟丙酮,后者经丙糖磷酸异构酶催化转为甘油醛-3-磷酸。

甘油醛则是在丙糖激酶的作用下,消耗一分子ATP后生成甘油醛-3-磷酸。

果糖不耐受:一种遗传病,吃果糖造成果糖-1-磷酸堆积。缺乏果糖-1-磷酸醛缩酶,常表现为自我限制,果糖不耐受的人很快发展为对任何甜食的厌恶感。

⑵半乳糖→葡萄糖-1-磷酸

乳糖酶催化乳糖水解为葡萄糖和半乳糖,半乳糖在有ATP存在下经半乳糖激酶催化下生成半乳糖-1-磷酸。半乳糖-1-磷酸经半乳糖-1-磷酸尿苷酰转移酶催化与UDP-葡萄糖交换生成葡萄糖-1-磷酸和UDP-半乳糖。葡萄糖-1-磷酸经磷酸葡萄糖变位酶催化生成葡萄糖-6-磷酸,进入糖酵解途径。DP-半乳糖经UDP-葡萄糖-4′差向异构酶催化重新生成UDP-葡萄糖。喂食奶制品的婴幼儿依赖于半乳糖代谢途径。

患有半乳糖血症(不能正常代谢半乳糖)的婴幼儿都是缺乏半乳糖-1-磷酸尿苷酰转移酶。

缺少这种酶会造成细胞内半乳糖-1-磷酸的堆积,有可能损害肝的功能,这可通过使皮肤发黄的黄疸的出现来确认。

另外还可能损伤中枢神经系统。在婴儿出生时,通过检测脐带红细胞中的半乳糖-1-磷酸尿苷酰转移酶可以确定是否患有半乳糖血症。如果在饮食中去掉乳糖可以避免这种遗传病带来的严重后果。

⑶甘露糖→果糖-6-磷酸

甘露糖在己糖激酶催化下,转化为甘露糖-6-磷酸,然后在甘露糖异构酶催化下转化为果糖-6-磷酸。

课堂提问:

1.分解代谢产生的大量能量主要以什么形式保存的?ATP NADH

2.糖酵解途径发生在细胞的什么部位?细胞质

3.细胞内的葡萄糖磷酸化有什么意义?保糖机制

4.输液时能否用葡萄糖-6-磷酸代替葡萄糖?不能,无法跨膜进入细胞

5.糖酵解中己糖激酶催化的反应。

6.葡萄糖-6-磷酸异构酶催化的反应。

7.磷酸果糖激酶I催化的反应。

8.醛缩酶催化的反应。

9.丙糖磷酸异构酶催化的反应。

10.甘油醛-3-磷酸脱氢酶催化的反应。

11.酵解中哪个分子裂解生成两个磷酸三碳糖?果糖-1,6-二磷酸

12.什么叫底物水平磷酸化作用?将磷酰基从一个高能化合物转移给ADP

形成ATP的过程。

生物化学王镜岩(第三版)课后习题解答

第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Glc和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。 糖蛋白是一类复合糖或一类缀合蛋白质。许多内在膜蛋白质和分泌蛋白质都是糖蛋白。糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。一个寡糖链中单糖种类、连接位置、异

王镜岩(第三版)生物化学下册课后习题答案

第19章代谢总论 ⒈怎样理解新陈代谢? 答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。它是由多酶体系协同作用的化学反应网络。新陈代谢包括分解代谢和合成代谢两个方面。新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。②将外界引入的营养物质转变为自身需要的结构元件。③将结构元件装配成自身的大分子。④形成或分解生物体特殊功能所需的生物分子。⑤提供机体生命活动所需的一切能量。 ⒉能量代谢在新陈代谢中占何等地位? 答:生物体的一切生命活动都需要能量。生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。如果没有能量来源生命活动也就无法进行.生命也就停止。 ⒊在能量储存和传递中,哪些物质起着重要作用? 答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。 ⒋新陈代谢有哪些调节机制?代谢调节有何生物意义? 答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。 分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。酶的数量不只受到合成速率的调节,也受到降解速率的调节。合成速率和降解速率都备有一系列的调节机制。在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。 细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。 多细胞生物还受到在整体水平上的调节。这主要包括激素的调节和神经的调节。高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。人类还受到高级神经活动的调节。 除上述各方面的调节作用外,还有来自基因表达的调节作用。 代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。 ⒌从“新陈代谢总论”中建立哪些基本概念? 答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。 ⒍概述代谢中的有机反应机制。 答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。

第十一章 糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第十一章糖类代谢 第一节概述 一、特点 糖代谢可分为分解与合成两方面,前者包括酵解与三羧酸循环,后者包括糖的异生、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。 糖代谢受神经、激素和酶的调节。同一生物体内的不同组织,其代谢情况有很大差异。脑组织始终以同一速度分解糖,心肌和骨骼肌在正常情况下降解速度较低,但当心肌缺氧和骨骼肌痉挛时可达到很高的速度。葡萄糖的合成主要在肝脏进行。不同组织的糖代谢情况反映了它们的不同功能。 二、糖的消化和吸收 (一)消化 淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,支链淀粉由上千个葡萄糖构成,每24-30个残基中有一个分支。糖类只有消化成单糖以后才能被吸收。 主要的酶有以下几种: 1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机水解链内α1,4糖苷键,产生α-构型的还原末端。产物主要是糊精及少量麦芽糖、葡萄糖。最适底物是含5个葡萄糖的寡糖。 2.β-淀粉酶在豆、麦种子中含量较多。是外切酶,作用于非还原端,水解α-1,4糖苷键,放出β-麦芽糖。水解到分支点则停止,支链淀粉只能水解50%。 3.葡萄糖淀粉酶存在于微生物及哺乳动物消化道内,作用于非还原端,水解α-1,4糖苷键,放出β-葡萄糖。可水解α-1,6键,但速度慢。链长大于5时速度快。 4.其他α-葡萄糖苷酶水解蔗糖,β-半乳糖苷酶水解乳糖。 二、吸收 D-葡萄糖、半乳糖和果糖可被小肠粘膜上皮细胞吸收,不能消化的二糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。 三、转运 1.主动转运小肠上皮细胞有协助扩散系统,通过一种载体将葡萄糖(或半乳糖)与钠离子转运进入细胞。此过程由离子梯度提供能量,离子梯度则由Na-K-ATP酶维持。细菌中有些糖与氢离子协同转运,如乳糖。另一种是基团运送,如大肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。果糖通过一种不需要钠的易化扩散转运。需要钠的转运可被根皮苷抑制,不需要钠的易化扩散被细胞松驰素抑制。 2.葡萄糖进入红细胞、肌肉和脂肪组织是通过被动转运。其膜上有专一受体。红细胞受体可转运多种D-糖,葡萄糖的Km最小,L型不转运。此受体是蛋白质,其转运速度决定肌肉和脂肪组织利用葡萄糖的速度。心肌缺氧和肌肉做工时转运加速,胰岛素也可促进转运,可能是通过改变膜结构。 第二节糖酵解 一、定义 1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。缺氧时NADH把丙酮酸还原生成乳酸。 2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。根据产物不同,可分为乙醇发酵、乳酸发酵、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。 二、途径 共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,

生物化学第三版课后习题答案

1. 举例说明化学与生物化学之间的关系。 提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科. 化学和生物化学关系密切,相互渗透、相互促进和相互融合。一方面,生物化学的发展 依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。 举例:略。 2.试解释生物大分子和小分子化合物之间的相同和不同之处。 提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。常见的生物大分子包括蛋白质、核酸、脂类和糖类。 生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键; 2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构 的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不 具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。 3. 生物大分子的手性特征有何意义? 提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于 产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前 手性的小分子配体,产生专一性的相互作用。 4.指出取代物的构型: 6.举例说明分子识别的概念及其意义。 提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。 7. 什么是超分子?说明拆分超分子的方法和原理。 提示:在生物化学领域中,超分子是指生物分子问或生物分子与配体分子间相互作用和识别所形成的复合物。超分子的形成过程就是非共价键缔合的过程,是可逆的过程。该过程受介质极性和休系温度的影响,由于缔合是放热的过程,所以当介质极性增大和体系温度升高时,超分子就会被拆分。另外,强酸或强碱环境也可使这种非共价键作用遭到破坏,从而将超分子拆分。 8.缓冲溶液的缓冲能力与哪些因素有关? 提示: (1) 缓冲溶液总浓度:缓冲溶液的总浓度越大,溶液中所含的抗酸抗碱成分越多,缓 冲能力越强。(2) 缓冲比:对于同-缓冲休系的各缓冲溶液,当缓冲溶液的总浓度一定时,缓冲溶液的缓冲能力随缓冲比的改变而改变。

《生物化学》第三版答案详解(上册部分)

3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单 字母符号丙氨酸(alanine) Ala A 亮氨酸(leucine) Leu L 精氨酸(arginine) Arg R 赖氨酸(lysine) Lys K 天冬酰氨(asparagines) Asn N 甲硫氨酸(蛋氨酸)(methionine) Met M 天冬氨酸(aspartic acid) Asp D 苯丙氨酸(phenylalanine) Phe F Asn和/或Asp Asx B 半胱氨酸(cysteine) Cys C 脯氨酸(praline) Pro P 谷氨酰氨(glutamine) Gln 丝氨酸(serine) Ser S 谷氨酸(glutamic acid) Glu E 苏氨酸(threonine) Thr T Gln和/或Glu Gls Z 甘氨酸(glycine) Gly G 色氨酸(tryptophan) Trp W 组氨酸(histidine) His H 酪氨酸(tyrosine) Tyr Y 异亮氨酸(isoleucine) Ile I 缬氨酸(valine) Val V 2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。[9.9] 解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83 3、计算谷氨酸的γ-COOH三分之二被解离时的溶液pH。[4.6] 解:pH = pKa + lg2/3% pKa = 4.25

pH = 4.25 + 0.176 = 4.426 4、计算下列物质0.3mol/L溶液的pH:(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。[(a)约1.46,(b)约11.5, (c)约6.05] 5、根据表3-3中氨基酸的pKa值,计算下列氨基酸的pI值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。[pI:6.02;5.02;3.22;10.76] 解:pI = 1/2(pKa1+ pKa2) pI(Ala) = 1/2(2.34+9.69)= 6.02 pI(Cys) = 1/2(1.71+10.78)= 5.02 pI(Glu) = 1/2(2.19+4.25)= 3.22 pI(Ala) = 1/2(9.04+12.48)= 10.76 6、向1L1mol/L的处于等电点的甘氨酸溶液加入0.3molHCl,问所得溶液的pH是多少?

生物化学第三版课后习题答案详解上册

第三章氨基酸 提要 a -氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L 型的。但碱水解得到的氨基酸是D 型和L 型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20 种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是B -、丫-或5 -氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH 在13左右时,则全部去质子化。在这中间的某一pH (因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH 称为该氨基酸的等电点,用pI 表示。 所有的a -氨基酸都能与茚三酮发生颜色反应。a -NH2与2,4-二硝基氟苯(DNFB作用产生相应的DNP氨基酸(Sanger反应);a -NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物(Edman 反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外a -氨基酸的a -碳是一个手性碳原子,因此a -氨基酸具有光学活性。比旋是a-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是

紫外吸收法定量蛋白质的依据。核磁共振(NMR波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC等。 习题 1. 写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[ 见表3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单字母符号 丙氨酸(alanine)Ala A亮氨酸 (leucine)Leu L 精氨酸(arginine)Arg R赖氨 酸(lysine)Lys K 天冬酰氨(asparagines)Asn N甲

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章 氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L 型的。但碱水解得到的氨基酸是D 型和L 型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D 型氨基酸。 氨基酸是两性电解质。当pH 接近1时,氨基酸的可解离基团全部质子化,当pH 在13左右时,则全部去质子化。在这中间的某一pH (因不同氨基 酸而异),氨基酸以等电的兼性离子(H 3N +CHRCOO -) 状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH 称为该氨基酸的等电点,用pI 表示。 所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH 2与2,4-二硝基氟苯(DNFB )作用产生相应的DNP-氨基酸(Sanger 反应);α-NH 2与苯乙硫氰酸酯(PITC )作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman 反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH 基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR )波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC )等。 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 3[9.9] 解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83 3、计算谷氨酸的γ-COOH 三分之二被解离时的溶液pH 。[4.6] 解:pH = pKa + lg2/3% pKa = 4.25 pH = 4.25 + 0.176 = 4.426 4、计算下列物质0.3mol/L 溶液的p H :(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。[(a)约1.46,(b)约11.5, (c)约6.05] 5、根据表3-3中氨基酸的pKa 值,计算下列氨基酸的pI 值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。[pI:6.02;5.02;3.22;10.76] 解:pI = 1/2(pKa1+ pKa2) pI(Ala) = 1/2(2.34+9.69)= 6.02 pI(Cys) = 1/2(1.71+10.78)= 5.02 pI(Glu) = 1/2(2.19+4.25)= 3.22 pI(Ala) = 1/2(9.04+12.48)= 10.76 6、向1L1mol/L 的处于等电点的甘氨酸溶液加入0.3molH C l ,问所得溶液的pH 是多少?如果加入0.3mol N aOH 以代替H Cl 时,pH 将是多少?[pH :2.71;9.23] 7、将丙氨酸溶液(400ml )调节到pH 8.0,然后向该溶液中加入过量的甲醛,当所得溶液用碱反滴定至Ph 8.0时,消耗0.2mol/L NaOH 溶液250ml 。问起始溶液中丙氨酸的含量为多少克?[4.45g ] 8、计算0.25mol/L 的组氨酸溶液在pH 6.4时各种 离子形式的浓度(mol/L )。[H is 2+为1.78×10-4 ,H is + 为0.071,His 0为2.8×10-4 ] 9、说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量=209.6;咪唑基pKa=6.0)和1mol/L KOH 配制1L pH 6.5的0.2mol/L 组氨酸盐缓冲液的方法[取组氨酸盐酸盐41.92g(0.2mol),加入352ml 1mol/L KOH ,用水稀释至1L] 10、为什么氨基酸的茚三酮反映液能用测压法定量氨基酸? 解:茚三酮在弱酸性溶液中与α-氨基酸共热,引起氨基酸氧化脱氨脱羧反映,(其反应化学式见P139),其中,定量释放的CO 2可用测压法测量,从而计算出参加反应的氨基酸量。

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答 第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Galβ(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。

生物化学第三版课后习题答案

第一章 1. 举例说明化学与生物化学之间的关系。 提示:生物化学是应用化学的理论和方法来研究生命现象,在分子水平上解释和阐明生命现象化学本质的一门学科. 化学和生物化学关系密切,相互渗透、相互促进和相互融合。一方面,生物化学的发展 依赖于化学理论和技术的进步,另一方面,生物化学的发展又推动着化学学科的不断进步和创新。 举例:略。 2.试解释生物大分子和小分子化合物之间的相同和不同之处。 提示:生物大分子一般由结构比较简单的小分子,即结构单元分子组合而成,通常具有特定的空间结构。常见的生物大分子包括蛋白质、核酸、脂类和糖类。 生物大分子与小分子化合物相同之处在丁: 1) 共价键是维系它们结构的最主要的键; 2)有一定的立休形象和空间大小; 3)化学和|物理性质主要决定于分子中存在的官能团。 生物大分子与小分子化合物不同之处在于: (1) 生物大分子的分子量要比小分子化合物 大得多,分子的粒径大小差异很大; (2) 生物大分子的空间结构婴复杂得多,维系空间结构的力主要是各种非共价作用力; (3) 生物大分子特征的空间结构使其具有小分子化合物所不具有的专性识别和结合位点,这些位点通过与相应的配体特异性结合,能形成超分子,这种特性是许多重要生理现象的分子基础。 3. 生物大分子的手性特征有何意义? 提示:生物大分子都是手性分子,这种结构特点在生物大分子的分子识别及其特殊的生理功能方面意义重大。主要表现在: (1) 分子识别是产生生理现象的重要基础,特异性识别对于产生特定生物效应出关重要; (2) 生物大分了通过特征的三维手性空间环境能特异性识别前

手性的小分子配体,产生专一性的相互作用。 4.指出取代物的构型: 6.举例说明分子识别的概念及其意义。 提示: :分子识别是指分子间发生特异性结合的相互作用,如tRNA分子与氨酰tRNA合成醉的相互作用,抗体与抗原之间的相互作用等。分子识别是生命体产生各种生理现象的化学本质,是保证生命活动有序地进行的分子基础。 7. 什么是超分子?说明拆分超分子的方法和原理。 提示:在生物化学领域中,超分子是指生物分子问或生物分子与配体分子间相互作用和识别所形成的复合物。超分子的形成过程就是非共价键缔合的过程,是可逆的过程。该过程受介

【精品】王镜岩生物化学第三版课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们.蛋白质中的氨基酸都是L型的.但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β—、γ—或δ—氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。在这中间的某一pH(因不同氨基酸而异),氨基酸以等电N+CHRCOO—)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的 的兼性离子(H 3 介质pH称为该氨基酸的等电点,用pI表示. 与2,4—二硝基氟苯(DNFB)所有的α-氨基酸都能与茚三酮发生颜色反应.α—NH 2 与苯乙硫氰酸酯(PITC)作用形成作用产生相应的DNP—氨基酸(Sanger反应);α-NH 2 相应氨基酸的苯胺基硫甲酰衍生物(Edman反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键.这几个反应在氨基酸荷蛋白质化学中占有重要地位。

除甘氨酸外α—氨基酸的α—碳是一个手性碳原子,因此α—氨基酸具有光学活性.比旋是α—氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用. 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等. 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 表3—1氨基酸的简写符号

生物化学(第三版 下册)名词解释

1.丙氨酸-葡萄糖循环 肌肉中的氨基酸将氨基转给丙酮酸生成丙氨酸,后者经血液循环转运至肝脏经过联合脱氨基作用再脱氨基,放出的氨用于合成尿素;生成的丙酮酸经糖异生转变为葡萄糖后再经血液循环转运至肌肉重新分解产生丙酮酸,丙酮酸再接受氨基生成丙氨酸。丙氨酸和葡萄糖反复地在肌肉和肝之间进行氨的转运,股将这一循环过程称为丙氨酸-葡萄糖循环。 2. 光合磷酸化 光合磷酸化(photophosphorylation)是植物叶绿体的类囊体膜或光合细菌的载色体在光下催化腺二磷(ADP)与磷酸(Pi)形成腺三磷(ATP)的反应。 3.底物水平磷酸化 物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP 或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化 4.酶的共价修饰调节 某些酶蛋白肽链上的侧链基团在另一酶的催化下可与某种化学基团发生共价结合或解离,从而改变酶的活性,这一调节酶的活性的方式成为酶的共价修饰调节 5.酮体 在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。肝脏具有较强的合成酮体的酶系,但却缺乏利用酮体的酶系。酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。 6.P/O比值 物质氧化时,每消耗1克原子氧所消耗无机磷的摩尔数(或ATP摩尔数),即生成ATP的克分子数 7. 脂肪酸的β-氧化 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。 8.暗反应 暗反应是激发分子的热力学的缓和过程,是电荷的分离、电子的传递、磷酸化或短命的中间体形成等多种基本过程。 9.光反应 光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。 10. 转氨基作用 转氨基作用指的是一种α-氨基酸的α-氨基转移到一种α-酮酸上的过程。转氨基作用是氨基酸脱氨基作用的一种途径。其实可以看成是氨基酸的氨基与α-酮酸的酮基进行了交换 11.脂肪动员 在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员 12.EMP途径 EMP途径,又称糖酵解或己糖二磷酸途径,是细胞将葡萄糖转化为丙酮酸的代谢过程,总反应为: C6H12O6+2NAD+ +2Pi+2ADP→2CH3COCOOH(丙酮酸)+2NADH+2H+ +2ATP+2H2O 13.氧化磷酸化氧化磷酸化,生物化学过程,是物质在体内氧化时释放的能量供给ADP 与无机磷合成ATP的偶联反应。主要在线粒体中进行。在真核细胞的线粒体或细菌中,物质

生物化学第三版课后答案

生物化学第三版课后答案

生物化学第三版课后答案 【篇一:《生物化学》第三版课后习题答案详解上册】 氨基酸是两性电解质。当ph接近1时,氨基酸的可解离基团全部质子化,当ph在13左右时,则全部去质子化。在这中间的某一ph (因不同氨基酸而异),氨基酸以等电的兼性离子(h3n+chrcoo-)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质ph 称为该氨基酸的等电点,用pi表示。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(nmr)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(hplc)等。 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单 字母符号丙氨酸(alanine) ala a 亮氨酸(leucine) leu l 精氨酸(arginine) arg r 赖氨酸(lysine) lys k 天冬酰氨(asparagines) asn n 甲硫氨酸(蛋氨酸)(methionine) metm 天冬氨酸(aspartic acid) asp d 苯丙氨酸(phenylalanine) phe f asn和/或asp asx b

r-和s-n个c*的单糖有nn-12个旋光异构体,组成2对映体,仅有一个c*的构型不同的两个旋光异构体称为差向异构体。 在人红细胞表面上存在很多血型抗原决定簇,其中多数是寡糖链。在abo血型系统中ah)三个抗原决定簇只差一个单糖残基,a型在寡糖基的非还原端有一个galnac,b型有一个均无。 凝集素是一类非抗体的能与糖类专一结合的蛋白质或糖蛋白,伴刀豆凝集素花生凝集素等属植物凝集素;cam的选择蛋白家族也属于凝集素。此家族中已知有l、e、p应答、炎症反应、肿瘤转移等。 重复构成。多数糖胺聚糖都不同程度地被硫酸化如4- 多条糖胺聚糖链和一个核心蛋白共价连接而成。有的蛋白聚糖以聚集体(它们是高度亲水的多价阴离子, 寡糖链结构分析的一般步骤是:glc法测定单糖组用外切糖苷酶连续断裂或fab - ms 习题 1[2=32] 5解:考虑到c1、c2、c3、c42=32个。 2.含d-吡喃半乳糖和(不包括异头物)?含同样残基的糖蛋白上?[20;32] 1414—6.将500 mg糖原样品用放射性氰化钾(kcn)处理,被结合的cn正好是,另一500 mg同 -1. 31kj /mol] 80.3 m/d高,假定竹茎几乎完全由纤维素纤一葡萄糖单位约长0.45 nm残基/s] 9葡萄醇)的单糖有哪些?[l-山梨糖;d-葡萄糖;l-古洛糖;d-果糖]

生物化学(第三版,王镜岩主编)高等教育出版社

2011年考研 第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。

《生物化学》第三版课后习题答案详解上册

第三章氨基酸 提要 α-氨基酸就是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都就是L型的。但碱水解得到的氨基酸就是D型与L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都就是在蛋白质生物合成后由相应就是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其她氨基酸存在与各种组织与细胞中,有的就是β-、γ-或δ-氨基酸,有些就是D型氨基酸。 氨基酸就是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。 所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α-氨基酸的α-碳就是一个手性碳原子,因此α-氨基酸具有光

学活性。比旋就是α-氨基酸的物理常数之一,它就是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸与苯丙氨酸在紫外区有光吸收,这就是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸与蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要就是基于氨基酸的酸碱性质与极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等。 习题 1、写出下列氨基酸的单字母与三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸与酪氨酸。[见表3-1] 表3-1 氨基酸的简写符号 名称三字母符号单字母符号名称三字母符号单字母符号 丙氨酸(alanine) Ala A 亮氨酸(leucine) Leu L 精氨酸(arginine) Arg R 赖氨酸(lysine) Lys K 天冬酰氨(asparagines) Asn N 甲硫氨酸(蛋氨酸)(methionine) Met M 天冬氨酸(aspartic acid) Asp D 苯丙氨酸(phenylalanine) Phe F Asn与/或Asp Asx B 半胱氨酸(cysteine) Cys C 脯氨酸(praline) Pro P 谷氨酰氨(glutamine) Gln Q 丝氨酸(serine) Ser S

相关文档
相关文档 最新文档