文档视界 最新最全的文档下载
当前位置:文档视界 › 四轴飞行器通用遥控器原理图

四轴飞行器通用遥控器原理图

四轴飞行器运动分析

四轴飞行器运动分析 一、飞行原理 四轴飞行器的结构形如图所示,其中同一对角线上的电机转向应该相同,不同对角线上的电机转向应该相反。这样,当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。其基本运动状态可分为: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动;

下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

四轴飞行器飞行原理

四轴飞行器飞行原理 四旋翼飞行器结构 形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。 其基本运动状态分别是: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动; 在控制飞行器飞行时,有如下技术难点: 首先,在飞行过程中它不仅受到各种物理效应的作用,还很容易受到气流等外部环境的干扰,很难获得其准确的性能参数。

其次,微型四旋翼无人飞行器是一个具有六个自由度,而只有四个控制输入的欠驱动系统。它具有多变量、非线性、强耦合和干扰敏感的特性,使得飞行控制系统的设计变得非常困难。 再次,利用陀螺进行物体姿态检测需要进行累计误差的消除,怎样建立误差模型和通过组合导航修正累积误差是一个工程难题。这三个问题解决成功与否,是实现微型四旋翼无人飞行器自主飞行控制的关键,具有非常重要的研究价值。 下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋

md4系列四旋翼无人机系统快速操作手册

md4系列四旋翼无人机系统 快速操作手册 佛山市安尔康姆航拍科技有限公司 2011年6月

一、起飞前的准备 1、飞行器动力电池:用电池电量显示仪对电池进行测试,对于md4-200显示 参数须高于16.5V,对于md4-1000,显示参数须高于25V。 2、遥控器:每次飞行时一定要把遥控器电池充满电,保证不会因为电量的原因 导致遥控器无法控制飞行器;遥控器的频率必须飞行器接收机的频率一致,否则,飞行器无法手动起飞; 3、地面站电脑:携带足够的设备电池,保证地面站电脑的电池能满足该次作业 的要求,不要出现在飞行过程中地面站电脑电量不足而关机的情况; 4、地面站供电:地面站承担着解码飞行器下传数据的重要任务,一旦断电,则 无法显示任何数据,这样会对安全飞行带来隐患; 5、任务载荷:如果是携带相机或摄像机,需保证该设备的电量及存储卡的容量。 6、飞行环境:md4-200要求风速小于6米/秒,md4-1000要求风速小于12 米/秒,周围环境空旷(起飞点离障碍物的距离应保持在20米以上),对GPS 信号和磁力计不存在干扰(详情下文有说明)。

二、飞行相关 1、将飞行器放置在平坦的地面,保证机体平稳,起飞地点尽量避免有沙石、纸 屑等杂物; 2、打开遥控器电源,为飞行器插入充满电的电池,自检通过后,飞行器会每隔 两秒发出一声“滴”的响声,表示正处于搜索GPS信号状态; 3、打开地面站软件mdCockpit,弹出下行数据回放页面,重点观察GPS信号 跟设备状态。 GPS信号的确认: 观察地面站软件的下行链路解码器界面,保证GPS的定位 精度不高于4米,如右图红框部分所示。 设备状态的确认: 该步骤主要检查磁力计、GPS及SD卡的工作状态,正常模式如下图: 4、遥控器摇杆动作的分配: 图15:摇杆动作的分配

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

四轴飞行器:让PCB板飞!

我们在制作一个非常袖珍的四轴飞行器,就用PCB作为承力结构。第一个版本被命名为疯狂直升机。 它的主要特点有: ?STM32 Cortex-M3 CPU ?3轴加速度计 ?1轴/2轴陀螺仪 ?Nordic 2.4GHz 射频通信芯片 ?电动机,螺旋桨和银辉(Silverlit)X翼模型飞机的电池 这架直升机可以从电脑上通过USB无线适配器遥控。我们制作了三架样品(每个成员各一架),并完成了大多数的固件程序。 为了达到稳定飞行的目的,还需要解决一些控制上的问题,以及完成电脑上的控制程序模块。更多的信息和实际飞行视频会在稍后公布:) 这架直升机是通过PC机上运行的Python程序控制的,我们实际上用一个游戏机的蓝牙手柄来操纵它。 疯狂直升机四轴飞行器详述 像承诺过的那样,我们要在这里公布疯狂直升机(也是我们第一架四轴飞行器)的更多信息。该系统的主要架构如下:

疯狂直升机的高层次系统图。 直升机本身是围绕CPU组织起来的。CPU的任务是读取物理传感器(陀螺仪和加速度计)的测量结果,给出控制信号控制电机,让直升机保持稳定。通过一个控制反馈回路,CPU每秒能够对电机发送250次调节转速的指令。无线通信的带宽需求很低,仅仅需要发送操作命令和接受遥测数据。CPU上运行的程序可以通过无线通信更新。 控制和遥测程序在电脑上运行,控制程序从手柄读取输入,然后向直升机发送命令。我们也有调节直升机上控制参数的程序模块,并且会记录下传感器的测量结果,方便调整控制回路。 所有这些开发工作在Windows或linux系统上完成。事实上有三个人同时在这个项目上工作,两个人在Linux上工作,剩下一个人主要使用Windows。利用自由/开源软件(FLOSS,Free/Libre and Open Source Software)许可对提高工作效率非常有帮助。我们主要使用GCC 编译器编译直升机程序,GNU(GNU's Not Unix,一个包含了递归的缩写!GNU Linux工程是为与可复制﹑修改﹑和重新分配的源代码一起的类Unix操作系统的发展而建立的。)建立我们的工程,Mercurial(一个轻量级的分布式版本控制系统)管理我们的源代码,与直升机之间的通讯采用python/pyusb(一个python上的USB通讯软件库)。所有这些软件都能在linux和windows系统间来回无缝切换,使这个项目的管理变得容易许多。 电动机之间的距离(X轴和Y轴方向)大约有8cm,整个飞行器的重量只有20g。 电路板顶面的细节

四旋翼飞行器建模与仿真Matlab概要

四轴飞行器的建模与仿真 摘要 具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽 的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状 态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描 述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上 是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿 真模型,模型建立后在 Matlab/simuli nk 软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissanee mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilia n app licati ons. In the dissertati on, the detailed an alysis and research on the rack structure and dyn amic characteristics of the laboratory four-rotor aircraft is showed in the dissertatio n. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the camp aig n to make the research and an alysis. The four-rotor aircraft has many op erati ng status, such as climb ing, dow ning, hoveri ng and roll ing moveme nt, p itch ing moveme nt and yaw ing moveme nt. The dyn amic model is used to describe the four-rotor aircraft in flight in the dissertati on. On the basis of the above an alysis, modeli ng of the aircraft can be made. Dyn amics modeli ng is to build models un der the principles of flight of the aircraft and a variety of state of moti on, and Newt on - Euler model with reference to the four-rotor aircraft.The n the simulatio n is done in the software of Matlab/simuli nk. Keywords: Quad-rotor ,The dynamic mode, Matlab/simulink 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器 ,它非常适合近地侦察、监视的任务, ,进行飞行器的建模。动力学建模 -欧拉模型建立的仿

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

四轴飞行器说明书.doc

4-AXIS AEROCRAFT INSTRUCTION MANUAL 四轴飞行器说明书 ATTENTION:(注意事项) 1、This 4-axis aircraft is suitable for indoor/outdoor flying.but make sure the outdoor wind is not over grade 4. 这款四轴飞行器适用于室内/室外飞行。但要确保室外风力不超过4级。 2、2.4 technology adopted for anti-interference,even more than one quadcopter is flying in the same area they will not interferewith each other. 采用2.4GHZ抗干扰技术, 即使一个以上的飞行器在同一地区飞行,它们也不会彼此干扰。 Beside ,players can let the the aircraft fly up/down/forward/backward,left/right sideward and tuen left/right. 此外,玩家可以让飞机飞上/下/前进/后退,左转/右转和左翻/右翻。 3、Please read this man ual carefull before using,in the mean time ,please well keep the manul for future reference. 请在使用前仔细阅读本手册,同时,请妥善保管说明书备查。 ALL PARETS INCLUDED( 组成结构简介) MAIN MENU:(菜单) Lcd screen液晶屏幕Power light 电源指示灯 Servos舵机Flip key 翻转 Left hand throttle shows左手调节显示Forward and back left and right前,后,左,右Signal display信号指示Direction joystick方向操纵杆 Accelerator and steering 油门和转向Forward/back trimming 前进/后退微调 Left-turn/riggt-turn trimming 左/右转微调Left/right sideways timming左/右侧微调Power switch 电源开关 TRANSMITTER BATTERY INSTALLATION:( 安装发射器电池) Aircraft battery change:( 更换飞机电池) THE RELATED NOTES ABOUT LITHIUM BATTERY’S USAGE: 关于锂电池使用的相关说明 HOW TO CONTROL:(操作说明) 1、Aircraft power switch to the “ON”position.the vehicle-mounted with the flat ground.Motherboard light is blink,don’t turn the fuselage again. 飞行器电源开关拔到“ON”位置。将飞行器平放在地面上,主板上的灯开始闪烁,不要再转动机身。 2、about 6 second,the operation of the throttle stick to the bottom,and then the power switch to the

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

TI杯四旋翼飞行器要点

2014年TI杯大学生电子设计竞赛报告 A题:四旋翼飞行器 摘要:小型四旋翼飞行器是一种通过对四个旋翼联合驱动而实现垂直起降的无人飞行器,是一个模块化、具有较高硬件灵活性和较好操控性的平台装置,这个平台装置能够为科学实验、工程监控、气象监测、灾害预警等提供很好的应用平台。本文以自制小型电动四旋翼飞行器作为研究平台,通过对MPU6050传感器测得运动数据研究,实现对其空中运动姿态的数学描述,建立完整的动力学模型,并针对姿态解算方法和飞行控制算法展开研究,最终完成飞行器的稳定悬停等研究目标。 关键词:四旋翼飞行器;MPU6050传感器;运动姿态;动力学模型;稳定悬停。

目录 一、系统设计要求................................................ - 1 - 1. 1、任务.................................................. - 1 - 1. 2、设计相关要求.......................................... - 1 - 1.2.1 、基本要求............................ 错误!未定义书签。 1.2.2、发挥部分......................................... - 1 - 二、系统方案论证与选择.......................................... - 1 - 2.1 、系统基本方案.......................................... - 2 - 2.1.1、处理器选取方案.................................... - 2 - 2.1.2、轨迹探测模块选取方案................. 错误!未定义书签。 2.1.3、高度传感器选取方案................................ - 3 - 2.1.4、平衡传感器选取方案................... 错误!未定义书签。 2.1.5、电源模块选取方案.................................. - 4 - 2.1.6、电机驱动模块选取方案.............................. - 4 - 2.1.7、加速度模块选取方案................... 错误!未定义书签。 2.2、系统各模块的最终方案................................... - 5 - 2.2.1、方案描述.......................................... - 5 - 2.2.2、具体方案.......................................... - 5 - 三、系统的硬件设计与实现........................................ - 7 - 3.1、系统硬件的基本组成部分................................. - 7 - 3. 2、主要单元电路的设计.................................... - 7 - 3.2.1、控制电路.......................................... - 7 - 3.2.2、摄像头循迹电路....................... 错误!未定义书签。 3.2.3、超声波测距电路....................... 错误!未定义书签。 3.2.4、电机驱动电路...................................... - 8 - 四、系统软件设计................................................ - 9 - 4.1、基本要求流程图......................................... - 9 - 4.2、超声波发送和接收模块流程图............................. - 9 - 4.3.软件流程图.......................................... - 10 - 4.4.主要算法程序代码.................................... - 11 - 五、系统测试................................................... - 14 - 5.1、测试仪器.............................................. - 14 - 5.2、指标测试.............................................. - 14 - 5.2.1、测试方法和条件................................... - 14 - 5.2.2、测试数据及测试结果分析........................... - 14 - 六、总结....................................................... - 15 - 参考文献................................................... - 16 -

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

相关文档