文档视界 最新最全的文档下载
当前位置:文档视界 › 材料加工冶金传输原理习题答案(完整资料).doc

材料加工冶金传输原理习题答案(完整资料).doc

材料加工冶金传输原理习题答案(完整资料).doc
材料加工冶金传输原理习题答案(完整资料).doc

此文档下载后即可编辑

第一章 流体的主要物理性质

1-1何谓流体,流体具有哪些物理性质?

答:流体是指没有固定的形状、易于流动的物质。它包括液体和气体。

流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。

1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。 解:由液体密度、重度和质量体积的关系知:

)m /(88208.9900g 3N V

G =*===

ργ ∴质量体积为)/(001.013kg m ==ρν

1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少?

解:等温压缩率K T 公式(2-1): T

T P V V K ????????-=1

ΔV=995-1000=-5*10-6m 3

注意:ΔP=2-1=1MN/m 2=1*106Pa

将V=1000cm 3代入即可得到K T =5*10-9Pa -1。

注意:式中V 是指液体变化前的体积

1.6 如图1.5所示,在相距h =0.06m 的

两个固定平行乎板中间放置另一块薄

板,在薄

板的上下分别放有不同粘度的油,并且

一种油的粘度是另一种油的粘度的2

倍。当薄板以匀速v =0.3m/s 被拖动时,

每平方米受合力F=29N ,求两种油的粘度各是多少?

解:流体匀速稳定流动时流体对板面产生的粘性阻力力为

Y A F 0

y x νητ==

平板受到上下油面的阻力之和与施加的力平衡,即 h h F 0

162/22/h νηνηνητ=+==合

代入数据得η=0.967Pa.s

第二章 流体静力学(吉泽升版)

2-1作用在流体上的力有哪两类,各有什么特点?

解:作用在流体上的力分为质量力和表面力两种。质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。

2-2什么是流体的静压强,静止流体中压强的分布规律如何? 解: 流体静压强指单位面积上流体的静压力。

静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。

2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。 解:流体静力学基本方程为:h P h P P P Z P Z γργ

γ+=+=+=+002211g 或 同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。

2-4如图2-22所示,一圆柱体d =0.1m ,质量

M =50kg .在外力F =520N 的作用下压进容

器中,当h=0.5m 时达到平衡状态。求测压管

中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2

h H g d F +=+ρπ( 代入数据得H=12.62m

2.5盛水容器形状如图2.23所示。已知hl =0.9m ,h2=0.4m ,h3=1.1m ,h4=0.75m ,h5=1.33m 。求各点的表压强。

解:表压强是指:实际压强与大气压强的差值。

)(01Pa P =

)(4900)(g 2112Pa h h P P =-+=ρ

)(1960)(g 1313Pa h h P P -=--=ρ

)(196034Pa P P -==

)(7644)(g 4545Pa h h P P =--=ρ

2-6两个容器A 、B 充满水,高度差

为a 0为测量它们之间的压强差,用

顶部充满油的倒U 形管将两容器相

连,如图2.24所示。已知油的密度ρ

=900kg /m 3,h =0.1m ,a =0.1m 。求两容器中的压强差。 解:记AB 中心高度差为a ,连接器油面高度差为h ,B 球中心与油面高度差为b ;由流体静力学公式知:

gh g 42油水ρρ-=-P h P

b)a g 2++=(水ρP P A

gb 4水ρ+=P P B

Pa ga P P P P P B A 1.107942=+-=-=?水ρ

2-8一水压机如图2.26所示。已知大活塞

直径D =11.785cm ,小活塞直径d=5cm ,

杠杆臂长a =15cm ,b =7.5cm ,活塞高度

差h =1m 。当施力F1=98N 时,求大活

塞所能克服的载荷F2。

解:由杠杆原理知小活塞上受的力为F 3:

a F

b F *=*3

由流体静力学公式知:

2223)2/()2/(D F gh d F πρπ=+ ∴F 2=1195.82N

2-10水池的侧壁上,装有一根直径d =0.6m 的圆

管,圆管内口切成a =45°的倾角,并在这切口

上装了一块可以绕上端铰链旋转的盖板,h=2m ,

如图2.28所示。如果不计盖板自重以及盖板与铰

链间的摩擦力,问开起盖板的力T 为若干?(椭圆

形面积的J C =πa 3b/4)

解:建立如图所示坐标系oxy ,o 点在自由液面

上,y 轴沿着盖板壁面斜向下,盖板面为椭圆面,在面上取微元面dA,纵坐标为y ,淹深为h=y * sin θ,微元面受力为

A gy A gh F d sin d d θρρ==

板受到的总压力为

A h A y g A g F c c A

A γθρθρ====??sin yd sin d F

盖板中心在液面下的高度为

h c =d/2+h 0=2.3m,y c =a+h 0/sin45°

盖板受的静止液体压力为

F=γh c A=9810*2.3*πab

压力中心距铰链轴的距离为 :

X=d=0.6m,由理论力学平衡理论知,当闸门刚刚转动时,力F 和

T 对铰链的力矩代数和为零,即:

0=-=∑Tx l F M

故T=6609.5N

2-14有如图2.32所示的曲管AOB 。OB 段长L1

=0.3m ,∠AOB=45°,AO 垂直放置,B 端封闭,22232D F 2d F ??

? ??=+??? ??πρπgh 44.045sin 0445sin 1245sin h A J 30c =??? ???++?=?-+=ab h a b a d y y l c c ππ

材料加工冶金传输原理习题答案(吴树森版)

第一章 流体的主要物理性质 1-1何谓流体,流体具有哪些物理性质? 答:流体是指没有固定的形状、易於流动的物质。它包括液体和气体。 流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。 2、在图所示的虹吸管中,已知H1=2m ,H2=6m ,管径D=15mm ,如果不计损失,问S 处的压强应为多大时此管才能吸水?此时管内流速υ2及流量Q 各为若干?(注意:管B 端并未接触水面或探入水中) 解:选取过水断面1-1、2-2及水准基准面O-O ,列1-1面(水面)到2-2面的贝努利方程 再选取水准基准面O ’-O ’, 列过水断面2-2及3-3的贝努利方程 (B) 因V2=V3 由式(B)得 5、有一文特利管(如下图),已知d 1 ?15cm ,d 2=10cm ,水银差压计液面高差?h ??20cm 。若不计阻力损失,求常温(20℃)下,通过文氏管的水的流量。 解:在喉部入口前的直管截面1和喉部截面2处测量静压力差p 1和p 2,则由式 const v p =+22ρ可建立有关此截面的伯努利方程: ρ ρ22 212122p v p v +=+ 根据连续性方程,截面1和2上的截面积A 1和A 2与流体流速v 1和v 2的关系式为 所以 ])(1[)(2212212A A p p v --= ρ 通过管子的流体流量为 ] )(1[)(22 1 22 12A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以 074.0))15 .01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22 2 2 3332 212'2 =-??-????=--?=πρρρA A h g A Q (m 3/s) 式中 ρ、'ρ——被测流体和U 形管中流体的密度。 如图6-3—17(a)所示,为一连接水泵出口的压力水管,直径d=500mm ,弯管与水准的夹角45°,水流流过弯管时有一水准推力,为了防止弯管发生位移,筑一混凝土镇墩使管道固定。若通过管道的流量s ,断面1-1和2-2中心点的压力p1相对=108000N/㎡,p2相对=105000N/㎡。试求作用在镇墩上的力。 [解] 如图6—3—17(b)所示,取弯管前後断面1—1和2-2流体为分离体,现分析分离体上外力和动量变化。 图 虹吸管

高分子材料加工成型原理作业

高分子材料加工成型原理作 业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《高分子材料加工成型原理》主要习题 第二章聚合物成型加工的理论基础 1、名词解释:牛顿流体、非牛顿流体、假塑性流体、胀塑性流体、拉伸粘度、剪 切粘度、滑移、端末效应、鲨鱼皮症。 牛顿流体:流体的剪切应力和剪切速率之间呈现线性关系的流体,服从牛顿黏性定律的流体称为非牛顿流体。 非牛顿流体:流体的剪切应力和剪切速率之间呈现非线性关系的流体,凡不服从牛顿黏性定律的流体称为非牛顿流体。 假塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而降低的流动特性的流体,常称为“剪切变稀的流体”。 胀塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而升高的流动特性的流体,常称为“剪切增稠的流体”。P13 拉伸粘度:用拉伸应力计算的粘度,称为拉伸粘度,表示流体对拉伸流动的阻力。 剪切粘度:在剪切流动时,流动产生的速度梯度的方向与流动方向垂直,此时流体的粘度称为剪切粘度。 滑移:是指塑料熔体在高剪切应力下流动时,贴近管壁处的一层流体会发生间断的流动。P31端末效应:适当增加长径比聚合物熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称"端末效应"。鲨鱼皮症:鲨鱼皮症是发生在挤出物表面上的一种缺陷,挤出物表面像鲨鱼皮那样,非常毛糙。如果用显微镜观察,制品表面是细纹状。它是不正常流动引起的不良现象,只有当挤出速度很大时才能看到。 6、大多数聚合物熔体表现出什么流体的流动行为为什么P16 大多数聚合物熔体表现出假塑性流体的流动行为。假塑性流体是非牛顿型流体中最常见的一种,聚合物熔体的一个显著特征是具有非牛顿行为,其黏度随剪切速率的增加而下降。此外,高聚物的细长分子链,在流动方向的取向粘度下降。 7、剪切流动和拉伸流动有什么区别? 拉伸流动与剪切流动是根据流体内质点速度分布与流动方向的关系区分,拉伸流动是一个平面两个质点的距离拉长,剪切流动是一个平面在另一个平面的滑动。 8、影响粘度的因素有那些是如何影响的 剪切速率的影响:粘度随剪切速率的增加而下降; 温度的影响:随温度升高,粘度降低; 压力的影响:压力增加,粘度增加; 分子参数和结构的影响:相对分子质量大,粘度高;相对分子质量分布宽,粘度低;支化程度高,粘度高; 添加剂的影响:加入增塑剂会降低成型过程中熔体的粘度;加入润滑剂,熔体的粘度降低;加入填料,粘度升高。 12、何谓熔体破裂产生熔体破裂的原因是什么如何避免高聚物熔体在挤出过程中,当挤压速率超过某一临界值时挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象称为熔体破裂。 原因:一种认为是由于熔体流动时,在口模壁上出现了滑移现象和熔体中弹性恢复所引起;另一种是认为在口模内由于熔体各处受应力作用的历史不尽相同,因而在离开口模后所出现的弹

材料加工冶金传输原理习题答案

考试重点 第二章:牛顿粘性定律(计算题) 第三章:连续性方程、伯努利定律(计算题) 第四章:雷诺系数、水头损失(计算题) 第九章:P109 9-14的公式 第十章:影响对流换热的因素(简答) 第十一章:辐射换热与导热及对流换热的不同点(简答) 第十四章:等摩尔逆向扩散(简答) (黄色标注为老师上课讲过的题目) 第一章 流体的主要物理性质 1-1何谓流体,流体具有哪些物理性质 答:流体是指没有固定的形状、易于流动的物质。它包括液体和气体。 流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。 1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。 解:由液体密度、重度和质量体积的关系知: )m /(88208.9900g 3N V G =*=== ργ ∴质量体积为)/(001.01 3kg m == ρ ν 某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少 解:等温压缩率K T 公式(2-1): T T P V V K ??? ?????-=1 ΔV=995-1000=-5*10-6m 3 注意:ΔP=2-1=1MN/m 2=1*106Pa 将V=1000cm 3代入即可得到K T =5*10-9Pa -1。 注意:式中V 是指液体变化前的体积 如图所示,在相距h =的两个固定平行乎板中间放置另一块薄板,在薄 板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。当薄板以匀速v =s 被拖动时,每平方米受合力F=29N ,求两种油的粘度各是多少 解:流体匀速稳定流动时流体对板面产生的粘性阻力力为 Y A F 0y x ν ητ== 平板受到上下油面的阻力之和与施加的力平衡,即

冶金传输原理(吴树森版)复习题库

一、名词解释 1 流体:能够流动的物体。不能保持一定的形状,而且有流动性。 2 脉动现象:在足够时间内,速度始终围绕一平均值变化,称为脉动现象。 3 水力粗糙管:管壁加剧湍流,增加了流体流动阻力,这类管称为水力粗糙管。 4 牛顿流:符合牛顿粘性定律的流体。 5 湍流:流体流动时,各质点在不同方向上做复杂无规则运动,相互干扰的运动。这种流动称为湍流。 6 流线:在同一瞬时,流场中连续不同位置质点的流动方向线。 7 流管:在流场内取任意封闭曲线,通过该曲线上每一点,作流线,组成的管状封闭曲面,称流管。 8 边界层:流体通过固体表面流动时,在紧靠固体表面形成速度梯度较大的流体薄层称边界层。 9伪塑性流:其特征为(),当n v 1时,为伪塑型流。 10 非牛顿流体:不符合牛顿粘性定律的流体,称之为非牛顿流体,主要包括三类流体。 11宾海姆塑流型流体:要使这类流体流动需要有一定的切应力I时流体处于固结状态,只有当切应力大于I时才开始流动。 12 稳定流:运动参数只随位置改变而与时间无关,这种流动就成为稳定流。 13非稳定流:流场的运动参数不仅随位置改变,又随时间不同而变化,这种流动就称为非稳定流。 1 4迹线:迹线就是流体质点运动的轨迹线,特点是:对于每一个质点都有一个运动轨迹,所以迹线是一族曲线,而且迹线只随质点不同而异,与时间无关。 16 水头损失:单位质量(或体积)流体的能量损失。 17 沿程阻力:它是沿流动路程上由于各流体层之间的内摩擦而产生的流动阻力,也叫摩擦阻力。 18 局部阻力:流体在流动中因遇到局部障碍而产生的阻力。 19脉动速度:脉动的真实速度与时均速度的差值成为脉动速度。 20 时均化原则:在某一足够长时间段内以平均值的速度流经一微小有效断面积的流体体积,应该等于在同一时间段内以真实的有脉动的速度流经同一微小有效断面积的流体体积。 21 热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动进行的热量传递称为热传导。 22 对流:指流体各部分之间发生相对位移,冷热流体相互惨混所引起的热量传递方式。 23 热辐射:物体因各种原因发出辐射能,其中因热的原因发出辐射能的现象称为热辐射。 24 等温面:物体中同一瞬间相同温度各点连成的面称为等温面。 25 温度梯度:温度场中任意一点沿等温面法线方向的温度增加率称为该点的温度梯度。 26 热扩散率:(),热扩散率与热导率成正比,与物体的密度和比热容c 成反比。它表征了物体内热量传输的能力。 27 对流换热:流体流过固体物体表面所发生的热量传递称为对流换热。 28 黑体:把吸收率为1 的物体叫做绝对黑体,简称黑体。 29 灰体:假定物体的单色吸收率与波长无关,即吸收率为常数,这种假定物体称之为灰体。 30 辐射力的单位:辐射力是物体在单位时间内单位表面积向表面上半球空间所有方向发射 的全部波长的总辐射能量,记为E,单位是W/ m2o 31 角系数:我们把表面1 发射出的辐射能落到表面2 上的百分数称为表面1 对表面2的角系数。 32质量溶度:单位体积的混合物中某组分的质量。 33摩尔溶度:单位体积混合物中某组分的物质的量。 34空位扩散:气体或液体进入固态物质孔隙的扩散。 35自扩散系:指纯金属中原子曲曲折折地通过晶格移动。36互扩散系数:D D i x2 D2x-,式中 D称为互扩散系数。

2008年高分子材料加工原理试卷A答案

一、名词解释(15分) 1、差别化纤维:是指不同于常规品种的化学纤维,即经过化学改性、物理变形和特殊工艺加工而得到的具有某些特性的化学纤维 2、热塑性塑料:可以塑化或软化,冷却时凝固成形,温度变化可令其反复变形。高分子链结构通常是线型或支化度较低,粘流温度低于其热分解温度 3、门尼粘度:未硫化胶料在一定温度(100℃)、压力(3×106~6×106Pa)和时间(4min)时的抗剪切能力。门尼粘度越高,平均分子量越大,可塑性小 4、熔融指数:热塑性塑料在一定温度和压力下,熔体在10分钟通过测试孔所流出的塑料重量 5、离模膨胀:高聚物流体从小孔、毛细管或狭缝中挤出时,挤出物的直径或厚度会明显大于模口的尺寸,这种现象叫做“巴拉斯效应”。 二、填空题(20分) 1、硫化剂、补强剂、填充剂、防老剂 2、胀大区、形变区、等速区。 3、正流、横流、逆流、漏流。 4、塑炼、混炼、硫化。 3、松弛热定型,定长热定型,控制张力热定型,普弹形变、高弹形变,粘性形变 三、选择题(20分,选一个最合适的答案。) CAABA BBCCA 四、简答题(10分) 1、聚合物流体有几种流动类型?切力变稀流体随剪切速率增加粘度下降的原因是什么?(6分) 答:牛顿型、假塑性流体、胀流性流体、宾汉塑性体(2分) 聚合物流体切力变稀的原因,在于大分子链之间发生的缠结,也就是“缠结理论”或“拟网状结构理论”(2分)。剪切速率较小时,被破坏的“拟网状结构”被及时地形成。故高聚物流动时,η与 剪切速率无关,为牛顿区域,剪切速率大时,被破坏的“拟网状结构”的点数多于形成的“拟网状结构”的点数。故高聚物流动时,剪切速率增大使粘度η下降。(2分) 2、注射成型的成型工艺过程?(4分) 答:注射成型过程包括:成型前的准备(原料准备)、注射过程(加料、塑化、充模、冷却、脱模)、制品的后处理。 1

材料加工冶金传输原理习题答案(完整资料).doc

此文档下载后即可编辑 第一章 流体的主要物理性质 1-1何谓流体,流体具有哪些物理性质? 答:流体是指没有固定的形状、易于流动的物质。它包括液体和气体。 流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。 1-2某种液体的密度ρ=900 Kg /m 3,试求教重度y 和质量体积v 。 解:由液体密度、重度和质量体积的关系知: )m /(88208.9900g 3N V G =*=== ργ ∴质量体积为)/(001.013kg m ==ρν 1.4某种可压缩液体在圆柱形容器中,当压强为2MN /m 2时体积为995cm 3,当压强为1MN /m 2时体积为1000 cm 3,问它的等温压缩率k T 为多少? 解:等温压缩率K T 公式(2-1): T T P V V K ????????-=1 ΔV=995-1000=-5*10-6m 3 注意:ΔP=2-1=1MN/m 2=1*106Pa 将V=1000cm 3代入即可得到K T =5*10-9Pa -1。 注意:式中V 是指液体变化前的体积 1.6 如图1.5所示,在相距h =0.06m 的 两个固定平行乎板中间放置另一块薄 板,在薄 板的上下分别放有不同粘度的油,并且 一种油的粘度是另一种油的粘度的2 倍。当薄板以匀速v =0.3m/s 被拖动时, 每平方米受合力F=29N ,求两种油的粘度各是多少? 解:流体匀速稳定流动时流体对板面产生的粘性阻力力为

Y A F 0 y x νητ== 平板受到上下油面的阻力之和与施加的力平衡,即 h h F 0 162/22/h νηνηνητ=+==合 代入数据得η=0.967Pa.s 第二章 流体静力学(吉泽升版) 2-1作用在流体上的力有哪两类,各有什么特点? 解:作用在流体上的力分为质量力和表面力两种。质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。 2-2什么是流体的静压强,静止流体中压强的分布规律如何? 解: 流体静压强指单位面积上流体的静压力。 静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。 2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。 解:流体静力学基本方程为:h P h P P P Z P Z γργ γ+=+=+=+002211g 或 同一静止液体中单位重量液体的比位能 可以不等,比压强也可以不等,但比位 能和比压强可以互换,比势能总是相等的。 2-4如图2-22所示,一圆柱体d =0.1m ,质量 M =50kg .在外力F =520N 的作用下压进容 器中,当h=0.5m 时达到平衡状态。求测压管 中水柱高度H =? 解:由平衡状态可知:)()2/()mg 2 h H g d F +=+ρπ( 代入数据得H=12.62m

冶金传输原理课后答案

1、什么是连续介质,在流体力学中为什么要建立连续介质这一理论模型? 答:(1)连续介质是指质点毫无空隙的聚集在一起,完全充满所占空间的介质。 (2)引入连续介质模型的必要性:把流体视为连续介质后,流体运动中的物理量均可以看为空间和时间的连续函数,就可以利用数学中的连续函数分析方法来研究流体运动,实践表明采用流体的连续介质模型,解决一般工程中的流体力学问题是可以满足要求的。 1-9 一只某液体的密度为800kg/,求它的重度及比重。 解: 重度:γ=ρg=800*9.8=7840kg/(˙) 比重:ρ/=800/1000=0.8 注:比重即相对密度。液体的相对密度指该液体的密度与一个大气压下4℃水的密度(1000kg/)之比---------------------------------------------课本p4。 1-11 设烟气在标准状态下的密度为1.3kg/m3,试计算当压力不变温度分别为1000℃和1200℃时的密度和重度 解:已知:t=0℃时,0=1.3kg/m3,且= 则根据公式 当t=1000℃时,烟气的密度为 kg/m3=0.28kg/m3烟气的重度为 kg/m3=2.274kg/m3 当t=1200℃时,烟气的密度为 kg/m3=0.24kg/m3烟气的重度为 kg/m3=2.36kg/m3

1—6 答:绝对压强:以绝对真空为起点计算的压力,是流体的实际,真实压力,不随大气压的变化而变化。 表压力:当被测流体的绝对压力大于外界大气压力时,用压力表进行测量。压力表上的读数(指示值)反映被测流体的绝对压力比大气压力高出的数值,称为表压力。既:表压力=绝对压力-大气压力真空度:当被测流体的绝对压力小于外界大气压力时,采用真空表测量。真空表上的读数反映被测流体的绝对压力低于大气压力的差值,称为真空度。既:真空度=︱绝对压力-大气压力︱=大气压力-绝对压力 1-8 1 物理大气压(atm)= 760 mmHg = 1033 2 mm H2O 1 物理大气压(atm) = 1.033 kgf/cm 2 = 101325 Pa 1mmH20 = 9.81 Pa 1-21 已知某气体管道内的绝对压力为117kPa,若表压为70kPa,那么该处的绝对压力是多少(已经当地大气压为98kPa),若绝对压力为68.5kPa 时其真空度又为多少? 解:P 绝=P 表+P 大气 =70kPa+98kPa =168kPa P 真=-(P 绝-P 大气) =-(68.5kPa-98kPa) =29.5kPa 1、气体在什么条件下可作为不可压缩流体? 答:对于气体,在压力变化不太大(压力变化小于10千帕)或流速

材料加工原理作业答案

作业 第一章液态金属的结构与性质 1、如何理解实际液态金属结构及其三种“起伏”特征? 理想纯金属液态结构能量起伏和结构起伏;实际纯金属液态结构存在大量多种分布不均匀、存在方式(溶质或化合物)不同的杂质原子;金属(二元合金)液态结构存在第二组元时,表现为能量起伏、结构起伏和浓度起伏;实际金属(多元合金)液态结构相当复杂,存在着大量时聚时散,此起彼伏的原子团簇、空穴等,同时也含有各种固态、气态杂质或化合物,表现为三种起伏特征交替;能量起伏指液态金属中处于热运动的原子能量有高有低,同一原子的能量也会随时间而不停变化,出现时高时低的现象。结构起伏指液态金属中大量不停“游动”着的原子团簇不断分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,这样此起彼伏,不断发生着的涨落过程,似乎团簇本身在“游动”一样,团簇的尺寸及内部原子数量都随时间和空间发生着改变的现象。浓度起伏指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象 2、根据图1-8及式(1-7)说明动力学粘度的物理意义和影响粘度的因素,并讨论粘度在材料成形中的意义 动力学粘度的物理意义:表示作用于液体表面的外加切应力大小与垂直于该平面方向上的速度梯度的比例系数。是液体内摩擦阻力大小的表征 影响粘度的因素:1)液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高;2)粘度随原子间距δ增大而降低,与δ3成反比;3)η与温度T 的关系总的趋势随温度T 而下降。(实际金属液的原子间距δ也非定值,温度升高,原子热振动加剧,原子间距随之而增大,因此η会随之下降。)4)合金组元(或微量元素)对合金液粘度的影响,如果混合热H m为负值,合金元素的增加会使合金液的粘度上升(H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高)如果溶质与溶剂在固态形成金属间化合物,则合金液的粘度将会明显高于纯溶剂金属液的粘度,这归因于合金液中存在异类原子间较强的化学结合键。通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高 粘度在材料成形中的意义: 1)粘度对铸件轮廓的清晰程度将有很大影响:在薄壁铸件的铸造过程中,流动管道直径较小,雷诺数值小,流动性质属于层流。此时,为提高铸件轮廓清晰度,可降低液体粘度,此时应适当提高过热度或者加入表面活性物质等;2)影响热裂、缩孔、缩松的形成倾向:由于凝固收缩形成压力差而造成的自然对流均属于层流性质,此时粘度对流动的影响就会直接影响到铸件的质量;3)影响精炼效果及夹杂或气孔的形成:粘度η较大时,夹杂或气泡上浮速度较小,会影响精炼效果;铸件及焊缝的凝固中,夹杂物和气泡难以上浮排除,易形成夹杂或气孔;4、影响钢铁材料的脱硫、脱磷、扩散脱氧:而金属液和熔渣中的动力学粘度η低则有利于扩散的进行,从而有利于脱去金属中的杂质元素;5、熔渣及金属液粘度降低对焊缝的合金过渡的进行有利;6、对缩孔、缩松、晶粒大小和偏析的影响,即η愈大,铸件内部缩孔或缩松倾向增大。另外,η大时,将使凝固过程中对流困难而造成晶粒粗化;影响凝固界面前端的熔点物质向后扩散而导致区域偏析

【参考借鉴】冶金传输原理课程教学大纲.doc

《冶金传输原理》课程教学大纲 课程名称:冶金传输原理 英文名称:PrinciplesofTransportPhenomenainMetallurgR 课程代码:MPRC3019 课程类别:专业教学课程; 授课对象:材料成型与控制工程专业; 开课学期:第6学期; 学分:2.0学分;学时:36学时; 主讲教师:许继芳; 指定教材:吴铿,冶金传输原理(第2版),冶金工业出版社,2016; 先修课程:高等数学、线性代数、材料科学基础等 考试形式及成绩评定方式:闭卷成绩60%,平时成绩40% 一、教学目的 传输原理是材料成型与控制工程专业的一门专业主干基础课,阐述了冶金过程中的流体流动,动量、热量、质量传输的基本原理及其传递的速率关系,是冶金动力学过程的主要内容。动量、热量、质量传递有类似的机理和关系,也具有相互的关联和作用。分析冶金过程中三传问题及其基本的计算方法。通过学习本课程,使学生掌握动量、热量、质量传输的基本原理,深入了解冶金过程中各种传输现象,以及各种因素对传输过程的影响,为今后从事专业技术开发,提高控制和设计水平打下坚实的基础。 二、课程内容 第一章传输原理中流体的基本概念 主要内容:主要介绍流体的基本概念。从物理与数学的角度介绍流体的模型,给出流体的基本性质与分类,并对流体力学的分析方法进行介绍。 本章重点:流体力学的主要任务和研究内容。流体的定义和特点;流体的连续介质假设;流体的密度和重度;流体的相对密度;流体的比容。流体的压缩性和膨胀性;可压缩流体和不可压缩流体。黏性的定义;牛顿内摩擦定律;黏度的表达式;影响黏度的因素;黏性流体和理想流体,牛顿流体和非牛顿流体。表面力和质量力;体系和控制容积;量纲和单位。 学习要求:本节都是一些基本概念,需熟练掌握。流体的定义、特点、连续介质假设必须理解,对流体连续介质假设的原因有大致了解。 第二章控制体法(积分方程) 主要内容:依据质量、动量与能量守恒定律,建立流体的质量、动量与能量守恒积分式,并将其结果应用到重力作用下流体平衡基本方程。 本章重点:质量平衡积分方程;动量平衡积分方程;能量平衡积分方程 学习要求:了解质量平衡积分方程、动量平衡积分方程和能量平衡积分方程的推导过程,通学习本节的例题能平衡积分方程进行一些简单的计算。 第三章描述流体运动的方法 主要内容:在介绍流体运动状态的基础上,给出描述流体运动的基本方法:拉格朗日法与欧拉法;同时介绍定常流、迹线、流线、流管、流量等一系列概念。 本章重点:层流状态;紊流状态;雷诺数;卡门涡街。拉格朗日法描述流体流动;欧拉法描述流体流动;拉格朗日法和欧拉法的区别和联系。质点导数。以速度为例,掌握拉格朗日法和欧拉法的转换。定常流动和非定常流动;均匀流动和非均匀流动;平面流和轴对称流;迹线;流线;流管和流束,流量。 学习要求:通过计算雷诺数来判别层流状态和紊流状态。深刻理解描述流体运动的这两种方法。掌握质点导数的含义及拉格朗日法和欧拉法下的质点导数。通过学习本节的例题能对一些简单的情况进行转换。本节的基本概论容易混淆,要熟练地理解和掌握,并能对一些简单的情况进行计算。 第四章动量传输微分方程 主要内容:在介绍连续性微分方程的基础上,对理想流体与实际流体建立了动量守恒微分方程,进而给出伯努利方程,讨论伯努利方程在实际中的应用。 本章重点:连续性微分方程;欧拉方程;伯努利方程及其物理意义;不可压缩实际流体的运动微分方程。 学习要求:了解连续性微分方程的推导过程,记忆连续性微分方程的公式,通过连续性微

材料加工冶金传输原理习题答案(吴树森版)

第一章 流体的主要物理性质 1-1何谓流体,流体具有哪些物理性质? 答:流体是指没有固定的形状、易于流动的物质。它包括液体和气体。 流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。 2、在图3.20所示的虹吸管中,已知H1=2m ,H2=6m ,管径D=15mm ,如果不计损失,问S 处的压强应为多大时此管才能吸水?此时管内流速υ2及流量Q 各为若干?(注意:管B 端并未接触水面或探入水中) 解:选取过水断面1-1、2-2及水平基准面O-O 1-1面(水面)到2-2面的贝努利方程 再选取水平基准面O ’-O ’, 列过水断面2-2及3-3的贝努利方程 (B) 因V2=V3 由式(B)得 图3.20 虹吸管 g p H g p a 22022 2121υ γ υ γ + + =+ + g p p a 22222υ γ γ + + =g p g p H H a 202)(2322 221υγυ γ+ +=+++g g p 2102823222υ υ γ + =+ + ) (28102水柱m p =-=γ ) (19620981022a p p =?=) /(85.10)410(8.92)2( 222s m p p g a =-?=-- =γ γ υ

) /(9.1)/(0019.085.104 )015.0(32 22s L s m A Q ==??= =πυ

5、有一文特利管(如下图),已知d 1 =15cm ,d 2=10cm ,水银差压计液面高差?h =20cm 。若不计阻力损失,求常温(20℃)下,通过文氏管的水的流量。 解:在喉部入口前的直管截面1和喉部截面2处测量静压力差p 1和p 2,则由式 const v p =+22ρ可建立有关此截面的伯努利方程: ρ ρ22 212122p v p v +=+ 根据连续性方程,截面1和2上的截面积A 1和A 2与流体流速v 1和v 2的关 系式为 2211v A v A = 所以 ])(1[)(2212212A A p p v --= ρ 通过管子的流体流量为 ] )(1[) (22 1 2212A A p p A Q --=ρ )(21p p -用U 形管中液柱表示,所以 074.0) )15.01.0(1(10)1011055.13(2.081.92)1.0(4])(1[)(22 2 2 3332212'2 =-??-????=--?=πρρρA A h g A Q (m 3 /s) 式中 ρ、'ρ——被测流体和U 形管中流体的密度。

冶金传输原理作业汇总

冶金传输原理作业 (c).注意希腊符号的书写;(d)注意单位的检查;(e).用同一种颜色的笔书写. 1.名词解释 [1]流体的粘度与运动粘度 [2]理想流体与实际流体 [3]牛顿流体与非牛顿流体 [4]质量力和表面力 [5]流线与迹线 2.简答题 [1]什么是流体连续介质模型说明研究流体力学引入连续介质概念的 必要性和可能性 [2]简单表述流体粘性产生的机理。温度对液体和气体的粘性的影响 有何不同。为什么会有这种不同 [3]研究流休运动的Lagrange法和Euler法有什么区别和联系系沿江 河设置的水文观测站和陆地设置的气象观测站,前者观刚洪水的传播,后者收集天气预报数据,问它们属于拉格朗日法还走欧拉

法 1.怎样理解层流和紊流剪应力的产生和变化规律不同,而均匀流动方程式 2.紊流的瞬时流速、时均流速、脉动流速、断面平均流速有何联系和区别 3.紊流不同阻力区(光滑区、过渡区、粗糙区)沿程摩阻系数 的影响因素有何不同 4.什么是当量粗糙, 当量粗糙高度是怎样得到的 5.试比较圆管层流和紊流水力特点(剪应力、流速分布、沿程水头损失、沿程摩阻系数)的差异 1.怎样判别粘性流体的两种流态——层流和湍流 2.为何不能直接用临界流速作为判别流态(层流和湍流)的标准3.常温下,水和空气在相同直径的管道中以相同的速度流动,哪种流体易为湍流为什么 1.Euler 运动微分方程各项的单位是什么 2.归纳伯努利方程,a)适用的范围;b).各项比能的单位。 (1)造成局部压力损失的主要原因是什么

(2)什么是边界层提出边界层概念对流体力学研究有何意义 计算题 1.设有温度为0℃的空气,以4m/s ,的速度在直径为100mm 的管中流动,试确定其流动形态.若管中的流体先后换成水和油,它们的流速均为0.5m/h 水的运动粘度621.79210/m s ν-=?,油的运动粘 度 623010/m s ν-=?,试问水和油在管中各何种流动形态 2如图所示,试说明流体以流率q 沿长L 的圆锥形渐变管流动时雷诺数Re 的变化规律。 题 2 图 3 通过流率 1.1/q L s =的输水管道中,接入一渐缩圆锥管,其长度L =40cm ,d1=8cm ,d2=2cm ,已知水的运动粘度221.30810/v cm s -=? (a)试判别在该锥管段中能否发生流态的转变. (b)试求发生临界雷诺断面的位置。

材料加工第2章作业参考答案

第2章作业参考答案 1. 液态金属成形的一般工艺过程是怎样的?结合其工艺特点分析该类工艺的优点、缺点和和适用范围。 液态金属成形是将液态金属注入铸型中使之冷却、凝固而形成零件的方法,一般工艺过程包括模样制造、铸型制造、金属熔化与充型、凝固等关键步骤。 铸造为液体成形具有不受零件大小/薄厚/复杂程度限制、可制造各种合金铸件、相对焊接和塑性成形而言尺寸精度高、成本低等优点;但需要造型、浇注等步骤,工艺相对繁琐,工件承载能力不如锻件,同时工作环境差,粉尘多。铸造适用于绝大部分零件,适用范围广。(工艺过程三点明确。明确分析优点、缺点和适用范围,同时结合其工艺特点) 2.铸造合金流动性差对铸件质量有何影响?浇注时金属液过热温度及其他工艺条件相同的情况下,初步判断一下HT350和HT200两种合金,哪个流动性好,为什么?什么是液态金属的充型性能?它与那些因素有关? 流动性差,金属充型能力差,铸件成形质量降低;液态金属中的气体夹杂物不易浮出,易产生气孔、夹杂;对缩孔和裂纹的充填和愈合作用减弱,易产生缩孔、裂纹等缺陷。 HT200流动性好,HT200碳含量在3.0~3.6%,HT350在2.7~3.2%,因HT200成分更靠近共晶点,固-液区间小,熔点较低,故流动性好(固液两相区越大,结晶温度范围越大,枝晶越发达,流动性越差)。(流动性影响,判断及理由) 充型能力:指液态金属充满型腔,获得形状完整、轮廓清晰健全铸件的能力。充型能力首先取决于合金的流动性,同时又受到铸型性质(如铸型蓄热系数、铸型温度、铸型中的气体)、浇注条件(如浇注温度、充型压头、浇注系统结构)以及铸件结构(如模数、复杂程度等)的影响。(充型能力定义,四个影响方面)3. 缩孔、缩松的区别是什么?什么样的合金容易出现疏松缺陷?生产中如何采取措施防止缩孔、缩松缺陷的产生? 缩孔缩松的区别在形态,而取决于凝固方式,当铸件以逐层凝固方式凝固时,液态金属的流动使收缩集中到铸件最后凝固部分形成集中孔,即缩孔;而铸件以体积凝固方式凝固时,枝晶间隙的液体得不到补缩而形成小的孔洞,即缩松。 凝固区间大,收缩大的合金易产生缩松,如具有宽结晶温度范围的非共晶合金等。防止缩孔缩松的产生,可以调整化学成分,降低浇注温度和减慢浇注速度,增加铸型的激冷能力,设置冒口进行补缩,对于灰口铸铁和球铁可以利用石墨析出造成的体积膨胀,抵消部分或全部体积收缩。(缩孔缩松区别,产生缩孔缩松的原因,防止措施)

冶金传输原理在冶金中的应用

传输原理在冶金工业中的应用 在冶金工业中,大多数冶金过程都是在高温、多相条件下进行的复杂物理化学过程,同时伴有动量、热量和质量的传输现象。在实际的冶金生产中,为使某一冶金反应进行,必须将参与反应的物质尽快地传输到反应进行的区域(或界面)去,并使反应产物尽快地排除。其中最慢的步骤称为过程控制步骤或限制性环节。高温、多相条件下的冶金反应大多受传质环节控制,即传质速率往往决定了反应速度,而传质速率往往又与动量和热量传输有密切关系。 传输原理是以物理学的三个基本定律(质量守恒定律、牛顿第二定律和热力学第一定律)为依据的【1】。是动量传输、热量传输与质量传输的总称,简称“三传”或传递现象。它可以看成是某物质体系内描述其物理量(如速度、温度、组分浓度等)从不平衡状态向平衡状态转移的过程。所谓平衡状态是指在体系内物理量不存在梯度如热平衡是指物系内的温度各处均匀一致,反之则成为不平衡状态。在不平衡状态,由于物系内物理量不均匀将发生物理量的传输,如冷、热两物体接触,热量将从高温物体转移到低温物体,直到两物体的温度趋于均匀,此时冷、热两物体即可达到平衡状态,其温度差就是热量传输的动力。 传输原理主要是研究传输过程的传递速率大小与推动力及阻力之间的关系。其传输的物理量为动量、热量和质量。动量传输是指在流体流动中垂直于流体流动方向,动量由高速度区向低速度区的转移;热量传输是指热量由高温区向低温区的转移;质量传输则是指物系中一个或几个组分由高浓度区向低浓度区的转移。当物系中存在着速度、温度与浓度梯度时,则分别发生动量、热量和质量的传输过程。 传热即热量的传递,是自然界及许多生产过程中普遍存在的一种极其重要的物理现象【3】。冶金过程离不开化学反应,而几乎所有的化学反应都需要控制在一定的温度下进行,为了维持所要求的温度,物料在进入反应器之前往往需要预热或冷却到一定程度,在过程的进行中,由于反应本身需要吸收或放出热量,又要及时补充或移走热量。如闪速炼铜过程,为了强化熔炼反应,需将富氧空气预热至500℃以上;又如硫化锌精矿的流态化焙烧过程,由于反应发出大量的热,炉子外面需设置冷却水套及时移走多余的热量。此外还有一些过程虽然没有化学反应发生,但需维持在一定温度下进行,如干燥与结晶、蒸发与热流体的输送等。

完整版材料加工原理复习资料

一.选择和填空 1. 液态金属凝固过程的三种传热方式:传导、辐射、对流。 2. 在铸件凝固期间对铸件与铸型之间热交换起决定性作用的因素是热交换。 3. 凝固过程的热阻包括:液态金属的热阻、已凝固金属的热阻、中间层的热阻以及铸型的 热阻。 4. 影响金属凝固温度场的因素主要包括:凝固金属的性质、铸型的性质、浇注条件和铸件 的结构。 5. 金属凝固方式取决于凝固区的宽度。 6. 纯铜、纯铝、灰铸铁以及低碳钢等的凝固均属于逐层凝固;球墨铸铁、高碳钢、锡青铜等合 金均为体积凝固;中碳钢、白口铸铁等合金均为中间凝固。 7. 影响凝固方式的因素:结晶温度范围、温度梯度。 8. 组成最典型的铸件晶粒组织的晶区:表面细晶区、内部柱状晶区、中心等轴晶区。 9. 一个晶粒内部出现的化学成分不均匀的现象称为晶内偏析。消除晶内偏析的方法:采用均 匀化退火。 10. 由于对数应变反应了瞬时的变形,真实地表示了塑性变形过程,因此在金属塑性变形中一般都 采用对数应变来表示变形程度。 11. 屈服准则是变形体由弹性状态向塑性状态过渡的力学条件。 12. 粉体制备的方法:粉碎法、合成法。 13. 粉体的特性指:粉体的粒度、粒度分布、粉体颗粒的形状、粉体表面特性、粉体的流动性。 14. 互不溶解的的混合粉末烧结的条件:(A-B的表面能必须小于组元A和B单独存在 使得表面能之和) 15. 液相烧结需满足的润湿条件:润湿角° 。 16. 界面结合分为:机械结合、物理结合、化学结合。 17. 熔流体的流动曲线:n=1 时,牛顿流体;n<1 时,切力变稀流体或假塑性流体; n>1时,切力增稠流体或胀流性流体。 18. 聚合物流体弹性的表征:液流的弹性回缩、聚合物流体的蠕变松弛、孔口胀大效 应、爬杆效应、剩余压力效应、孔道的虚构长度。 19. 挤出机挤出过程:固体输送、熔化过程、熔体输送 20. 焊接冶金区分为三个区:药皮反应区、熔滴反应区、熔池反应区。 21. 焊接接头由焊缝、熔合区、热影响区、母材组成,焊缝和热影响区的中间为熔合 区。 22. 熔化焊冶金的缺陷:气孔和裂纹(热裂纹和冷裂纹)。 23. 软钎焊一一钎焊液相线温度V 450 C;硬钎焊一一钎焊液相线温度(450? 900 )C;高温钎焊一一钎焊液相线温度〉900 C 24. 钎缝组织:扩散区、界面区、钎缝中心区。 25. 挤出成型 --- 挤出机 注射成型 --- 注射机 模压成型 --- 压机 名词解释 1.凝固时间:指从液态金属充满型腔后至凝固完毕所需的额时间。 2.穿晶组织:柱状晶一直长大到铸件中心,直到与其他柱状晶相遇的组织。

材料加工原理1章作业

材料加工原理作业 1、如何理解实际液态金属结构及其三种“起伏”特征? 答:实际金属和合金的液体由大量时聚时散,此起彼伏游动着的院子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量,结构及浓度三种起伏特征,其结构相当复杂。 能量起伏:指液态金属中处于热运动的原子能量有高有低,同一原子的能量也会随时间而不停变化,出现时高时低的现象。 结构起伏:指液态金属中大量不停“游动”着的原子团簇不断分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,这样此起彼伏,不断发生着的涨落过程,似乎团簇本身在“游动”一样,团簇的尺寸及内部原子数量都随时间和空间发生着改变的现象。 浓度起伏:指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原子排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。 2、根据图1-8及式(1-7)说明动力学粘度的物理意义和影响粘度的因素,并讨论粘度在材料成形中的意义。 答:黏度的物理意义可以视为:作用于液体表面的应力 大小与垂直于该平面方向上得速度梯度x dv /dy 的比例系数。 影响黏度因素:1金属液的黏度随结合能U 按指数关系增加。2黏度随原子间距增大而降低。3随温度增加,黏度下降。4合金组元或微量元素对黏度有影响,在M-H 模型中,如果混合热为负值,合金元素的增加会使合金液的黏度上升。5如果溶质和溶剂在固态形成金属间化合物,则合金液的黏度将会明显高于纯溶剂金属液的黏度。6表面活性元素使液体黏度降低,非表面活性杂质的存在使黏度提高。 黏度在成形中意义:1,在薄壁铸件的浇注的过程中,黏度影响金属液的流动性进而影响铸件轮廓的清晰程度。2液体金属内部由于密度差引起自然对流,此时黏度对流动的影响就会直接影响到铸件的质量,如影响热裂、缩孔等。3在金属液各种精炼工艺中,希望尽可能彻底地脱去金属液中的非金属夹杂物和气体,此时黏度越大,夹杂或气泡上浮速度越慢。4铸件及焊缝金属中得某些夹杂元素会对凝固组织和产品性能造成极大地危害,而金属液和熔渣中的动力黏度低则有利于扩散的进行,从而有利于脱去金属中得杂质元素。5在焊缝金属的合金化方法中,熔渣及金属液黏度降低对合金元素的过渡是有利的。6在铸件凝固过程中,黏度越大,就会削弱冒口的补缩效果,从而增加铸件内部缩孔或缩松的形成倾向。7液态合金中黏度增大,不利于晶粒细化。 3、简述表面张力的实质及影响表面张力的因素。 答:表面张力是表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由物体在表面上得质点受力不均所致。 影响因素:1原子间结合力越大,表面张力越大。2随温度升高,表面张力下降。3表面张力双电子层理论中,自由弟子越多,表面张力越大。4想系统中加入消弱原子间结合力的组元,会使表面张力下降。5溶质与溶剂原子的体积差会使表面张力下降。

材料加工冶金传输原理

传输过程:物理量从非平衡状态朝平衡状态转移的过程 动量传输:在垂直于实际流体流动方向上,动量由高速度区向低速度区的转移。 热量传输:是热量由高温区向低温区的转移。 质量传输:质量传输是指物系中的一个或几个组分由高浓度区向低浓度区的转移。 相对于固体,流体在力学上的特点: *流体不能承受拉力; *对于牛顿流体:切应力与应变的时间变化率成比例,而对弹性体(固体)来说,其切应力则与应变成比例。 *固体只能以静变形抵抗剪切力,流体则连续变形,除非外力作用停止。 流体的粘性:在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性。由粘性产生的作用力叫做粘性阻力或内摩擦力。 流体中出现粘性的原因:由于分子间内聚力(引力)和流体分子的垂直流动方向热运动(出现能量交换)。在液体中以前者为主,气体中以后者为主,所以液体的粘度随温度升高而减小,由于温度升高时分子间距增大,分子间引力减小;而气体的粘度则随温度的升高而增大,由于此时分子的热运动增强 温度对粘度的影响,当温度升高时,液体的粘度降低,但是气体则与其相反,当温度升高时分子间的吸引力减小,粘度值就要降低;而造成气体粘度的主要原因是气体内部分子的杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以粘度值将增大。 牛顿流体:实际上,流体都具有粘性,凡流体在流动时,粘性力与速度梯度的关系都能用牛顿粘性定律 全部气体和所有单相非聚合态流体(如水及甘油等)均质流体都属于牛顿流体。 理想流体是一种内部不能出现摩擦力,无粘性的流体,既不能传递拉力,也不能传递切力.它只能传递压力和在压力作用下流动,同时它还是不可被压缩的。 非稳定流:如果流场的运动参数不仅随位置改变,又随时间不同而变化; 稳定流:如果运动参数只随位置改变而与时间无关; 迹线定义:迹线就是流体质点运动的轨迹线迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线是一族曲线,而且迹线只随质点不同而异,与时间无关

(完整版)材料加工原理总复习

一、名词解释 粗糙界面; 光滑界面; 共生生长; 小变形 增量理论; 溶质平衡分配系数K0; 塑料的粘度; 简单加载; 应力球张量; 过冷度; 淬透性; 应力状态; 调质处理; 珠光体P; 铁素体F; 淬火; 形核率; 凝固形核; 主应力; 屈雷斯加屈服准则; 加工硬化; 焊接热循环 电阻焊; 动态回复 成分过冷; 凝固偏析 动态再结晶 主剪应力 密塞斯屈服准则 应力状态 应变 贝氏体 二、填空题 1、在聚合物流变学理论中,凡是服从指数流动规律的非牛顿流体统称为粘性流体。 2、材料的体积变化是由应力球张量引起的,材料的塑性变形是由应力偏张量引起的。 3、焊接内应力按其产生的原因可分为:热应力、相变应力和机械阻碍应力。 4液态金属凝固方式一般由合金固液相线温度间隔和凝固件断面温度梯度两个因素决定。 5、凝固成形的方法包括砂型铸造、金属型铸造、压力铸造、熔模铸造等。

6、铸件的缺陷类型包括缩孔、缩松、裂纹、变形等。 7、冲压模具工作零件是指对坯料直接进行加工的零件;定位零件是指用来确定加工中坯料正确位置的零件。 8、手工电弧焊焊条药皮的主要作用有保护作用、冶金作用、提高焊接工艺性能。 9、写出5种常用热塑性塑料的英文代号ABS 、PC 、PVC 、PP 、PE 、POM 等。 10、形核时,仅依靠液相内部自发形核的过程,一般需要较大的过冷度才能得以完成;而实际凝固过程中,往往依靠外来质点或容器壁面形核,这就是所谓的非自发形核过程。 11、晶体生长方式决定于固一液界面结构。一般粗糙界面对应于连续长大;光滑界面对应于侧面长大。 12、一般凝固温度间隔大的合金,其铸件往往倾向于糊状凝固,否则倾向于逐层凝固。 13、塑料按成形性能分为热塑性塑料和热固性塑料。 14、在Fe-Fe 3C 相图中,5个相分别为:液相、奥氏体、渗碳体、铁素体、高温铁素体。 15、在共析钢结晶时,从液态冷却至室温的过程中首先发生匀晶反应(转变),然后发生共析反应(转变),室温组织是珠光体。 16、在在Fe-Fe 3C 相图中的各组织和相中,硬度最高的是渗碳体,强度最高的是珠光体,塑性最好的是奥氏体。 17、铁碳合金中结晶温度范围越小,其铸造性能越好,,铸造性能最好的合金为共晶铸铁。 18、根据马氏体组织形态的不同,通常将马氏体分为板条状马氏体和针状马氏体两大类。 19、退火适用于亚共析钢,其加热温度为Ac3以上30-50℃,冷却速度缓慢,得到珠光体和铁素体组织。 20、正火,其加热温度为AC3以上30-50℃,该温度下的组织为奥氏体;冷却方式为空冷;该钢经正火后的组织为索氏,相为铁素体和渗碳体。 21、中碳钢淬火后,再经低温回火后的组织为回火马氏体,经中温回火后的组织为回火屈氏体,经高温回火后的组织为回火索氏体,其中以低温回火后的组织硬度最高。 +工程材料课后复习题(武建军主编,国防工业出版社) 三、选择题 全部为工程材料课后复习题(武建军主编,国防工业出版社) 三、简答题 1、 为什么说非自发形核比自发形核容易? 答:非自发形核的临界形核半径*r 与自发形核的临界形核半径相等,但非自发形核的临界形核功* ?非G 小于自发形核的临界形核功*?自G ,非自发形核临界晶核原子数*非n 也小于自发形核临界晶核原子数*自n ,因此非自发形核比自发形核容易。 2、 米泽斯屈服准则与屈雷斯加屈服准则有何差别?在什么状态下两个屈服准则相同?什么状态下差 别最大? 答:对于屈雷斯加屈服准则,中间应力σ2在σ1和σ3之间任意变化,也不影响材料的屈服,但在密塞斯屈服准则中,中间应力σ2是有影响的。 当σ2=σ1或σ2=σ3(即轴对称应力状态)时,两个屈服准则一致;当σ2=0.5(σ1+ σ3)时(平面应力状态),两个屈服准则差别最大,达15.5%;而在其余应力状态下,两个屈服准则的差别小于15.5%,

相关文档
相关文档 最新文档