文档视界 最新最全的文档下载
当前位置:文档视界 › 第七讲 研究零点的性质问题(极值点偏移)(学生版)

第七讲 研究零点的性质问题(极值点偏移)(学生版)

第七讲 研究零点的性质问题(极值点偏移)(学生版)
第七讲 研究零点的性质问题(极值点偏移)(学生版)

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

高中数学考点12 零点定理(讲解)(解析版)知识点解析

考点12:零点定理【思维导图】

【常见考法】 考点一:求零点 1.若幂函数()f x x α=的图象过点(,则函数()()3g x f x =-的零点是。 【答案】9 【解析】∵幂函数()f x x α =的图象过点,∴2α=,解得1=2α,∴()1 2f x x =∴()123g x x =-由()1230g x x =-=,得9x =. 2.函数()2 34f x x x =+-的零点是____________.【答案】1,4 -【解析】令f (x )=0,即x 2+3x-4=0,解得:x=-4,x=1. 3.若函数()2,01,0x e x f x x x ?≤=?->? ,则函数()1y f x =-的零点是___________. 【答案】0【解析】要求函数()1y f x =-的零点,则令()10y f x =-=,即() 1f x =,又因为:()2,01,0 x e x f x x x ?≤=?->?,①当0x ≤时,()x f x e =,1x e =,解得0x =. ②当0x >时,()2 1f x x =-,211x -=,解得x =,所以x =. 综上所以,函数()1y f x =-的零点是0.故答案为:04.函数y = 11x -的图象与函数y =2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于. 【答案】8【解析】

函数y 1=11x -与y 2=2sinπx 的图象有公共的对称中心(1,0),作出两个函数的图象,由图象可知,两个函数在[-2,4上共有8个交点,两两关于点(1,0)对称 设对称的两个点的横坐标分别为m 、n 则m+n=2×1=2,故所求的横坐标之和为8,故答案为8. 考点二:零点区间 1.函数()4 2x x f x -=-的零点所在区间是()A .(1,0) -B .1(0,4C .11(,42D .1(,1)2 【答案】D 【解析】易知函数()f x 为减函数,又121111(402424f -=-=->,11(1)042f =-<,根据零点存在性原理,可知函数()4 2x x f x -=-的零点所在的区间是1(,1)2,故选D.2.函数()2312x f x x -??=- ???的零点所在的区间为( )A .() 0,1B .() 1,2C .()2,3D .()3,4【答案】B 【解析】∵函数()2312x f x x -??=- ???单调递增,∴f (0)=-4,f (1)=-1,f (2)=7>0, 根据零点的存在性定理可得出零点所在的区间是()1,2,故选B . 3.函数()ln 3f x x x =+-的零点所在的区间为( )A .() 0,1B .()1,2C .()2,3D .()3,4【答案】C 【解析】∵f (x )=ln x +x -3在(0,+∞)上是增函数 f (1)=-2<0,f (2)=ln2-1<0,f (3)=ln3>0 ∴f (2)?f (3)<0,根据零点存在性定理,可得函数f (x )=ln x +x -3的零点所在区间为(2,3)故选:C . 4.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21x f f x e x e --+=-,则函数()f x 的零 点所在区间为()

拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理

《数字图像处理作业》 图像的锐化处理 ---拉普拉斯算子、prewitt算子、sobel算子性能研究对比 完成日期:2012年10月6日

一、算法介绍 1.1图像锐化的概念 在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。 为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。 考察正弦函数,它的微分。微分后频率不变,幅度上升2πa 倍。空间频率愈高,幅度增加就愈大。这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。最常用的微分方法是梯度法和拉普拉斯算子。但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。 图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。边缘检测可分为两大类基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。 1.2拉普拉斯算子 拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。扩散效应是成像过程中经常发生的现象。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义 (1) 为了更适合于数字图像处理,将拉式算子表示为离散形式: (2)

函数的图像与零点试题

高三数学函数的图像、零点 一:选择题 1.已知函数f (x )=x 2﹣2x+b 在区间(2,4)有唯一零点,则b 的取值围是( D ) A 、R B 、(﹣∞,0) C 、(﹣8,+∞) D 、(﹣8,0) 2.设,用二分法求方程在(1,3)近似解的过程中,f (1)>0,f (1.5)<0,f (2)<0,f (3)<0,则方程的根落在区间( A ) A 、(1,1.5) B 、(1.5,2) C 、(2,3) D 、无法确定 3.已知函数31 )21()(x x f x -=,那么在下列区间中含有函数)(x f 零点的是( B ) (A ))31,0( (B ))2 1 ,31( (C ))32,21( (D ))1,3 2( 4.设函数,则函数y=f (x )( A ) A 、在区间(0,1),(1,2)均有零点 B 、在区间(0,1)有零点,在区间(1,2)无零点 C 、在区间(0,1),(1,2)均无零点 D 、在区间(0,1)无零点,在区间(1, 2)有零点 5.已知1x 是方程32=?x x 的根, 2x 是方程2log 3x x ?=的根,则21x x 的值为( B ) A.2 B.3 C.6 D.10 6.已知x 0是函数f (x )=2x +的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( B ) A 、f (x 1)<0,f (x 2)<0 B 、f (x 1)<0,f (x 2)>0 C 、f (x 1)>0,f (x 2)<0 D 、f (x 1)>0,f (x 2)>0 解答:解:∵x 0是函数f (x )=2x +的一个零点∴f (x 0)=0 ∵f (x )=2x +是单调递增函数,且x 1∈(1,x 0),x 2∈(x 0,+∞), ∴f (x 1)<f (x 0)=0<f (x 2) 故选B . 7.如图是函数f (x )=x 2+ax+b 的部分图象,函数g (x )=e x ﹣f'(x )的零点所在的区间是(k ,k+1)(k ∈z ),则k 的值为( C ) A . ﹣1或0 B . 0 C . ﹣1或1 D . 0或1 解答:

教学案例《方程的根与函数的零点》

《方程的根与函数的零点》教学案例 肃南一中程斌斌 一、教学内容分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。 就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 二学生学习情况分析 地理位置:学生大多来自基层,学生接触面较窄,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。 三、设计思想 教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式 四、教学目标

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

HALCON算子函数Chapter 17:Tools

HALCON算子函數——Chapter 17 : Tools 17.1 2D-Transformations 1. affine_trans_pixel 功能:對像素坐標軸進行任意的仿射二維變換。 2. affine_trans_point_2d 功能:對點進行任意的最簡二維變換 3. bundle_adjust_mosaic 功能:對一幅圖像的嵌合體采取一系列調整。 4. hom_mat2d_compose 功能:將兩種相同類型二維變換矩陣相乘。 5. hom_mat2d_determinant 功能:計算一個同質的二維變換矩陣的行列式。 6. hom_mat2d_identity 功能:構建二維變換同樣的同質變換矩陣。 7. hom_mat2d_invert 功能:插入一個同質二維變換矩陣。 8. hom_mat2d_rotate 功能:為一個同質二維變換矩陣添加一個循環。 9. hom_mat2d_rotate_local

功能:為一個同質二維變換矩陣添加一個循環。 10. hom_mat2d_scale 功能:為一個同質二維變換矩陣添加一個縮放。 11. hom_mat2d_scale_local 功能:為一個同質二維變換矩陣添加一個縮放。 12. hom_mat2d_slant 功能:為一個同質二維變換矩陣添加一個斜面。 13. hom_mat2d_slant_local 功能:為一個同質二維變換矩陣添加一個斜面。 14. hom_mat2d_to_affine_par 功能:計算一個來自一個同質二維變換矩陣的仿射變換參數。 15. hom_mat2d_translate 功能:為一個同質二維變換矩陣添加一個旋轉。 16. hom_mat2d_translate_local 功能:為一個同質二維變換矩陣添加一個旋轉。 17. hom_mat2d_transpose 功能:將一個同質二維變換矩陣轉置。 18. hom_mat3d_project 功能:給一個二維投影變換矩陣投影一個仿射三維變換矩陣。

函数图像与零点

3. 【2014南通高三期末测试】设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2 ()1f x x =-;已知函数lg ||0()10x x g x x ≠??=?=??,, , . 则函数()f x 和()g x 的图象在 区间[]510-, 内公共点的个数为 . 【答案】15 【文·山东实验中学高三三模·2014】5.函数y= 1x n x x 的图象大致是 【答案】B 5.【常州市2013届高三教学期末调研测试】已知函数f (x )=32 , 2,(1),02x x x x ????-<0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取 值范围是________. 答案:[1 2 ,1)∪(1,2] 9.已知函数y =f (x )和y =g (x )在[-2,2]的图象如下图所示:

则方程f [g (x )]=0有且仅有________个根,方程f [f (x )]=0有且仅有________个根. 解析:由图可知f (x )=0有三个根,设为x 1,x 2,x 3,- 2

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

非线性算子

非线性算子又称非线性映射,不满足线性条件的算子。泛函分析的研究对象主要是线性算子及其特殊情况线性泛函。但是,自然界和工程技术中出现的大量问题都是非线性的。数学物理中的一些线性方程其实都是在一定条件下的近似。为研究这些非线性问题,涉及到的算子(映射)将不能只局限于线性算子。人们从两种不同的途径研究非线性问题:①针对具体问题,考察具体非线性算子的特征,解释非线性现象。②从一般的算子概念出发,添加适当的分析、拓扑或代数性质导出一些一般性的结论。 代数、几何、拓扑中各种非线性映射是形形色色的,分析学中经常遇到的非线性算子则大抵由乘法、函数的复合以及各种线性算子组合而成。常见的非线性积分算子有:乌雷松算 子其中K(x,y,t)是 0≤x,y≤1,t∈R1上的连续函数;哈默 斯坦算子·,其中K是【0,1】×【0,1】上某p次可积函数,?(y,t)在【0,1】×R1上可测,对固定的y关于t连续。常见的微分算子有:KdV算子,极小曲面算子等。 许多非线性算子出现于非线性方程之中,从而有关非线性算子的理论就围绕着非线性方程的求解的研究而展开。设T是从B空间(巴拿赫空间)X到B空间Y的算子,设y∈Y,求解x∈X,满足: (1) 有时特别地考察y =θ(θ是Y中的零元)的情形,称解x为T的零点。显然,若T是一个满射,则(1)总有解,于是人们讨论在什么条件下T具有满射性.又若X=Y,方程(1)的求解问题有时化归寻求算子T1x = Tx+x-y的不动点 (2) 的问题。这样提问题有助于利用几何直观。 和线性方程的解集总是仿射集(线性子空间的平移)不同,方程(1)的解集构造很复杂,它可能对某些y是空集,而对另一些y则非空。其个数可能只有一个,可能有有穷多个,也可能有无穷多个;可能是孤立的,可能有聚点,也可能是连续统。 以X为定义域,取值为Y(映X入Y中)的子集的映射,称为集值映射。相应于(1)的求解问题写成下列从属关系: (3) 算子的微分学从分析上研究一般算子的途径是把数学分析中研究函数的微积分学推广到算子。设X、Y都是B空间,U是X中的一个开集,f:U→Y,称f在x0∈U连续,是指 相应于方向导数概念的是加托导数,简作G导数。称f在x0处G可微,是指对任意的h∈X,存在d f(x0,h)∈Y,使得

利用导数研究函数的图像及零点问题(基础)6

利用导数研究函数的图像及零点问题 【复习指导】 本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用. 基础梳理 1.确定函数的图像 ①.特征点:零点,极值点,顶点,与y轴的交点; ②.特征线:渐近线,对称轴. 2.函数的零点 ⑵.求函数的零点的知识提示: ①.判别式; ②.介值定理; ③.单调性. 两个注意 ⑴.描绘函数的图像首先确定函数的定义域. ⑵.注意利用函数的图像确定函数的零点. 三个防范 ⑴.. ⑵.. ⑶. 常见函数的图像

⑴.函数(0,0)x y ae bx c a b =++><与函数ln (0,0)y ax b c x a c =++><的图像类似于二次函数2(0)y ax bx c a =++>的图像. ⑵.函数(0,0)x y ae bx c a b =++<>与函数ln (0,0)y ax b c x a c =++<>的图像类似于二次函数2(0)y ax bx c a =++<的图像. ⑶.函数2(0,0)x y ae bx cx d a b =+++><与函数2ln (0,0)y ax bx c d x a d =+++><的图像类似于二次函数32(0)y ax bx cx d a =+++>的图像. ⑷.函数2(0,0)x y ae bx cx d a b =+++<>与函数2ln (0,0)y ax bc c d x a d =+++<>的图像类似于二次函数32(0)y ax bx cx d a =+++<的图像. 双基自测 ⑴.画函数1ln y x x =--的图像. ⑵.画函数2x y e x =-的图像. ⑶.画函数x e y x =的图像. ⑷.画函数ln x y x = 的图像. ⑸.关于x 的方程ln 1x e x =的实根个数是 .1 初等数学的方法能够解决的函数问题:定义域、奇偶性、周期性、对称轴、渐近线 初等数学的方法未能彻底解决的函数问题:值域、单调性、零点、极值点 考点一 函数的图像问题 题型⑴.画函数的图像 【例1】画函数1x y e x =--的图像. 【练习1】画函数2x y x e =-的图像.

方程的根与函数的零点(20200618081827)

课题: 3.1.1 《方程的根与函数的零点》 教材:人教A 版教材必修1 一、教材分析 (一)内容 《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书》 A 版必修 1 第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点存在性定理,是一节概念课. (二)地位函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而 函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础. 因此本节内容具有承前启后的作用,地位至关重要. (三)教学目标1.通过观察二次函数的图像,准确判断一元二次方程根的存在性及根的个数,描述函数的零点与方程的根的关系.理解并会用函数在某个区间上存在零点的判定方法. 2. 通过研究具体的二次函数再到研究一般的函数,让学生经历“类比T归纳T应用”的过程,感悟由具体到抽象的研究方法. 3. 在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,发展学生对变量数学的认识,体会函数知识的核心作用. (四)重点、难点重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点. 二、学情分析 高一学生已经学习了函数的概念,对初等函数的性质、图像已经有了一个比较系统的认识与理解.特 别是对一元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用,但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察,归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位. 三、教法、学法与教学手段 在教法上,本次课采用以学生为主体的探究式教学方法,采用“ 设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。 在学法上,精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,以培养学生探究精神为出发点,着眼于知识的形成和发展,注重学生的学习体验,给不同层次的学生提供思考、创造、表现和成功的舞台. 在教学手段上,我一是采取多媒体课件、多媒体投影仪、几何画板相结合,它既便于学生直观,节约时间,又能利用情境营造课堂氛围,引发学生的兴趣?二是配以我校特色的导学案,它能带动学生激活思

指数函数对数函数幂函数性质和基本运算

指数函数对数函数幂函数性质和基本运算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

指数.对数.幂函数基本性质和运算 (),0-∞上的单调性 1.求值:(1)33log 5log 15-=____________;(2)2345log 3log 4log 5log 2???=__________ (3)211511336622263a b a b a b ??????-÷-= ??? ???????_____;(4)32 43 16881-??? ???=_________________ 2.比较大小:(1)0.80.73,3;(2)ln1.4,ln1.6(3)32log 2,log 3 (4)372log log 6log 0.8π, ,;(5)0.70.60.6,0.7 3.函数y =(x +4)2的递减区间是( ) A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4) 4.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m = ( ) 5.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,)的图象恒过点________. 6.已知(1)()()1 122432m m --+<-,(2)()()lg 4lg 32m m +>-,求m 的取值范围 7.解不等式:(1)()lg2lg 3x x >-;(2)123142x x +-??≥ ??? ;(3)()12log 242x -≥- 8.函数的定义域(1)x x y --=2) 1(log 2(2)31log (32) y x =-9.已知{}2log ,1A y y x x ==>,1,12x B y y x ??????==>?? ??????? ,求A B 10函数12 log 3,1y x x =+≥的值域

相关文档