文档视界 最新最全的文档下载
当前位置:文档视界 › 等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结
等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结

数列的求和方法

1、分组求和法

例1、若数列{}n a 的通项式为n

n n a 32+=,求数列{}n a

的前n 项n S

练习1、(1)已知数列{}n a 的通项式为

n

n n a 42)1(?++=,求数列{}n a 的前n 项n S

(2)有穷数列1,1+2,1+2+4,…,12421-++++n Λ 所有项的和为____________

2、错位相减法

例2、若数列{}n a 的通项式为n

n n a 32?=,求数列{}n a 的前n

项n S

练习2、已知数列{}n a 的通项式为n

n n a )2

1(?=,求数列{}n a 的

前n 项n S

3、并项法

例3、若数列{}n a 的通项式为n a n

n ?-=)1(,求2012S

练习3 (1)若数列{}n a 的通项式为)23()1(-?-=n a n

n ,求10S (2)若数列{}n a 的通项式为)34()1(1

-?-=-n a n n ,求100S

4、裂项相消法

例4、若数列{}n a 的通项式为)

1(1

+=

n n a n ,求数列{}n a 的前

n 项n S

练习4、已知数列{}n a 的通项式为1

1-+=

n n a n ,求数列

{}n a 的前n 项n S

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:

高考备考等差等比数列教案

姓名: 等差数列 1、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 2、已知等差数列{}n a 的公差1 2 d = ,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 3、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 4、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 5、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 6、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32 +-n n B .)34(2 -n n C .23n - D . 3 2 1n 7、等差数列{}n a 中,若638a a a =+,则9s = . 8、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?a a a ,则前10项的和 S 10= 9、一个等差数列共有10项,其中奇数项的和为 25 2 ,偶数项的和为15,则这个数列的第6项是 10、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若 3 37++=n n T S n n ,则8 8a b = , =+++11 513973b b a b b a 11、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.

等差数列题型总结、知识点

等差数列题型总结、知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列 一.等差数列知识点: 1等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 3等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或 b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S , k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 二、题型选析: 考试对等差数列的考察,侧重在求值、等差数列性质和前n 项和,求值的过程中,对首项和公差的把握是重中之重,其实很多的试题都是在围绕对首项和公差的应用在考察。性质的题要求学生对性质的熟练应用,题目一般在简单难度。 题型一、计算求值(等差数列基本概念的应用)

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( ) A.a n=2n-5 B.a n=3n-10 C.S n=2n2-8n D.S n=1 2 n2-2n 2.(2019·长郡中学联考)已知数列{a n}满足,a n+1+2a n=0,且a2=2,则{a n}前10项的和等于( ) A.1-210 3 B.- 1-210 3 C.210-1 D.1-210 3.已知等比数列{a n}的首项为1,公比q≠-1,且a5+a4=3(a3 +a2),则9 a1a2a3…a9等于( ) A.-9 B.9 C.-81 D.81 4.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 5.(2019·山东省实验中学联考)已知等差数列{a n}的公差不为零,S n为其前n项和,S3=9,且a2-1,a3-1,a5-1构成等比数列,则S5=( ) A.15 B.-15 C.30 D.25 二、填空题 6.(2019·北京卷)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=________,S n的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要

见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天走的里程是________里. 8.(2019·雅礼中学调研)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *).令b n =log 3(a n +1),则b 1+b 2+b 3+…+b 100=________. 三、解答题 9.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9 =-a 5. (1)若a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 10.已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列. (1)求数列{a n }的通项公式; (2)设b n =a 2n ,记S n 为数列{b n }的前n 项和,证明:S n < 163 . B 级 能力提升 11.(2019·广州调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3 (n ∈N * )的最小值为( ) A .4 B .3 C .23-2 D.92 12.设等差数列{a n }的前n 项和为S n ,a =(a 1,1),b =(1,a 10),若a ·b =24,且S 11=143,数列{b n }的前n 项和为T n ,且满足2a n -1

高一数学必修5等比数列知识点总结

高一数学必修5等比数列知识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列与等比数列 一、基本概念与公式: 1、等差(比)数列的定义; 2、等差(比)数列的通项公式: 等差数列d n a a n )1(1-+=【或=n a d m n a m )(-+】 等比数列(1)11-=n n q a a ; (2)m n m n q a a -= .(其中1a 为首项、m a 为第m 项,0≠n a ;),*∈N n m 3、等差数列的前n 项和公式:2)(1n n a a n S += 或2 )1(1d n n na S n -+= 等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式); 当q≠1时,S n =q q a n --1) 1(1=,K q K n -? S n =q q a a n --11 二、有关等差 、比数列的几个特殊结论 等差数列、① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 等比数列{}n a 中,若),,,(*∈+=+N q p n m q p n m ,则q p n m a a a a ?=? 注意:由n S 求n a 时应注意什么? 1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 2、等比数列{}n a 中的任意“等距离”的项构成的数列仍为等比数列. 3、公比为q 的等比数列{}n a 中的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、 S 4m - S 3m 、……(S m ≠0)仍为等比数列,公比为m q . 4、若{}n a 与{}n b 为两等比数列,则数列{}n ka 、{} k n a 、{}n n b a ?、? ?????n n b a

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

等比数列知识点总结及题型归纳

等比數列知識點總結及題型歸納 1、等比數列の定義: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q -===??≠?≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m m a a a a q q q a a ---=?=?= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =± 注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個 (2)數列{}n a 是等比數列211n n n a a a -+?=? 4、等比數列の前n 項和n S 公式: (1)當1q =時,1n S na = (2)當1q ≠時,() 11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n n a a qa q q a a a ++==≠?或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠?為等比數列 (3)通項公式:()0{}n n n a A B A B a =??≠?為等比數列 6、等比數列の證明方法: 依據定義:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?為等比數列 7、等比數列の性質: (2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t mn st N +=+∈, 則n m s t a a a a ?=?。特別の,當2m n k +=時,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? (4)數列{}n a ,{}n b 為等比數列,則數列{ }n k a ,{}n k a ?,{}k n a ,{}n n k a b ??,{}n n a b (k 為非零常數)均為等比數列。 (5)數列{}n a 為等比數列,每隔*()k k N ∈項取出一項23(,,,,)m m k m k m k a a a a +++???仍為等比數列 (6)如果{}n a 是各項均為正數の等比數列,則數列{log }a n a 是等差數列 (7)若{}n a 為等比數列,則數列n S ,2n n S S -,32,n n S S -???,成等比數列 (8)若{}n a 為等比數列,則數列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比數列

高考数学必考点 等差数列与等比数列 计算题专项

等差数列与等比数列测试题 1.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m )内的项的个数记为bm ,求数列{b m }的前m 项和S m 。 2.已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27 m 的项的个数记为m b .求数列{}m b 的前m 项和 m S . 3、设{}n a 是等差数列,1()2n a n b =,已知123218b b b ++= ,12318 b b b =, 求等差数列{}n a 的通项公式。 4、设数列{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 。 5、设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.

6、设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m , m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11 ,23 p q = =-,求3b ; (Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式; (Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由. 7、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记 1 ()4n n n b n N a ++=∈ 求数列{}n b 的前n 项和n T 8、已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列 (1)若 31n a n =+,是否存在* ,m n N ∈,有1m m k a a a ++=?请说明理由; (2)若n n b aq =(a 、q 为常数,且aq ≠0)对任意m 存在k ,有1m m k b b b +?=,试求a 、q 满

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

相关文档
相关文档 最新文档