文档视界 最新最全的文档下载
当前位置:文档视界 › 自动控制原理论文

自动控制原理论文

自动控制原理论文
自动控制原理论文

自动控制

摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。

自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。

1?自动控制理论发展概述

自动控制是指应用自动化仪器仪表或自动控制装置代替人自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。

自动控制理论是与人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪Ma xw el l对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初N yq u i s t,B od e,

H a rr is,Ev an s,Wi e nn er,Ni ch ol s等人的杰出贡献,终于形成了经典

反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析与设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更是无能为力。随着20世纪40年代中期计算机的出现及其应用领域的不断扩展,促进了自动控制理论朝着更为复杂也更为严密的方向发展,特别是在Ka lm a n提出的可控性和可观测性概念以及Понтряги

н提出的极大值理论的基础上,在20世纪50、60年代开始出现了以状态空间分析(应用线性代数)为基础的现代控制理论。现代控制理论本质上是一种“时域法”,其研究内容非常广泛,主要包括三个基本内容:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论。现代控制理论从理论上解决了系统的可控性、可观测性、稳定性以及许多复杂系统的控制问题。但是,随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制任务和目的的日益复杂化,从而导致现代控制理论的成果很少在实际中得到应用。经典控制理论、现代控制理论在应用中遇到了不少难题,影响了它们的实际应用,其主要原因有三:①这些控制系统的设计和分析都是建立在精确的数学模型的基础上的,而实际系统由于存在不确定性、不完全性、模糊性、时变性、非线性等因素,一般很难获得精确的数学模型;②研究这些系统时,人们必须提出一些比较苛刻的假设,而这些假设在应用中往往与实际不符;③为了提高控制性能,整个控制系统变得极为复杂,这不仅增加了设备投资,也降低了系统的可靠性。于是,自动控制工作者一直在寻求新的出路,他们在考虑:能否不要完全以控制对象为研究主体,而以控制器为研究主体呢?能否用20世纪50年代中期出现并得到快速发展的人工智能的逻辑推理、启发式知识、专家系统等来解决难以建立精确数学模型的控制问题呢?第三代控制理论即智能控制理论就是在这样的背景下提出来的,它是人工智能和自动控制交叉的产物,是当今自动控制科学的出路之一。下面分别介绍三代控制理论的发展及其最基本内容。

2?经典控制理论的发展及基本内容

自动控制中一个最基本的概念是反馈,人类对反馈控制的应用可以追溯到很早的时期。但是,直到产业革命时期,英国人Ja me s W a tt发明蒸汽机离心飞锤式调速器,解决了在负载变化条件下保持蒸汽机基本恒速的问题,自动控制才引起人们的重视。从那时起的100多年以来,随着社会生产力的发展和需要,自动控制理论和技术也得到了不断的发展和提高。在20世纪30至40年代期间,Ny qu is t于1932年提出稳定性的频率判据,B od e于1940年在频率法中引入对数坐标系并于1945年写了《网络分析和反馈放大器设计》一书,Ha rr is于1942年引入传递函数概念,E va n s于1948年提出根轨迹法,W ie nn e r于1949年出版了《控制—关于在动物和机器中控制和通讯的科学》一书。由于他们卓越的工作,从而奠定了经典控制理论的基础。到20世纪50年代,经典控制理论已趋于成熟。

经典控制理论主要用于解决反馈控制系统中控制器的分析与设计的问题。图1为反馈控制系统的简化原理框图。

图1?反馈控制系统的简化原理框图

经典控制理论主要研究线性定常系统。所谓线性控制系统是指系统

中各组成环节或元件的状态或特性可以用线性微分方程描述的控制系统。如果描述该线性系统的微分方程的系数是常数,则称为线性定常系统。

描述自动控制系统输入量、输出量和内部量之间关系的数学表达式称为

系统的数学模型,它是分析和设计控制系统的基础。经典控制理论中广

泛使用的频率法和根轨迹法,是建立在传递函数基础上的。线性定常系

统的传递函数是在零初始条件下系统输出量的拉普拉斯变换与输入量的

拉普拉斯变换之比,是描述系统的频域模型。传递函数只描述了系统的

输入、输出关系,没有内部变量的表示。经典控制理论的特点是以传递

函数为数学工具,本质上是频域方法,主要研究“单输入—单输出”线

性定常控制系统的分析与设计,对线性定常系统已经形成相当成熟的理论。典型的经典控制理论包括PI D控制、S mi t h控制、解耦控制、D al in 控制、串级控制等。

经典控制理论尽管原则上只适宜于解决“单输入—单输出”系统中

的分析与设计问题,但是,经典控制理论至今仍活跃在各种工业控制领

域中。事实上,经典控制理论现在仍不失其价值和实用意义,仍是进一

步研究现代控制理论和智能控制理论的基础。

3?现代控制理论的发展及基本内容

经典控制理论虽然具有很大的实用价值,但也有着明显的局限性。

其局限性表现在下面二个方面:第一,经典控制理论建立在传递函数和

频率特性的基础上,而传递函数和频率特性均属于系统的外部描述(只描

述输入量和输出量之间的关系),不能充分反映系统内部的状态;第二,无论是根轨迹法还是频率法,本质上是频域法(或称复域法),都要通过

积分变换(包括拉普拉斯变换、傅立叶变换、Z变换),因此原则上只适

宜于解决“单输入—单输出”线性定常系统的问题,对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更是无

能为力。

现代控制理论正是为了克服经典控制理论的局限性而在20世纪50、60年代逐步发展起来的。现代控制理论本质上是一种“时域法”。它引

入了“状态”的概念,用“状态变量”(系统内部变量)及“状态方程”

描述系统,因而更能反映出系统的内在本质与特性。从数学的观点看,

现代控制理论中的状态变量法,简单地说就是将描述系统运动的高阶微

分方程,改写成一阶联立微分方程组的形式,或者将系统的运动直接用

一阶微分方程组表示。这个一阶微分方程组就叫做状态方程。采用状态

方程后,最主要的优点是系统的运动方程采用向量、矩阵形式表示,因

此形式简单、概念清晰、运算方便,尤其是对于多变量、时变系统更是明显。特别是在K al m an提出的可控性和可观测性概念和Понтряг

ин提出的极大值理论的基础上,现代控制理论被引向更为深入的研究。现代控制理论研究的主要内容包括三部分:多变量线性系统理论、最优控制理论以及最优估计与系统辨识理论。由于篇幅所限,有关现代控制理论研究的具体内容请参见有关文献,这里从略。

现代控制理论从理论上解决了系统的可控性、可观测性、稳定性以及许多复杂系统的控制问题。但是,随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制任务和目的的日益复杂化,从而导致现代控制理论的成果很少在实际中得到应用。

4?智能控制理论的发展及基本内容

“智能控制”这一概念是美国普渡大学(P ur du e U ni v er si ty)电气工程系的美籍华人傅京孙教授于20世纪70年代初提出来的。早在1965年,他提出把人工智能领域中的启发式规则应用于学习系统,这一时期可以看作是“智能控制”思想的萌芽阶段。“智能控制”是在当时经典控制理论和现代控制理论在实际应用中面临着严峻挑战的时期自动控制工作者苦于为自动控制理论寻求新出路而提出来的,它是人工智能和自动控制交叉的产物,是当今自动控制科学的出路之一。

智能控制是指驱动智能机器自主地实现其目标的过程,也就是说,智能控制是一类无需人的直接干预就能独立地驱动智能机器实现其目标的自动控制。智能控制的基础是人工智能、控制论、运筹学和信息论等学科的交叉。智能控制理论及系统具有下面几个鲜明的特点:第一,在分析和设计智能控制系统时,重点不要放在传统控制器的分析和设计上,而要放在智能机模型上,也就是说,不要把重点放在对数学公式的描述、计算和处理上(实际上,一些复杂大系统可能根本无法用精确的数学模型进行描述),而要把重点放在对非数学模型的描述、符号和环境的识别、知识库和推理机设计和开发等上面来。第二,智能控制的核心是高层控制,其任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。第三,智能控制是一门边缘交叉学科,傅京孙教授于1971年首先提出了智能控制的二元交集理论(即人工智能和自动控制的交叉),美国的G.N.Sa ri di s于1977年把傅京孙的二元结构扩展为三元结构(即人工智能、自动控制和运筹学的交叉),后来中南工业大学的蔡自兴教授又将三元结构扩展为四元结构(即人工智能、自动控制、运筹学和信息论的交叉),从而进一步完善了智能控制的结构理论。第四,智能控制是一个新兴的研究和应用领域,有着极其诱人的发展前途。

自从“智能控制”概念的提出到现在,自动控制和人工智能专家和学者已经提出了各种智能控制理论,有些已经在实际中发挥了重要作用。下面对一些有影响的智能控制理论和系统进行介绍。

4.1 递阶智能控制

递阶智能控制(H ie ra rc hi ca l Int e ll ig en t Co nt rol)是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系之后逐渐形成的,它是智能控制的最早理论之一。该理论最初是由G.N.Sa ri d is提出的。该系统由组织级、协调级、执行级3级组成。递阶智能控制遵循“精度随智能降低而提高”的原理分级分布。在递阶智能控制系统中,智能主要体现在高的层次即组织级上,由人工智能起控制作用;协调级是组织级和执行级之间的接口,承上起下,由人工智能和运筹学共同作用;执行级要求具有较高的精度和较低的智能,仍然采用现有数学解析控制算法,对相关过程执行适当的控制作用。

4.2 专家智能控制

专家系统(E xpe r t S ys te m)是人工智能的一个重要分支,它是于1965年由美国斯坦福大学当时的年轻教授 E.A.Fe ig en ba um开创的人工智能

研究的新领域。专家系统E S与当时人们追求的通用问题求解程序GP S不同,专家系统并不试图发现很强有力的和很通用的问题求解方法,它把研究范围缩小在一个特定的相对狭小的专业领域中。人类专家之所以成为专家,是因为他拥有解决自己专业领域问题的大量专门知识,包括各种有用的诀窍和经验,专家系统实际上就是在计算机上实现的这种领域专家的模仿物。

应用专家系统的概念和技术,模拟人类专家的控制知识与经验而建造的控制系统,就是专家控制系统。虽然专家控制系统是基于专家系统建立起来的,但是它与专家系统之间存在一些重要差别。首先,一般的专家系统中操作人员是系统的组成部分,通过人机对话完成“计算机专家”的功能,而专家控制系统中没有操作人员的参与,要求专家控制系统能够独立和自动地对控制对象做出决策;其次,专家系统通常以离线方式工作,而专家控制系统需要获取在线动态信息,并对系统进行实时控制。

4.3 模糊智能控制

模糊理论是美国加利福尼亚大学的自动控制理论专家L.A.Za de h教授最先提出的。1965年他在“In fo rm a ti on&Co nt ro l”杂志上发表了“Fu zz y S et”(模糊集)一文,首次提出了模糊集合的概念,并很快被人

们接受。1974年,英国的M am da ni首先把模糊理论用于工业控制,取得了良好的效果。从此,模糊逻辑控制理论和模糊逻辑控制系统的应用发展很快,展示了模糊理论在控制领域中有着很好的发展前景。模糊逻辑控制现已成为智能控制的重要组成部分。

专家控制系统和模糊逻辑控制系统至少有一点是共同的,即二者都要建立人类经验和人类决策行为的模型。此外,二者都含有知识库和推理机。因此,模糊逻辑控制器(F LC)通常又称为模糊专家控制器(F EC),有时人们也把模糊专家系统叫做第二代专家系统,因为它能够为专家系统的设计、开发和实现提供2个基本的和统一的优点,即模糊知识表示和模糊推理方法。

4.4 神经网络智能控制

1943年麦卡洛克和皮茨(P it ts)提出一种叫做“似脑机器”(Mi nd like M a ch in e)的思想。这种机器可由基于生物神经元特性的互连模型来制造,这就是最初的人工神经网络(A NN)概念。随着人工神经网络应用研究的不断深入,新的神经网络模型不断推出,现有的神经网络模型已达近百种。在智能控制领域中,应用最多的是BP网络、H op fi el d网络、自组织神

经网络、动态递归网络、联想记忆网络、Ad al in e网络等。

基于神经网络的智能控制系统作为一个新兴领域,之所以能引起自动控制界的广泛兴趣,其原因是:①神经网络具有逼近任何非线性函数的能力;②神经网络易于用VL S I实现,从而使神经网络具有快速和容错性高的优点;③神经网络自身的结构及其多输入多输出的特点,使其易用于多变量系统的控制,且与其它逼近方法相比较更为经济;④神经网络具有自适应和自学习的特性。神经网络的这些特点表明它有着传递函数在线性系统中的作用,但能够自然地扩展到具有非线性、时变性、复杂性、不确定性的大系统中。值得提出的是,虽然其特点十分具有吸引力,但其理论研究还不成熟,许多问题还有待进一步研究。

4.5 学习控制系统

人们对学习机器的设想与研究始于20世纪50年代,它是一种模拟人的记忆与条件反射的自动装置。学习机的概念是与控制论同时出现的。现有的机器学习的方法种类繁多,如归纳学习、类比学习、基于解释的学习和基于人工神经网络的学习等等。学习控制最初用于解决飞行器的控制、模式分类和通信等问题,然后逐渐用于电力系统和生产过程控制。学习控制系统能够处理具有不确定性和非线性的过程,并能保证良好的适应性、满意的稳定性和足够快的收敛。因此,近年来学习控制系统已获得广泛的应用。

4.6 定性控制理论

定性推理(Q ual i ta ti ve Re as on in g)是一种基于模型的推理。定性推理的对象是现实世界的物理系统,例如机器装置或电子器件。定性推理的基本思想是:为了搞清楚一个物理系统的行为,往往不需要使用严格的定量方法。传统的专家系统所进行的推理广义上都认为是定性的,但与这里讲的定性推理不同。定性推理不是通过收集系统变量在不同时间点上的取值来模拟系统行为,而是在更高的抽象层次上关心系统行为的定性特征,以便掌握用于行为定性推理的知识种类,开发用于这种知识表示的一般模式,并寻求对物理系统进行行为推理的有效过程。

将定性推理应用到控制领域,便形成了智能控制的又一个新的分支,即定性控制。1986年,C lo ck si n和M or g an发表了“Q ua li t at iv e C on tr ol”论文,第一次给出了定性控制的要领,提出了几种控制方案并将其同常规的控制方法做了比较,随后出现了一系列有关定性控制的文章。定性控制器根据系统的不完全的知识,对系统的输出行为做出预测和控制,这是常规控制器所无法完成的。这里还有必要指出定性控制同模糊控制的主要区别:①模糊控制基于“黑箱”系统,不需要建立数学模型,其控制规则需要凭经验或算法调整,而定性控制则基于定性模型,控制规则基于人们对系统的定性分析。②模糊控制是基于状态的精确测量值,而定性控制基于状态的定性测量值。

4.7 遗传算法与控制理论结合

遗传算法(G ene t ic A lg or i t h m)作为一种解决复杂问题的有效方法,最初是由美国密执安大学的Jo hn H ol l an d教授于1975年提出来的。遗传算法的基本思想是基于Da rw i n的进化论和Me nd e l的遗传学说。遗传算法通过将问题转换成由染色体组成的进化群体和对该群体进行操作的一组遗传算子(最基本的3个遗传算子是复制、交叉和突变),通过“适者生存,不适者淘汰”的进化机制,经过“生成—评价—选择—操作”的进化过程反复进行,直到搜索到最优解为止。当前,遗传算法用于自动控制主要是进行系统参数辨识、控制参数在线优化、神经网络中的学习等。虽然遗传算法与控制理论的结合有其突出的特点,但是,由于它目前还不能满足控制系统实时性的要求,所以影响了它的实际应用。

5?结?论

以上我们介绍了自动控制理论的发展情况,指出了自动控制理论已经历的三代的发展,即第一代的经典控制理论,第二代的现代控制理论和第三代的智能控制理论。之后我们还指出,各种控制理论都有其优点、缺点和适用范围,如果能够取长补短,则必然能够扩大其应用的范围,

因而是控制理论的发展方向。事实上,现在已经出现了集经典控制理论、现代控制理论和智能控制理论于一身的各种复合控制理论,如模糊PI D 复合控制、模糊变结构控制、自适应模糊控制、模糊预测控制、模糊神经网络控制、专家PI D控制、专家模糊控制等等,有关复合控制的更详细的介绍请参见有关文献。

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

自动控制原理课程设计 超前校正

自动控制原理课程设计 一. 设计题目 1.掌握控制系统的设计与校正方法、步骤。 2.掌握对控制系统的相角裕度、稳态误差、截止频率和动态性能分析。 3.掌握利用matlab 对控制理论内容进行分析。 4.提高大家分析问题解决问题的能力。 二. 题目任务及要求 题目1:已知单位负反馈系统被控制对象的开环传递函数 ()() 10+=s s K s G 用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态 及静态性能指标: (1)在单位斜坡信号作用下,系统的稳态误差rad e ss 15 1< ; (2)系统校正后,相位裕量 45≥γ。 (3)截止频率s rad c /5.7≥ω。 设单位负反馈系统的开环传递函数为 ) 1()(+=s s K s G 用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能: (1) 相角裕度045≥γ; (2) 在单位斜坡输入下的稳态误差为1.0=ss e ; (3) 系统的剪切频率wc <4.4rad/s 。 (4)模值余度h ≥10dB k=10;

num1=[1]; den1=conv([1 0],[1 1]); sys1=tf(k*num1,den1); figure(1); Margin(sys1); hold on figure(2); sys=feedback(sys1,1) step(sys) Transfer function: 10 ------- s^2 + s

未校正前的Bode图 未校正前的的阶跃响应曲线 由图可以看出未经校正的Bode图及其性能指标,还有如图(-2)所示的未校正的系统的阶跃响应曲线。由图(-1)可以看出系统的: 模值稳定余度; h=∞dB; -pi穿越频率:Wg=∞dB; 相角稳定余度为γ=180剪切频率:Wc=3.08rad/s; 由图(-1)可以知道,系统校正前,相角稳定余度=18<45。为满足要求,开环系剪切频率wc=3.08rad/s<4.4rad/s。也未能满足要求。其阶跃曲线如图(-2)其超调量竟达σ%=60%,固原系统需要矫正。 Transfer function: 10 ------------ s^2 + s + 10 h = Inf r = 17.9642 wx = Inf

自动控制原理概念最全整理

1.在零初始条件下,线性定常系统输出量的拉普拉斯变换与输入量的拉普拉斯 变换值比,定义为线性定常系统的传递函数。传递函数表达了系统在特性,只与系统的结构、参数有关,而与输入量或输入函数的形式无关。 2.一个一般控制系统由若干个典型环节构成,常用的典型环节有比例环节、惯 性环节、积分环节、微分环节、振荡环节和延迟环节等。 3.构成方框图的基本符号有四种,即信号线、比较点、方框和引出点。 4.环节串联后总的传递函数等于各个环节传递函数的乘积。环节并联后总的传 递函数是所有并联环节传递函数的代数和。 5.在使用梅森增益公式时,注意增益公式只能用在输入节点和输出节点之间。 6.上升时间tr、峰值时间tp和调整时间ts反应系统的快速性;而最大超调量 Mp和振荡次数则反应系统的平稳性。 7.稳定性是控制系统的重要性能,使系统正常工作的首要条件。控制理论用于 判别一个线性定常系统是否稳定提供了多种稳定判据有:代数判据(Routh 与Hurwitz判据)和Nyquist稳定判据。 8.系统稳定的充分必要条件是系统特征根的实部均小于零,或系统的特征根均 在跟平面的左半平面。 9.稳态误差与系统输入信号r(t)的形式有关,与系统的结构及参数有关。 10.系统只有在稳定的条件下计算稳态误差才有意义,所以应先判别系统的稳定 性。 11.Kp的大小反映了系统在阶跃输入下消除误差的能力,Kp越大,稳态误差越 小; Kv的大小反映了系统跟踪斜坡输入信号的能力,Kv越大,系统稳态误差

越小; Ka的大小反映了系统跟踪加速度输入信号的能力,Ka越大,系统跟踪精度越高 12.扰动信号作用下产生的稳态误差essn除了与扰动信号的形式有关外,还与扰 动作用点之前(扰动点与误差点之间)的传递函数的结构及参数有关,但与扰动作用点之后的传递函数无关。 13.超调量仅与阻尼比ξ有关,ξ越大,Mp则越小,相应的平稳性越好。反之, 阻尼比ξ越小,振荡越强,平稳性越差。当ξ=0,系统为具有频率为Wn的等幅震荡。 14.过阻尼ξ状态下,系统相应迟缓,过渡过程时间长,系统快速性差;ξ过小, 相应的起始速度较快,但因震荡强烈,衰减缓慢,所以调整时间ts亦长,快速性差。 15.当ξ=0.707时,系统的超调量Mp<5%,,调整时间ts也最短,即平稳性和快 速性均最佳,故称ξ=0.707位最佳阻尼比。 16.当阻尼比ξ为常数时,Wn越大,调节时间ts就越短,快速性越好。系统的超 调量Mp和振荡次数N仅仅有阻尼比ξ决定,他们反映了系统的平稳性。17.系统引入速度反馈控制后,其无阻尼自然振荡频率Wn不变,而阻尼比ξ加大, 系统阶跃响应的超调量减小。 18.系统中增加一个闭环左实极点,系统的过渡过程将变慢,超调量将减小,系 统的反应变得较为滞呆。 19.根轨迹的规律是相角条件和幅值条件。 20.K的变动只影响幅值条件不影响相角条件,也就是说,跟轨迹上的所有点满

自动控制原理题目含复习资料

《自动控制原理》复习参考资料 一、基本知识1 1、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。 2、闭环控制系统又称为反馈控制系统。 3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。 4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。 5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。 7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。 8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G(s)/(1- G(s)H(s))。 9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。 10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。 11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。 12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。 13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。 14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。 16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。 17、对于典型二阶系统,惯性时间常数T 愈大则系统的快速性愈差。 18、应用频域分析法,穿越频率越大,则对应时域指标t s 越小,即快速性越好 19最小相位系统是指S 右半平面不存在系统的开环极点及开环零点。 20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、 补偿校正与复合校正四种。 21、对于线性系统,相位裕量愈大则系统的相对稳定性越好。 22、根据校正装置的相位特性,比例微分调节器属于相位超前校正装置,比例积分调节器属于相位滞后校正装置,PID 调节器属于相位滞后-超前校正装置。 23、PID 调节中的P 指的是比例控制器,I 是积分控制器,D 是微分控制器。 24、离散系统中信号的最高频谱为ωmax ,则采样频率ωs 应保证ωs>=2ωmax 条件。 26、在离散控制系统分析方法中,把差分方程变为代数方程的数学方法为Z 变换。 27、离散系统中,两个传递函数分别为G 1(s)与G 2(s)的环节,以串联方式连接,连接点有采样开关,其等效传递脉冲函数为G 1(z)G 2(z);连接点没有采样开关,其等效传递脉冲函数为G 1G 2(z)。 28、根据系统的输出量是否反馈至输入端,可分为开环控制系统与闭环控制系统。 29、家用空调温度控制、电梯速度控制等系统属于闭环控制系统; 30、经典控制理论的分析方法主要有时域分析法、根轨迹分析法、频域分析法。 二、基本知识2 1、开环控制系统的的特征是没有( ) A.执行环节 B.给定环节 C.反馈环节 D.放大环节 2、闭环系统的动态性能主要取决于开环对数幅频特性的( ) A 、低频段 B 、中频段 C 、高频段 D 、均无关 3、若系统的开环传递函数为 10) (5 50 s s ,则它的开环增益为( ) A.5 B.10 C.50 D.100

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

自动控制原理整理

自动控制原理整理 第一章 绪论 自动控制:自动控制,就是在没有人直接参与的情况下,利用外加的设备或装置(控制 装置),使机器、设备或生产过程(控制对象)的某个工作状态或参数(被控量)自动地按照预定的规律运行。 自动控制系统:是指能够对被控对象的工作状态进行自动控制的系统。它是控制对象以 及参与实现其被控制量自动控制的装置或元部件的组合,一般由控制装置和被控对象组成。一般包括三种机构:测量机构、比较机构、执行机构。 反馈:把输出量送回到系统的输入端并与输入信号比较的过程。 反馈控制系统的基本组成:测量元件、给定元件、比较元件、放大元件、执行元件、校 正元件 控制方式 (1) 反馈控制方式(2)开环控制方式(3)复合控制方式 控制系统的分类 (1) 恒值系统和随动系统(按参考输入形式分类) (2) 线性系统和非线性系统(按照组成系统的元件特性分类) (3) 连续系统和离散系统(按照系统内信号的传递形式分类) 控制系统的性能指标:稳定性、快速性、准确性,即稳准快。 第二章 控制系统的数学模型 定义:数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。 建立方法:解析法、实验法 线性系统:能够用线性数学模型(线性的代数方程、微分方程、差分方程等)描述的系统, 称为线性系统。重要性质:叠加原理,即具有可叠加性和均匀性。 单位阶跃函数1(t) 单位阶跃函数的拉氏变换为 { 001)(1<≥=t t t 0 11 ()0st st F s e dt e s s ∞ --∞==-=?

单位脉冲函数 单位脉冲函数的拉氏变换为 传递函数的定义与性质 定义:线性定常系统的传递函数为零初始条件下,系统输出量的拉氏变换与系统输入量的拉氏变换之比。 所谓零初始条件是指 1)输入量在t>0时才作用在系统上,即在t=0- 时系统输入及各项导数均为零; 2)输入量在加于系统之前,系统为稳态,即在 t=0-时系统输出及其所有导数项为零。 性质: ? 传递函数是复变量s 的有理真分式函数,分子多项式的次数m 低于或等于分母多项的次数n ,所有系数均为实数; ? 传递函数与微分方程有相通性,可经简单置换而转换; ? 传递函数表征了系统本身的动态特性。 ? 只能描述线性定常系统与单输入单输出系统,不能表征内部所有状态的特征。 ? 只能反映零初始条件下输入信号引起的输出,不能反映非零初始条件引起的输出。 ? 服从不同动力学规律的系统可有同样的传递函数 ? 传递函数有一定的零、极点分布图与之对应,因此传递函数的零、极点分布图也表征了系统的动态性能。 零极点形式 系统零点、极点的分布决定了系统的特性,因此,可以画出传递函数的零极点图,直接分 析系统特性。在零极点图上,用“ ”表示极点位置,用“ 圆圈”表示零点 结构图的基本组成: 定义: 由具有一定函数关系的环节组成的,并标明信号流向的系统的方框图,称为系统的结构图。 组成:信号线、引出点、比较点、方框。 结构图的基本组成形式 串联连接、并联连接、反馈连接 { 1000()t t t t εε ε δ ≤≤<>=或()0()1st F s t e dt δ∞ -==? ?),,2,1(m i z i =),,2,1(n i p i =

自动控制原理知识点总结

~ 自动控制原理知识点总结 第一章 1、什么就是自动控制?(填空) 自动控制:就是指在无人直接参与得情况下,利用控制装置操纵受控对象,就是被控量等于给定值或按给定信号得变化规律去变化得过程。 2、自动控制系统得两种常用控制方式就是什么?(填空) 开环控制与闭环控制 3、开环控制与闭环控制得概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高. 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程得影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否得问题。 掌握典型闭环控制系统得结构。开环控制与闭环控制各自得优缺点? (分析题:对一个实际得控制系统,能够参照下图画出其闭环控制方框图。) 4、控制系统得性能指标主要表现在哪三个方面?各自得定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程得振荡倾向与系统恢复平衡得能力 (2)、快速性:通过动态过程时间长短来表征得 (3)、准确性:有输入给定值与输入响应得终值之间得差值来表征得 第二章 1、控制系统得数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2、了解微分方程得建立? (1)、确定系统得输入变量与输入变量 (2)、建立初始微分方程组.即根据各环节所遵循得基本物理规律,分别列写出相应得微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关得项写在方程式等号得右边,与输出量有关得项写在等号得左边 3、传递函数定义与性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量得拉普拉斯变换域系统输入量得拉普拉斯变

自动控制原理课程设计题目(1)要点

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 ) 101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 ) 2)(1()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=0.5。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。

自动控制原理知识点复习资料整理

自动控制原理知识点总结 第一章 1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。 3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。 4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。 5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。反送到输入端的信号称为反馈信号。 6、负反馈:反馈信号与输人信号相减,其差为偏差信号。 7、负反馈控制原理:检测偏差用以消除偏差。将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。 8、自动控制系统的两种常用控制方式是开环控制和闭环控制。 9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。主要特点:抗扰动能

力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 11、控制系统的性能指标主要表现在: (1)、稳定性:系统的工作基础。 (2)、快速性:动态过程时间要短,振荡要轻。 (3)、准确性:稳态精度要高,误差要小。 12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。 第二章 1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。 2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比 3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。 4、结构图的变换与化简化简方框图是求传递函数的常用方法。对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时,

自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析

课程设计报告书 题目线性控制系统校正与分析 院部名称机电工程学院 专业10电气工程及其自动(单)班级 组长姓名 学号 设计地点工科楼C 214 设计学时1周 指导教师

金陵科技学院教务处制 目录 目录 (3) 第一章课程设计的目的及题目 (4) 1.1课程设计的目的 (4) 1.2课程设计的题目 (4) 第二章课程设计的任务及要求 (6) 2.1课程设计的任务 (6) 2.2课程设计的要求 (6) 第三章校正函数的设计 (7) 3.1设计任务 (7) 3.2设计部分 (7) 第四章系统动态性能的分析 (10) 4.1校正前系统的动态性能分析 (10) 4.2校正后系统的动态性能分析 (13) 第五章系统的根轨迹分析及幅相特性 (16) 5.1校正前系统的根轨迹分析 (16) 5.2校正后系统的根轨迹分析 (18) 第七章传递函数特征根及bode图 (20) 7.1校正前系统的幅相特性和bode图 (20) 7.2校正后系统的传递函数的特征根和bode图 (21) 第七章总结 (23) 参考文献 (24)

第一章 课程设计的目的及题目 1.1课程设计的目的 ⑴掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 ⑵学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 1.2课程设计的题目 已知单位负反馈系统的开环传递函数) 125.0)(1()(0 ++= s s s K s G ,试用频率法 设计串联滞后校正装置,使系统的相角裕量 30>γ,静态速度误差系数 110-=s K v 。

-自动控制原理知识点汇总

-自动控制原理知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变

(完整版)自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择)

自动控制论文题目选题参考

https://www.docsj.com/doc/1515402306.html, 自动控制论文题目 一、最新自动控制论文选题参考 1、基于PLC的种子包衣机自动控制系统设计与实现 2、无线数据传输在节水灌溉自动控制中的应用 3、自动控制在污水处理中的应用 4、基于SCADA的无功电压自动控制系统 5、高炉热风炉全自动控制专家系统 6、智能交通系统及其车辆自动控制技术 7、智能温室自动控制系统的设计与应用 8、基于PLC的煤矿主排水泵自动控制系统设计 9、列车运行自动控制(ATO)算法的研究 10、自动变速器(十一)——变速器的自动控制系统(下) 11、自动控制技术——汽车动力学稳定性控制系统研究现状及发展趋势 12、循环流化床锅炉热工自动控制系统 13、温室节点式渗灌自动控制系统设计与实现 14、SBR法计算机自动控制系统的研究 15、主动式自动控制烤房研制与试验报告 16、盾构机自动控制技术现状与展望 17、自动控制中的矩阵理论 18、高炉热风炉全自动控制专家系统 19、自动变速器(九)——变速器的自动控制系统(上) 20、楼宇自动控制网络通信协议BACnet实现模型的研究

https://www.docsj.com/doc/1515402306.html, 二、自动控制论文题目大全 1、冷连轧板形自动控制 2、冷连轧机张力自动控制系统 3、复卷机张力自动控制系统 4、"自动控制原理"课程讲授的几个要点 5、变电站电压无功综合自动控制的实现与探讨 6、自动变速器(十)——变速器的自动控制系统(中) 7、自动控制原理立体化教学新体系的探索与实践 8、论间歇式活性污泥法的自动控制 9、用于水果实时分级系统的同步跟踪自动控制装置 10、《自动控制原理》课程的教学改革与实践 11、DCS自动控制系统软件体系的设计与实现 12、Proteus软件在自动控制系统仿真中的应用 13、烧结生产自动控制新技术(上) 14、电力传动与自动控制系统 15、活性污泥法污水处理过程自动控制的研究现状 16、模糊参数自整定PID控制技术在推土机自动控制系统中的应用 17、烧结生产自动控制新技术(下) 18、波浪能独立稳定发电自动控制系统 19、鱼雷自动控制系统 20、自动控制原理课程体系结构和教学方法探讨 三、热门自动控制专业论文题目推荐

自动控制原理课程设计控制系统的超前校正设计武汉理工大学

额,这个文档是在百度文库花20分下载的,太坑爹了,所以我加了这几个字重新上传了。大家攒点百度币不容易………… 目录 1 超前校正的原理及方法 (2) 何谓校正为何校正 (2) 超前校正的原理及方法 (2) 超前校正的原理 (2) 超前校正的应用方法 (4) 2 控制系统的超前校正设计 (5) 初始状态的分析 (5) 超前校正分析及计算 (8) 校正装置参数的选择和计算 (8) 校正后的验证 (10) 校正对系统性能改变的分析 (14) 3心得体会 (16) 参考文献 (17)

控制系统的超前校正设计 1 超前校正的原理及方法 何谓校正 为何校正 所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,是系统整 个特性发生变化。校正的目的是为了在调整发大器增益后仍然不能全面满足设计要求的性能指标的情况下,通过加入的校正装置,是系统性能全面满足设计要求。 超前校正的原理及方法 超前校正的原理 无源超前网络的电路如图1所示。 图1 无源超前网络电路图 r u c u 1 R 2R C

如果输入信号源的内阻为了零,且输出端的负载阻抗为无穷大,则超前网络的传递函数可写为 1()1c aTs aG s Ts += + (2-1) 式中1221R R a R += > , 1212 R R T C R R =+ 通常a 为分度系数,T 叫时间常数,由式(2-1)可知,采用无源超前网络进行串联校正时,整个系统的开环增益要下降a 倍,因此需要提高放大器增益交易补偿。 根据式(2-1),可以得无源超前网络()c aG s 的对数频率特性,超前网络对频率在1/aT 至1/T 之间的输入信号有明显的微分作用,在该频率范围内,输出信号相角比输入信号相角超前,超前网络的名称由此而得。在最大超前交频率m ω处,具有最大超前角m ?。 超前网路(2-1)的相角为 ()c arctgaT arctgT ?ωωω=- (2-2) 将上式对ω求导并令其为零,得最大超前角频率 m ω=1/T a (2-3) 将上式代入(2-2),得最大超前角频率 (2-4) 同时还易知 ''m c ωω= ?m 仅与衰减因子a 有关。a 值越大,超前网络的微分效应越强。但a 的最大值受到超前 网络物理结构的制约,通常取为20左右(这就意味着超前网络可以产生的最大相位超前大约为65度)如果要得大于 的相位超前角,可用两个超前校正网络串联实现,并在串 联的两个网络之间加一个隔离放大器,以消除它们之间的负载效应。 利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络或PD 控制器的相角超前特性。只要正确地将超前网络的交接频率1/aT 或1/T 选在待校正系统截止频率的两旁,并适当选择参数a 和T ,就可以使已校正系统的截止频率和相角裕度满足性能指标的要求,从而改善系统的动态性能。使校正后系统具有如下特点:低频段的增益满足稳态精度的要求;中频段对数幅频特性的斜率为-20db/dec ,并具有较宽的频带,使系统具 1 arcsin 12m a arctg a a ?-==+

自动控制原理课程论文

《自动控制原理(下)》 课程论文 1011自动化 XX 2010XXXX 2013.4

非线性控制系统 摘要:非线性控制系统是用非线性方程来描述的非线性控制系统。系统中包含有非线性元件或环节。状态变量和输出变量相对于输入变量的运动特性不能用线性关系描述的控制系统。状态变量和输出变量相对于输入变量的运动特性不能用线性关系描述的控制系统。线性因果关系的基本属性是满足叠加原理。在非线性控制系统中必定存在非线性元件,但逆命题不一定成立。描述非线性系统的数学模型,按变量是连续的或是离散的,分别为非线性微分方程组或非线性差分方程组。非线性控制系统的形成基于两类原因,一是被控系统中包含有不能忽略的非线性因素,二是为提高控制性能或简化控制系统结构而人为地采用非线性元件。 关键字:非线性系统相平面法描述函数法 正文: 一、非线性特性 典型非线性特性 (1)非线性系统的特点 ①叠加原理无法应用于非线性微分方程中。 ②非线性系统的稳定性不仅与系统的结构和参数有关,而且与系统的输入信号和初始条件有关。 ③线性系统的零输入响应形式与系统的初始状态无关,而非线性系统的零输入响应形式与系统的初始状态却有关。 ④有些非线性系统,在初始状态的激励下,可以产生固定振幅和固定频率的自激振荡或极限环。 (2)典型非线性特性 二、非线性控制系统的应用条件 非线性系统的分析远比线性系统为复杂,缺乏能统一处理的有效数学工具。在许多工程应用中,由于难以求解出系统的精确输出过程,通常只限于考虑:①系统是否稳定。②系统是否产生自激振荡(见非线性振动)及其振幅和频率的测算方法。③如何限制自激振荡的幅值以至消除它。例如一个频率是ω的自激振

自动控制原理论文(DOC)

自动控制原理结课论文论文题目:时域分析的Matlab实现

时域分析的Matlab实现 摘要 分析和设计系统的首要工作是确定系统的数学模型。一旦建立了合理的、便于分析的数学模型,就可以对已组成的控制系统进行分析,从而得出系统性能的改进方法。经典控制理论中,常用时域分析法、根轨迹法或频率分析法来分析控制系统的性能。本文采用MATLAB 语言编程实现了高阶系统时域分析,分析了其稳定性、快速性、准确性,并应用实例验证了其有效性。 [关键词] 时域分析高阶系统MATLAB 实现

目录 一、引言 (1) 二、时域分析基础理论 (1) (一)典型输入信号和时域性能指标 (2) 1、典型输入信号 (2) 2、时域性能指标 (4) (二)一阶系统的时域分析 (5) 1、单位阶跃响应 (5) 2、单位斜坡响应 (7) 3、单位脉冲响应 (7) (三)高阶系统的时域分析 (8) 三、基于MATLAB实现高阶系统的时域分析 (10) 四、高阶系统时域分析的MATLAB 实现 (11) (一)应用经典法求解 (12) (二)MATLAB实现 (12) 1、系统稳定性分析 (13) 2、系统的快速性分析 (16) 3、系统的准确性分析 (16) (三)应用MATLAB分析系统的动态特性 (17) 五、结论 (19) 参考文献 (20)

时域分析的Matlab实现 一、引言 信号与系统的分析在自动控制领域有十分重要的作用。进行分析时,一般先抽象为数学模型,然后讨论系统本身的初始状态以及不同激励时的响应。对于高阶的微分方程,由于计算量庞大,人工计算难于实现。经典控制理论对高阶系统进行时域分析通常采用拉氏反变换的方法求系统响应,系统阶次越高,进行拉氏反变换的困难就越大,因此,用经典法对高阶系统进行时域分析是一件较困难的事。本文采用MATLAB 语言编程,设计了对高阶系统进行时域性能辅助分析程序,充分发挥了MATLAB 人机交互性好、函数调用方便、数学运算与绘图功能强大的优势,使分析效率和准确性大为提高。 二、时域分析基础理论 那什么是时域分析呢?时域分析是指控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能。由于时域分析是直接在时间域中对系统进行分析的方法,所以时域分析具有直观和准确的优点。系统输出量的时域表示可由微分方程得到,也可由传递函数得到。在初值为零时,一般都利用传递函数进行研究,用传递函数间接的评价系统的性能指标。具体是根据闭环系统传递函数的极点和零点来分析系统的性能。此时也称为复频域分析。

自动控制原理课程设计

金陵科技学院课程设计目录 目录 绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (10) 4.1校正前系统的传递函数的特征根....... 错误!未定义书签。 4.2校正后系统的传递函数的特征根....... 错误!未定义书签。五系统动态性能的分析.. (13) 5.1校正前系统的动态性能分析 (13) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图 (244) 八系统的对数幅频特性及对数相频特性 (24) 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性错误!未定义书签。总结 (267) 参考文献................................ 错误!未定义书签。

绪论 在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

自动控制原理知识点总结

河南省郑州市惠济区河南商业高等专科学校,文化路英 才街2号 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 2.自动控制系统的两种常用控制方式是什么?(填空) 3.开环控制和闭环控制的概念?掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) sa 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) 第二章 1.控制系统的数学模型有什么?(填空) 2.了解微分方程的建立? 3.传递函数定义和性质?认真理解。(填空或选择) 4.七个典型环节的传递函数(必须掌握)。了解其特点。(简答) 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重 点是给定作用下):式2-63、2-64、2-66 第三章 1.P42系统的时域性能指标。各自的定义,各自衡量了什么性能?(填空或选择) 2.一阶系统的单位阶跃响应。(填空或选择) 3.二阶系统: (1)传递函数、两个参数各自的含义;(填空)

(2)单位阶跃响应的分类,不同阻尼比时响应的大致情况(图3-10);(填空)(3)欠阻尼情况的单位阶跃响应:掌握式3-21、3-23~3-27;参考P51例3-4的欠阻尼情况、P72习题3-6。 4.系统稳定的充要条件?劳斯判据的简单应用:参考P55例3-5、3-6。(分析题) 5.用误差系数法求解给定作用下的稳态误差。参考P72习题3-13。(计算题) 第四章 1.幅频特性、相频特性和频率特性的概念。 2.七个典型环节的频率特性(必须掌握)。了解其伯德图的形状。(简答题) 3.绘制伯德图的步骤(主要是L(ω)) 4.根据伯德图求传递函数:参考P110习题4-4。(分析题) 5.奈氏判据的用法:参考P111习题4-6。(分析题) 6.相位裕量和幅值裕量的概念、意义及工程中对二者的要求。(填空或判断) 7.开环频率特性与时域指标的关系中低频段、中频段、高频段各自影响什么性能?注意相位裕量和穿越频率各自影响什么性能?(填空或判断) 第五章 1.常用的校正方案有什么?(填空) 2.PID控制: (1)时域表达式P122式5-18 (2)P、PI、PD、PID控制各自的优缺点?(简答题) 第六章 填空

单位负反馈系统校正——自动控制原理课程设计

目录 1.设计题目............................. 错误!未定义书签。 2. 摘要 (2) 3、未校正系统的分析 (3) 3.1.系统分析 (3) 3.2.单位阶跃信号下系统输出响应 (4) 4、系统校正设计 (7) 4.1.校正方法 (7) 4.2.设计总体思路 (7) 4.3.参数确定 (8) 4.4.校正装置 (9) 4.5.校正后系统 (10) 4.6.验算结果 (11) 5、结果 (13) 5.1.校正前后阶跃响应对比图 (13) 5.2.结果分析 (14) 6、总结体会 (15) 7、参考文献 (16)

1.设计题目 设单位负反馈系统的开环传递函数为: ))101.0)(1(/()(++=s s s K s G 用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能: 1)相角裕度045≥γ ; 2)在单位斜坡输入下的稳态误差为0625 .0≥ss e ; 3)系统的穿越频率大于2rad/s 。 要求: 1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正); 2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校 正装置的Bode 图,校正后系统的Bode 图); 3)用Matlab 编程代码及运行结果(包括图形、运算结果); 4)校正前后系统的单位阶跃响应图。

2.摘要 用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特 性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。为此,要求校正网络的最大相位超前角出现在系统的截止频率处。只要正确地将超前网络的交接频率1/aT和 1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能 指标要求,从而改善系统的动态性能。串联超前校正主要是对未校正系统在中频段的频率特性进行校正。确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。以加快系统的反应速度,但同时它也削弱了系统抗干扰的能力。在工程实践中一般不希望系数a值很大,当a=20时,最大超前角为60°,如果需要60°以上的超前相角时,可以考虑采用两个或两个以上的串联超前校正网络由隔离放大器串联在一起使用。在这种情况下,串联超前校正提供的总超前相角等于各单独超前校正网络提供的超前相角之和。 2. abstract With the frequency method of the system is the essence of advanced correction will lead the network maximum lead angle compensation at cut-off frequency after correction of opened loop frequency characteristics of the system, improve the correction system phase margin and cut-off frequency, so as to improve the dynamic performance of the system. To this end, the maximum phase lead angle of the network is required to appear at the cut-off frequency of the system. As long as the right on both sides of the advance network handover frequency 1/aT and 1/T set the cutoff frequency of the Wc in the correction system, can make the cutoff frequency Wc has correction system and phase margin meet performance requirements, so as to improve the dynamic performance of the system. Series lead correction is to correct the frequency characteristic of the system in the middle frequency band. Ensure that the corrected system of intermediate frequency is equal to the slope of 20dB/dec, the system has 45 degrees to 60 degrees of phase margin. In order to speed up the system's reaction speed, it also weakens the ability of the system to resist interference. Great general hope coefficient a value in engineering practice, when a = 20, the maximum lead angle is 60 degrees, if you need to advance angle above 60 degrees, you can consider using two or more than two series leading correction network by isolation amplifier is connected in series with the use of. In this case, series leading correction is equal to the total advance angle to provide separate lead network and provide advance angle. 关键词:串联超前校正; 动态性能 ; 相角裕度 Key words: Series lead correction ;Dynamic performance ;Phase margin

相关文档
相关文档 最新文档