文档视界 最新最全的文档下载
当前位置:文档视界 › 《感测技术基础》(第四版)习题解答

《感测技术基础》(第四版)习题解答

《感测技术基础》(第四版)习题解答
《感测技术基础》(第四版)习题解答

《感测技术基础》(第四版)习题解答

长江大学孙传友编

绪论

1、什么是感测技术为什么说它是信息的源头技术

答:传感器原理、非电量测量、电量测量这三部分内容合称为传感器与检测技术,简称感测技术。

现代信息技术主要有三大支柱:一是信息的采集技术(感测技术),二是信息的传输技术(通信技术),三是信息的处理技术(计算机技术)。所谓信息的采集是指从自然界中、生产过程中或科学实验中获取人们需要的信息。信息的采集是通过感测技术实现的,因此感测技术实质上也就是信号采集技术。显而易见,在现代信息技术的三大环节中,“采集”是首要的基础的一环,没有“采集”到的信息,通信“传输”就是“无源之水”,计算机“处理”更是“无米之炊”。因此,可以说,感测技术是信息的源头技术。

2、非电量电测法有哪些优越性。

>

答:电测法就是把非电量转换为电量来测量,同非电的方法相比,电测法具有无可比拟的优越性:

1、便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器的测量幅值范围(量程)。

2、电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,因此采用电测技术将具有很宽的测量频率范围(频带)。

3、把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。

4、把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。

3、什么叫传感器什么叫敏感器二者有何异同

/

答:将非电量转换成与之有确定对应关系的电量的器件或装置叫做传感器。能把被测非电量转换为传感器能够接受和转换的非电量(即可用非电量)的装置或器件,叫做敏感器。如果把传感器称为变换器,那么敏感器则可称作预变换器。敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。

4、常见的检测仪表有哪几种类型画出其框图。

答:目前,国内常见的检测仪表与系统按照终端部分的不同,可分为模拟式、数字式和微机化三种基本类型。其原理框图分别如图0-3-1、图0-3-2、图0-3-3所示。(略见教材)

第1章

1、、在图1-1-3(b)中,表头的满偏电流为,内阻等于4900 ,为构成5mA、50 mA、500 mA三挡量程的直流电流表,所需量程扩展电阻RRR分别为多少

解:

;

据公式(1-1-8)计算得Ω=-Ω

=

-=

++10011.0549001

321mA

mA

n R R R R g ,

据公式(1-1-10),图1-1-3(b )有:

Ω=Ω+Ω?=

+++=

+10)1004900(501.0)(3212

21mA

mA

R R R R I I R R g g , Ω=Ω+Ω?=

+++=1)1004900(5001.0)(3211

1mA

mA

R R R R I I R g g

故Ω=Ω=90,932R R

2、、在图1-2-2中电压表V 的“Ω/V ”数为20k Ω/V,分别用5V 量程和25量程测量端电压U 0的读数值分别为多少怎样从两次测量读数计算求出E 0的精确值 解: )

5V 档量程内阻 ()Ω=?Ω=k V k R V 1005201,

25V 档量程内阻 ()Ω=?Ω=k V

k R V 50025202

图1-2-2中 伏50=E ,Ω=k R 1000, 5V 档读数V E R R R V V V 5.25100100100

001101=?+=?+=

25V 档读数V E R R R V V V 17.45100

500500

002202=?+=?+=

55

25

12===

V V K ,代入公式(1-2-8)式得: ()()V U U K U K E 006.55

.217.4517.415101

02

02

'

0≈-?-=

-

-=

|

3、证明近似计算公式(1-2-8)式。 证明:

量程U 1档的内阻为R U1,11U m R I U ?=,

量程U 2档的内阻为R U2,22U m R I U ?=, ∴

K U U R R U U ==1

2

12。 0110

01R R R E U U U +=, ∴1010

1

0U U R U E R R -?=。 0220

02R R R E U U U +=, ∴202

2

0U U R U E R R -?=, ∴

202

0210101U U U U R U E

R R U E R -?=-?

解得:???? ??-=?-?=-01102

20010

102021

2U R U R E U E R U E R R R U U U U U U , [

∴()()()01

0202

01021021010212021201102212011U U K U K U U K R U R K U U R R U R R U R U R R R E U U U U U U U U U U --=

???? ?

?-?-=--=--=

4、模拟直流电流表与模拟直流电压表有何异同为什么电流表的内阻很小,而电压表的

内阻却很大

答:模拟直流电流表与模拟直流电压表的表头都是动圈式磁电系测量机构。模拟直流电流表是由“表头”并联很小的分流电阻构成,指针的偏转角与被测直流电流成正比;模拟直流电压表是由“表头”串联很大的分压电阻构成,指针的偏转角与被测直流电压成正比。

由公式(1-1-9)和图1-1-2可见,电流表的内阻为

,M

m

g

g g

s g s I I R n

R R R R R r ==

+=

因m M I I >>,故g R r <<。即电流表的内阻很小。 由公式(1-2-3)和图1-2-1可见,电压表的内阻为

m

M

n e v I U R R R =

+=,e m m R I U =因m M U U >>,故e v R R >>即电压表的内阻很大。 5、用全波整流均值电压表分别测量正弦波、三角波和方波,若电压表示值均为10V ,

问三种波形被测电压的有效值各为多少 …

解:均值电压表的读数是按正弦波的有效值定度的,因此对正弦波来说,其有效值就是均值电压表的读数值,即V

U U a 10==,其平均值为

V K U K U U F a F 911.1/10//====。

均值电压表测量三种波的读数相同,表明三者的平均值相同即均为9V 。因此三角波的有效值为V K U U F 36.1015.19=?=?=,方波的有效值为V K U U F 919=?=?=。

6、用峰值电压表分别测量正弦波、三角波和方波,电压表均指在10V 位置,问三种波形被测信号的峰值和有效值各为多少

解:峰值电压表的读数是按正弦波的有效值定度的,因此对正弦波来说,其有效值就是峰值电压表的读数值,即V U U a 10==,其峰值为V U K U P P 1.14102=?=

=。

峰值电压表测量三种波的读数相同,表明三者的峰值相同即均为。因此, 三角波的有效值为V K U U P P 16.873.11.14/===, 方波的有效值为V K U U P P 1.141/1.14/===。

7、验证表1-2-1中全波整流、锯齿波、脉冲波、三角波的K 、Kp 、U 和U 值。 解:1)全波整流:

()t A t u ωsin =,

??==

π

φφπω20

0sin 21sin 1d A dt t A T U T , ∴()()

ππφφπφφφφπππππππA A A d A d A U 224cos cos 2sin sin 212020=?=+-=??????-+=??, ()()??

?-?

===π

π

φφπφφπ

20

2

20

2

2

022cos 12

21sin 21

1d A d A dt t u T U T

2

22sin 4202

A

A =

??? ??+=

π

φφπ。 :

11.12

2/22/====

π

πA A U U K F ,414.122/===

=A A U U K P P 2)锯齿波:

221

A

T T A U =??=,3

310

3

3202A t T

A dt t T A T U T

T =

?=??? ??=?。

15.13

2

2/3/====

A A U U K F , 73.133/===

=A A U U K P P 3)脉冲波:

A T

t T t A U K K ?=?=,T t A dt A T U K t K ==?02

1。

K K K F t T

A t T T t A U

U K ===

, K

K

P P t T T

t A A U U K =

=

= 4)三角波:

-

2

22122

1A T T A T A U =?+?=。

8、使用电流互感器要注意些什么

答:由于电流互感器付边匝数远大于原边,在使用时付边绝对不允许开路。否则会使原边电流完全变成激磁电流,铁心达到高度饱和状态,使铁心严重发热并在付边产生很高的电压,引起互感器的热破坏和电击穿,对人身及设备造成伤害。此外,为了人身安全,互感器付边一端必须可靠地接地(安全接地)。

9、用电动系功率表测量功率应怎样接线怎样读数

答:第一,电流支路与负载串联,电压支路与负载并联。

第二,电流线圈的“*”端和电压线圈的“*”端应同是接高电位端或同是接低电位端。否则,电压线圈与电流线圈之间会有较大的电位差,这样不仅会由于电场力的影响带来测量误差,而且会使两组线圈之间的绝缘受到破坏。 <

第三,电流线圈和电压线圈的“*”端应同为电流的引入端或引出端,否则,功率表指针将反向偏转。如果负载是吸收有功功率(即负载中电压与电流相位差φ<90°),则按图1-3-2(a)、(b)接线,功率表指针都是正向偏转。如果按此接线时发现功率表指针反向偏转,那就表明被测负载实际上是发出有功功率的等效电源。这时,须改变电流支路的两个端钮的接线,变为图1-3-2中(c)和(d)的接线方式。

为了减小测量误差,应根据负载阻抗大小和功率表的参数来选择正确的功率表接线方式,图1-3-2中(a)和(c)为“电压支路前接”方式,适合于负载阻抗Z 远大于功率表电流线圈阻抗Z 的情况,例如在变压器和电动机空载试验时,应采用这种接法。图1-3-2中(b)和(d)为“电压支路后接”方式。适合于负载阻抗Z 远小于功率表电压支路阻抗Z 的情况。例如在变压器和电动机短路实验时,应采用这种接法。

只要读得功率表的偏转格数Nx ,乘上功率表分格常数C ,就可求得被测功率的数值Px :

x x P C N =?

10、为什么万用表能测量多种物理量 答:万用表由“表头”、测量电路及切换开关组成。模拟式万用表是基于直流电压模拟测量的检测仪表,它的表头是动圈式磁电系测量机构,表头指针偏角与线圈的直流电压成线性正比关系,故通常称为“模拟表头”。模拟式万用表中与表头配接的测量电路有多个,能分别将电流、电压、电阻等多种电量转换成加到“模拟表头”的直流电压。通过切换开关,更换不同的测量电路便可测量电流、电压、电阻等多种电量。

数字式万用表是基于直流电压数字测量的检测仪表,其核心部件就是A/D 转换器及与之相连的数字显示器,能将直流电压转换成数字显示,故通常称为“数字表头”。数字式万用表中与表头配接的测量电路有多个,能分别将电流、电压、电阻等多种电量转换成加到“数

字表头”的直流电压。通过切换开关,更换不同的测量电路便可测量电流、电压、电阻等多种电量。

2章

1、采用图2-1-6测量被测信号频率f ,已知标准频率f c =1MHz ,准确度为7102-?,采用m=1000分频,若f=10KHz,试分别计算测频与测周时的最大相对误差Δf/f 。

解:

由题意可知:

7102-?=?c

c

f f ,MHz f c 1=,310=m ,kHz f x 10=。 测频时,根据(2-1-13)式:

()

1.01021.010210101010177336±≈?+±=???? ???+???±=?

??

? ???+±=?--c

c

x

c x x f f mf f f f 。 测周时,根据(2-1-22)式:

576331010210101010--±≈???? ???+??±=???

? ???+±=?=?c

c

c

x x x x x f f mf f f f T T 。 )

2、已知图2-1-6中计数器为四位十进制计数器,采用m=100分频,计数器计数脉冲频率最大允许值为50MHz ,标准频率f c =5MHz ,Δf c /f c =7101-?,要求最大相对误差Δf/f=±1%,求该频率计的测频范围,若已知计数结果N=500,求被测信号频率和相对测量误差。

解:

由题意可知:210=m ,MHz f 50max =,MHz f c 5=,7

101-?=?c c f f ,

%1±=γ,500=N ,44max 10110≈-=N 。

因m N >,故采用测频方式,根据(2-1-18)式可得:

Hz m f f c x 626min

10501

.010105?=??==γ。 据(2-1-15)式,MHz f m N f c x 50010510

10624max max

=??=?=。

`

据(2-1-16)式,MHz MHz f 50050max <=,故取MHz f x 50max =。 测频范围:MHz 5~MHz 50。

若500=N ,则MHz m Nf f c x 2510

10550026

=??==。 将500=N ,7

101-?=?c c f f 代入(2-1-13)式,

%2.05001101500117±=±≈??? ???+±=???

? ???+±=?-c c x x

f f N f f 。

3、以图2-2-2为例说明怎样用图2-2-1(a)电路测量时间间隔 解:

如果需要测量如图2-2-2(a)所示两个输入信号1u 和2u 的时间间隔t g 。可将1u 和2u 两

个信号分别加到图2-2-1的A 、B 通道,把图中开关S 断开,触发器A 触发电平置于1U ,触发沿选“+”,触发器B 触发电平置于2U ,触发沿也选“+”。这样得到的计数结果N=tg/Tc ,即代表时间间隔t g =NT c 。

4、采用图2-3-2测量两个频率为1KHz 相位差72°的正弦信号,若时标脉冲频率为500KHz ,试计算相位量化误差和计数器计数结果。

解:

相位量化误差:0

3

300072.010

500101360360360=???=?=?=?c c f f T T ?, 计数结果:10072.0720

==?=

??x N 。

5、为什么图2-3-1测量相位差无须先测量信号周期而图2-3-2测量相位差须先测量信号周期 ;

解:

由公式(2-3-3)可得,图2-3-1测量相位差的输出数字为

360

0x

g q U q U N ??==

(式中q 为A/D 的量化单位,即1=N 所对应的模拟输入电压)与信号周期T 无关。因此无须先测量信号周期T 。

由公式(2-3-4)可知,图2-3-2测量相位差的输出数字为

360

x

c T T N ??=

与信号周期T 有关。因此须先测量信号周期T 。

6、试比较频率计数式检测仪表与时间计数式检测仪表的异同。

答:从频率计数式检测仪表与时间计数式检测仪表的原理框图(图2-4-1、图2-4-2)可见,二者都是基于脉冲计数的工作原理,因此都包含:选通脉冲的闸门、脉冲的计数器、计数结果的显示器。 {

二者的不同点在于被计数的脉冲的产生方式不同和计数脉冲选通的方式不同。频率计数式检测仪表由频率式传感器将被测量X 转换成频率f 的脉冲,时基信号发生器控制闸门打开的时间T ,计数器的计数结果为XST fT D ==。时间计数式检测仪表由标准频率发生器产生频率f 的脉冲,计时式传感器将被测量X 转换成时间T 控制闸门打开,计数器的计数结果为XSf fT D ==。

第3章

1.有一交流电桥如题1图所示,试问:

(1)该电桥能否平衡,为什么如果能平衡,写出其平衡方程式。 (2)若只调节R 和R ,电桥能否平衡为什么

题1图

1、 《

2、 解:

电桥平衡的条件是相对两臂阻抗的乘积相等,即

()4233111R R C j R L j R =???

?

?

?

+

+ωω,为此,要求等式两边的实部相等,而且虚部也相等,即423131R R C L R R =+

且03

1

31=+C j R R L j ωω。 只调节R 和R ,电桥不能平衡,因为只调节R 和R ,不能使虚部相等的条件也得到满足。

2、、差动电阻传感器如果不是接入电桥横跨电源的相邻两臂,而是接入电桥的相对两臂,会产生什么不好的结果

解:

差动电阻传感器如果接入横跨电源的相邻两臂,即令 :

R R Z ?+=1,R R Z ?-=2,R Z Z ==43,代入公式(3-1-2)得

R R U

R R R

R R U U 2220?=???

??-?+= 差动电阻传感器如果接入电桥的相对两臂,即令

R R Z ?+=1,R R Z ?-=3,R Z Z ==42,代入公式(3-1-2)得

)12)(21(12)2)(2()(20

-??+??=?-?+?-=?

??

??+?--+?+?+='

R

R R R R R U R R R R R U R R R R R R R R R U U 对比两种结果可见,00U U <<'因此输出几乎为零,而且'

0U 的分母中包含有R

R

?,因此存在非线性,而0U 则不存在非线性。

3、差动电阻传感器电桥与单工作臂电阻传感器电桥相比有哪些优越性为什么会有这些优越性

解: $

设被测非电量引起的电阻变化为R ?,温度变化引起的电阻变化为T R ?。

将T R R R Z ?+?+=1,R Z Z Z ===432代入(3-1-2)得单工作臂电阻传感器电桥的输出电压为

R

R R R

R R U U T T

211

40?+?+

??+??=

将T R R R Z ?+?+=1,T R R R Z ?+?-=2R Z Z ==43代入(3-1-2)得差动电阻传感器电桥的输出电压为

R

R R

R U U T ?+

???=

11

20 两式对比可见,采用差动电桥有三个优越性:1)可成倍提高输出电压,2)可消除非线性误差,3)可减小温度误差。

4、图3-2-4电路输出端若接入一个量程为5伏的电压表,相应的R 的量程会变为多少当量程开关SW 置于1档时,若测得U=伏,试问R 为多少欧姆 )

解:

由公式(3-2-5)可得,SW 置于1档时R 的量程为

Ω=?==

5002002

5

0N ref M xM R U U R ,同理SW 置于2、3、4、5档时R 的量程分别为ΩΩΩΩM k k k 5,500,50,5。当量程开关SW 置于1档时,若测得U=伏,则 R 为

Ω=?==

2502002

5.20N ref x R U U R 。

5、怎样选取图3-2-6中滤波器的类型及频率为什么要这样选择

解:图3-2-6中滤波器应选取低通滤波器。为了滤去方波基波及其谐波而且允许频率

f 的被测非电信号通过,一般选取

x

h f f f )5~3()

5~3(0

==

6、试推导图3-2-8的计算公式(3-2-18)。 解:

图3-2-6中当触发器Q 端为高电平OH U 时,OH U 通过R 对C 充电,当触发器Q 端为低电平时,C 通过二极管放电。图3-2-8中当触发器Q 端为高电平OH U 时,OH U 通过R 对L 充电,当触发器Q 端为低电平时,L 通过二极管放电。

RL 电路的方程为0000

0u dt

du u dt du R L u dt di L

u i +=+=+=τ RC 电路的方程为00000u dt

du

u dt du RC

u Ri u i +=+=+=τ 两个方程都是一阶微分方程,此一阶微分方程的解为

<

[]τ

/0000)()0()()(t e u u u t u -∞-+∞=

当i u 从0跳变到高电平OH U 时,OH U u u =∞=)(,0)0(00,代入上式得

)1()(/0τt OH e U t u --=,0u 从0上升到R U 的时间为

R

OH OH

U U U T -=ln

τ

将,RC =τ代入上式即得到公式(3-2-11)和(3-2-12),将公式(3-2-11)和(3-2-12)代入公式(3-2-13)即得到公式(3-2-14)。同理将时间常数R L /=τ代入上式即得到

R OH OH U U U R L T -=

ln 111 ,R

OH OH U U U R L T -=ln 222,将这两式代入公式(3-2-13)即得到公式(3-2-18)。

7、试用恒流源、555定时器和通用计数器设计一个电容-数字转换电路,画出其框图,并说明其工作原理。 】

解:

图1-1-8中,输入电流改用恒流源I N ,电容C 改为被测电容C X ,根据(1-1-19)式有:

X

DD N X C V I f 3

所以, X DD

X N C V T I 3

=

? , 即 X N DD X C I V T ?=3。

采用图2-1-6通用计数器,图1-1-8输出接图2-1-6的B 输入端,晶振f c 接图2-1-6的A 输入端,将上式代入(2-1-11)式得:X N

DD

c C I V mf N ??

=3。 8、试设计一个采用热敏电阻的温度-频率变换电路,说明其原理。 解: 电路1:

?

若将上图中R 5与R x 不接,则是一个RC 正弦振荡器,起振条件为:

1

2

2143C C R R R R +≥,振

荡频率为:2

1211C C R R =

ω。

图中R x 为热敏电阻,引入R 5与R 2是为了改善传感器的线性度。

令()x R R R R +=52'

2//,代入上式得振荡频率与热敏电阻R x 得关系为:

()2

1215215221??

????

?+++?=

C C R R R R R R R f x x π。 电路2:

采用图3-3-3电路,热敏电阻接入图中R x 。根据(3-3-7)式得到:

()()()t C R R A

R R t R R R R C R R A

R R f t R R

ααα?++=????+==?∴6576006576161160

1 《

第4章

1、为什么线绕式电位器容易实现各种非线性特性而且分辨力比非线绕式电位器低

答:

线绕式电位器的电阻器是由电阻系数很高的极细的绝缘导线,整齐地绕在一个绝缘骨架上制成的。在电阻器与电刷相接触的部分,导线表面的绝缘层被去掉并抛光,使两者在相对滑动过程中保持可靠地接触和导电。电刷滑过一匝线圈,电阻就增加或减小一匝线圈的电阻值。因此电位器的电阻随电刷位移呈阶梯状变化。只要精确设计绝缘骨架尺寸使之按一定规律变化,就可使位移-电阻特性呈现所需要的非线性曲线形状。

只有当电刷的位移大于相邻两匝线圈的间距时,线绕式电位器的电阻才会变化一个台阶。而非线绕式电位器电刷是在电阻膜上滑动,电阻呈连续变化,因此线绕式电位器分辨力比非线绕式电位器低。

2、电阻应变片的灵敏系数比应变电阻材料本身的灵敏系数小吗为什么 答: \

应变片的灵敏系数k 是指应变片的阻值相对变化与试件表面上安装应变片区域的轴向应变之比,而应变电阻材料的应变灵敏系数k 0是指应变电阻材料的阻值的相对变化与应变电阻材料的应变之比。实验表明:k <k ,究其原因除了黏结层传递应变有损失外,另一重要原因是存在横向效应的缘故。

应变片的敏感栅通常由多条轴向纵栅和圆弧横栅组成。当试件承受单向应力时,其表面处于平面应变状态,即轴向拉伸εx 和横向收缩εy 。粘贴在试件表面的应变片,其纵栅承受εx 电阻增加,而横栅承受εy 电阻却减小。由于存在这种横向效应,从而引起总的电阻变化为

(1)x x y y x x R

k k k H R

εεαε?=+=+, 按照定义,应变片的灵敏系数为)1(/H k R

R k x x

αε+=?=

因0

<=

x

y

εεα,横向效应系数0>=x y k k H ,故0k k k x <<。

3、用应变片测量时,为什么必须采取温度补偿措施把两个承受相同应变的应变片接入电桥的相对两臂,能补偿温度误差吗为什么

答: : 温度变化时,电阻应变片的电阻也会变化,而且,由温度所引起的电阻变化与试件

应变所造成的电阻变化几乎具有相同数量级,如果不采取温度补偿措施,就会错误地把温度引起的电阻变化当作应变引起的电阻变化,即产生“虚假视应变”。

把两个承受相同应变的应变片接入电桥的相对两臂,并不能补偿温度误差。因为, 将

04422=?=?R R R R ,)(3311T T k R

R R R R R R

εε+=?+?=?=?代入公式(3-1-15)得电桥输出电压为,

)(2

20T T k U

R R R U U εε+=?+??=

由此可见,温度引起的电阻变化T R ?也影响电桥输出电压,此时,从电桥输出电压测出的应变并不是真实应变ε,而是)(T εε+,也就是说测量结果中包含有温度误差T ε。

4、热电阻与热敏电阻的电阻—温度特性有什么不同

~

答:

采用金属材料制作的电阻式温度传感器称为金属热电阻,简称热电阻。一般说来, 金属的电阻率随温度的升高而升高,从而使金属的电阻也随温度的升高而升高。因此金属热电阻的电阻温度系数为正值。

采用半导体材料制作的电阻式温度传感器称为半导体热敏电阻,简称热敏电阻。按其电阻—温度特性,可分为三类:(1)负温度系数热敏电阻(NTC);(2)正温度系数热敏电阻(PTC);(3)临界温度系数热敏电阻(CTC)。因为在温度测量中使用最多的是NTC 型热敏电阻,所以, 通常所说的热敏电阻一般指负温度系数热敏电阻。

5、为什么气敏电阻都附有加热器 答: \

气敏电阻是利用半导体陶瓷与气体接触而电阻发生变化的效应制成的气敏元件。气敏电阻都附有加热器,以便烧掉附着在探测部位处的油雾、尘埃,同时加速气体的吸附,从而提高元件的灵敏度和响应速度。半导瓷气敏电阻元件一般要加热到200℃~400℃,元件在加热开始时阻值急剧地下降,然后上升,一般经2~10分钟才达到稳定,称之为初始稳定状态,元件只有在达到初始稳定状态后才可用于气体检测。

6、试设计一个简易的家用有害气体报警电路。

答:下图为一个简易的家用有害气体报警电路。图中变压器次级绕组为气敏电阻QM-N6提供加热器电源。变压器初级中心抽头产生的110V交流电压,加到气敏电阻和蜂鸣器串联组成的测量电路。当CO等还原性有害气体的浓度上升时,气敏电阻减小,流过蜂鸣器的电流增大,当有害气体的浓度使蜂鸣器的电流增大到一定值时,蜂鸣器就鸣叫报警。

7、图4-1-19中电表指示减小表示湿度增大还是减小为什么怎样能调整该电路的测湿范围

解:

图4-1-19中电表为电流表,其中电流

X

I为:

F

X

X

I

R

R

R

V

I≤

+

+

=

2

1

3

F

I为电流表满量程)

X

R为负特性湿敏电阻。湿度↑→

X

R↓→

X

I↑。湿度测量范围

min

X%RH ~

max

X%RH,

R d为湿度

max

X%RH时R X的值

min

X

R,

因要求

F

X

I

I≤即)

(

3

2

1

R

R

I

V

R

F

X

+

-

≥,

所以增大

1

R可减小

min

X

R,即扩大测湿量程

max

X%RH。

8、测湿电路对供电电源有什么要求为什么

答:

测湿电路通常为湿敏电阻构成的电桥电路。如果采用直流电源供电,湿敏电阻体在工作过程中会出现离子的定向迁移和积累,致使元件失效或性能降低,因此所有湿敏电阻的供电电源都必须是交流或换向直流(注意:不是脉动直流)。

9、为了减小变极距型电容传感器的极距,提高其灵敏度,经常在两极板间加一层云母或塑料膜来改善电容器的耐压性能,如图4-2-1(c)所示。试推导这种双层介质差动式变极距型电容传感器的电容与动极板位移的关系式。

答:据公式(4-2-2),图4-2-1(c )所示电容传感器的初始电容为

r

r d d S

d d S C εεεεε2

1002

1

0+

=

+

=

如果空气隙减小了d ?,则电容值变为

r

r r r

r d d d C d d d d d S

d

d d S

d d d S

C εεεεεεεε2

10

2

1

2102

102

1011+?-

=

?????

?

?

?

+?-???? ??+=?-+

=+

?-= 双层介质差动式变极距型电容传感器的电容与动极板位移的关系式为。

~

r

d d d C C C C ε2

12

12

1+?=

+-

10、试证明题10图所示传感器电容与介质块位移x 成线性关系。

题10图

解:题10图所示为变介质式电容传感器,设极板宽为b ,长为l 。极板间无介质块时的电容为2

110d d bl

C +=

ε,极板间有介质块时的电容为,

2

1

21210012122111)(εεεεεεε+-

?+=+-++=+=d d l x

C C d d x l b d d bx C C C B A

11、自感式传感器有哪些类型各有何优缺点

[

答:

自感传感器有三种类型:变气隙式、变面积式和螺管式。变气隙式灵敏度最高,螺管式灵敏度最低。变气隙式的主要缺点是:非线性严重,为了限制非线性误差,示值范围只能较小;它的自由行程受铁心限制,制造装配困难。变面积式和螺管式的优点是具有较好的线性,因而示值范围可取大些,自由行程可按需要安排,制造装配也较方便。

此外,螺管式与变面

积式相比,批量生产中的互换性好。由于具备上述优点,而灵敏度低的问题可在放大电路方面加以解决,因此目前螺管型自感传感器的应用越来越多。

12、为什么更换自感传感器连接电缆需重新进行校正

答:

由自感传感器的等效电路图4-3-3可见,自感传感器工作时,并不是一个理想的纯电感L,还存在线圈的匝间电容和电缆线分布电容组成的并联寄生电容C。更换连接电缆后,连接电缆线分布电容的改变会引起并联寄生电容C的改变,从而导致自感传感器的等效电感改变,因此在更换连接电缆后应重新校正或采用并联电容加以调整。

13、试比较差动自感式传感器与差动变压器式传感器的异同

答:

差动自感式传感器与差动变压器式传感器的相同点是都有一对对称的线圈铁心和一个共用的活动衔铁,而且也都有变气隙式、变面积式、螺管式三种类型。不同点是,差动自感式传感器的一对对称线圈是作为一对差动自感接入交流电桥或差动脉冲调宽电路,将衔铁位移转换成电压。而差动变压器式传感器的一对对称线圈是作为变压器的次级线圈,此外,差动变压器式传感器还有初级线圈(差动自感式传感器没有),初级线圈接激励电压,两次级线圈差动连接,将衔铁位移转换成差动输出电压。

14、试说明图4-3-9电路为什么能辨别衔铁移动方向和大小为什么能调整零点输出电压

答:

图(a)和图(b)的输出电流为I=I-I,图(c)和图(d)的输出电压为U=U-U。当衔铁位于零位时,I=I,U=U,故I=0,U=0;当衔铁位于零位以上时,I>I,U ac>U bc,故I ab>0,U ab>0;当衔铁位于零位以下时,I1

调整图中电位器滑动触点的位置,可以使差动变压器两个次级线圈的电路对称,在衔铁居中即位移为零时,图4-3-9电路输出电流或电压为零。

15、何谓压磁效应试说明图4-3-13互感型压磁传感器工作原理。

答:

铁磁物质在外界机械力(拉、压、扭)作用下,磁导率发生变化,外力取消后,磁导率复原,这种现象称为“压磁效应”。

图4-3-13为一种常用的互感型压磁传感器。由硅钢片粘叠而成的压磁元件上冲有四个对称的孔,孔1、2的连线与孔3、4的连线相互垂直,孔1、2间绕有初级(激磁)绕组,孔3、4间绕有次级(输出)绕组,在不受力时,铁芯的磁阻在各个方向上是一致的,初级线圈的磁力线对称地分布,不与次级线圈发生交链,因而不能在次级线圈中产生感应电动势。当传感器受压力F时,在平行于作用力方向上磁导率减小,磁阻增大,在垂直于作用力方向上磁导率增大,磁阻减小,初级线圈产生的磁力线将重新分布如图4-3-13(c)所示。此时一部分磁力线与次级绕组交链,而产生感应电动势。F的值越大,交链的磁通量越多,感应电压也越大。感应电压经变换处理后,就可以用来表示被测力F的数值。

16、当采用涡流传感器测量金属板厚度时,需不需要恒温为什么

答:

温度变化时,金属的电阻率 会发生变化,据公式(4-3-44),将使涡流的渗透深度h 随之变化,据公式(4-3-48)可知,这将使透射式涡流传感器接收线圈中的感应电压2U 随温度变化。为了防止温度变化产生的电压变化同金属板厚度变化产生的电压变化相混淆,采用涡流传感器测量金属板厚度时,需要采取恒温措施或考虑温度变化的影响。 *

17、涡流式传感器的主要优点是什么它可以应用在哪些方面 答:

其主要优点是可实现非接触式测量。反射式涡流传感器常用于测量物体位移、距离、振动和转速、温度、应力、硬度等。可做成接近开关、计数器、探伤装置等;还可以判别材质。透射式涡流传感器常用于测量金属板厚度。

18、反射式涡流传感器与透射式涡流传感器有何异同 答:

相同点:都包含有产生交变磁场的传感器线圈(激励线圈)和置于该线圈附近的金属导体,金属导体内,都产生环状涡流。

不同点:反射式涡流传感器只有一个产生交变磁场的传感器线圈,金属板表面感应的涡流产生的磁场对原激励磁场起抵消削弱作用,从而导致传感器线圈的电感量、阻抗和品质因数都发生变化。而透射式涡流传感器有两个线圈:发射线圈(激励线圈)L 1、接收线圈L 2,分别位于被测金属板的两对侧。金属板表面感应的涡流产生的磁场在接收线圈L 2中产生感应电压,此感应电压与金属板厚度有关。

}

19、收集一个电冰箱温控电路实例,剖析其工作原理。 答:

下面是日本生产的某电冰箱温控电路。该电冰箱的温控范围L T ~H T 由窗口比较

器的窗口电压L V 和H V 决定。调节电位器P R 可调整L T 。图中t R 为热敏电阻,当温度上升

时,t R 减小,T V 升高。当冰箱内温度H T T >时,L H T V V V >>,窗口比较器使RS 触发器的S 端为低电平,R 端为高电平,Q 输出端为高电平,晶体管导通,继电器线圈通电而动作,继电器常开触点闭合,电冰箱压缩机启动制冷。冰箱内温度降低。

当冰箱内温度L T T <时,H L T V V V <<,窗口比较器使RS 触发器的S 端为高电平,R 端为低电平,Q 输出端为低电平,晶体管截止,继电器线圈失电而动作,继电器常开触点复位,电冰箱压缩机停机。

当冰箱内温度H L T T T <<时,H T L V V V <<,窗口比较器使RS 触发器的S 端和R 端均为高电平,RS 触发器保持原状态不变,压缩机继续运转或继续停机。

~

第5章

1、图5-1-1(a)磁电式传感器与图4-3-1(a)自感式传感器有哪些异同为什么后者可测量静位移或距离而前者却不能

答:

相同点:都有线圈和活动衔铁。不同点:图5-1-1(a)磁电式传感器的线圈是绕在永久磁钢上,图4-3-1(a)自感式传感器的线圈是绕在不带磁性的铁心上。自感式传感器的线圈的自感取决于活动衔铁与铁心的距离,磁电式传感器线圈的感应电压取决于活动衔铁的运动速度。当衔铁不动时,气隙磁阻不变化,线圈磁通不变化,线圈就没有感应电压,因此后者可测量静位移或距离而前者却不能。

2、为什么磁电感应式传感器又叫做速度传感器怎样用它测量运动位移和加速度 答:

根据电磁感应定律,磁电感应式传感器的线圈感应电压与线圈磁通对时间的导数成正比,而实现磁通变化有两种方式:活动衔铁相对磁铁振动或转动,线圈相对磁铁振动或转动。这两种方式产生的感应电压都与振动或转动的速度成正比,因此磁电感应式传感器又叫做速度传感器。由图5-1-3可见,在磁电感应式传感器后面接积分电路可以测量位移,后面接微分电路可以测量加速度。因为位移是速度的积分,而加速度是速度的微分。

)

3、磁电感应式传感器有哪几种类型它们有什么相同点有什么不同点 答:

磁电感应式传感器有两种类型结构:变磁通式和恒磁通式。相同点:都有线圈、磁铁、活动衔铁。不同点:变磁通式是线圈和永久磁铁(俗称磁钢)均固定不动,与被测物体连接而运动的部分是利用导磁材料制成的动铁心(衔铁),它的运动使气隙和磁路磁阻变化引起磁通变化,而在线圈中产生感应电势,因此变磁通式结构又称变磁阻式结构。在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生的。这类结构有两种:一种是线圈不动,磁铁运动,称为动铁式,另一种是磁铁不动,线圈运动,称为动圈式。

4、用压电式传感器能测量静态和变化缓慢的信号吗为什么

答: 不能。因(5-2-23)和(5-2-28)式中ω都不能为零,所以不论采用电压放大还是电荷放大,压电式传感器都不能测量频率太低的被测量,特别是不能测量静态参数(即ω=0),因此压电传感器多用来测量加速度和动态力或压力。 ;

5、为什么压电式传感器多采用电荷放大器而不采用电压放大器 答:

由(5-2-17)和(5-2-24)式可知,连接电缆电容Cc 改变会引起C 改变,进而引起灵敏度改变,所以当更换传感器连接电缆时必须重新对传感器进行标定,这是采用电压放大器的一个弊端。

由(5-2-28)式可见,在采用电荷放大器的情况下,灵敏度只取决于反馈电容C ,而与电缆电容Cc 无关,因此在更换电缆或需要使用较长电缆(数百米)时,无需重新校正传感器的灵敏度。

因此,压电式传感器多采用电荷放大器而不采用电压放大器。 6、压电元件的串联与并联分别适用于什么测量场合 答:

串联使压电传感器时间常数减小,电压灵敏度增大,适用于电压输出、高频信号测量的场合;并联使压电传感器时间常数增大,电荷灵敏度增大,适用于电荷输出、低频信号测量的场合。 %

7、石英晶体压电式传感器的面积为21cm ,厚度为1mm,固定在两金属极板之间,用来测量通过晶体两面力的变化。石英晶体的弹性模量是9×1010Pa ,电荷灵敏度是2PC/N,相对介电常数是,晶体相对两面间电阻是1410Ω,传感器后接电路的输入电容为20PF ,输入电阻为100M Ω,若所加力F=(310t)N,求:两极板间电压峰-峰值。

解:

PF F S C r a 51.41051.410

11011.51085.8123

4

120=?=?????=?=----δεε,

F PF C C C a i 121051.2451.2451.420-=?=+=+=,

Ω?=>>=610100//i i

a i

a R R R R R R ,

451

.210101001051.24113

6120=???==∴-RC ω。

()

N t F 310sin 01.0= , 310,01.0==∴ωN F m , C PC d F Q m m 121002.002.0201.0-?==?=?=,

ω

ωj C

Q U i 0

11

+?=

?

?

926.045.2111112

2

0?=

??

? ??+?=

??

? ??+?=

∴C

Q C

Q C

Q U m

m

m

m ωω, ()mV V U m 756.010756.0926.010

51.241002.0312

12

=?=???=∴--- mV U U m m m 511.1756.022=?=?=-

8、压电效应有哪几种类型各有何特点以石英晶体或压电陶瓷为例说明。 答:

单一应力作用下的压电效应有以下四种类型: 1)纵向压电效应,应力与电荷面垂直,此时压电元件厚度变形。例如石英晶体的d 11, 压电陶瓷的d 33压电效应。

2)横向压电效应,应力与电荷面平行,此时压电元件长度变形,例如石英晶体的d 12, 压电陶瓷的d 31,d 32压电效应,。 *

3)面切压电效应,电荷面受剪切,例如石英晶体的d 14,d 25压电效应。

4)剪切压电效应,电荷面不受剪切但厚度受剪切,例如压电陶瓷的d 24,d 15, 石英晶体的d 26压电效应,。

在多应力作用下的压电效应,称全压电效应,例如压电陶瓷的纵横向压电效应(体积伸缩压电效应)。

9、有一压电陶瓷晶体长20mm,宽20mm ,厚5mm,其相对介电常数为1200(真空介电常数为×1210-F/m),将它置于液压P=10KPa 的硅油中,试计算其两极板间产生的电压。

解:

根据(5-2-11)式 ()()

T T d d ??+??-=+=--1212

33311019010

7822σ

31212101010341034???=??=--T ,

^

V d d

S S C Q U r r

a 16.012001085.81051010103412

3

31200=???????=?=?==---εεσεεσ

或 ()

F C a 113

2

3

121096.84105102012001085.8----?=?????=

相关文档