文档视界 最新最全的文档下载
当前位置:文档视界 › 深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线民五区间盾构隧道监测方案
深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线(环中线)工程

民治~五和盾构区间隧道

施工监测方案

编制:

审核:

审查:

中铁西南科学研究院有限公司

深圳地铁5号线BT项目土建工程施工监测项目部

二○○九年一月十日

目录

一、编制依据........................................................................................................... - 1 -

二、工程概况........................................................................................................... - 1 -

三、监测方案说明................................................................................................... - 2 -

四、质量保证、成果及时性保证、安全保证措施............................................. - 11 -

五、民五盾构区间建(构)筑物专项监测方案................................................. - 13 -

六、附图............................................................................................................... - 16 -

一、编制依据

(1)《地下铁道工程施工及验收规范》(GB50299-1999)

(2)《混凝土结构工程施工及验收规范》(GB50204-2002)

(3)《钢结构工程施工及验收规范》(GB50205-2001)《地铁设计规范》

(GB50157-2003)

(4)《铁路隧道设计规范》(TB10003-2005)

(5)《建筑地基基础设计规范》(GB50007-2002)

(6)《地下工程防水技术规范》(GB50108-2001)

(7)《锚杆喷射混凝土支护技术规范》(GB50108-2001)

(8)《铁路隧道喷锚构筑法技术规范》(TB1018-2002)

(9)《建筑基坑支护技术规范》(YB9258-97)

(10)《建筑基坑支护技术规程》(JGJ120-99)

(11)《深圳地区建筑深基坑支护工程技术规范》(JGJ120-99)

(12)《深圳地铁5号线BT项目土建工程施工监测服务合同》(中铁南

方,DFJC01/2008)

(13)《深圳地铁5号线5304标民五盾构区间相关设计图纸》(中铁第

四勘察设计院集团有限公司)

二、工程概况

1 概况

区间位于宝安区民治街道,两端车站均为地下两层岛式车站,线路整体呈东西走向,区间起点布置于民治大道东侧、平南铁路南侧的既有道路下方,线路出民治站后与平南铁路平行前进,下穿梅观高速立交桥、近距离经过坂田火车站后,在坂田火车站东端隧道向北偏转,下穿平南铁路后隧道向东南方向偏转,再次下穿平南铁路进入五和路,在布龙路与五和南路交界处进入五和站,区间终点位于五和南路。

隧道采用盾构法施工,单圆盾构,盾构机外径6.28m,隧道采用6块管片错缝拼装而成。管片环宽1.5m,外径6.0m,厚度0.3m,隧道内径5.4m。隧道顶部覆土厚度11.5m~33.0m,隧道最大上坡坡率为16.7‰,最大下坡坡率5.7‰,变坡点采用圆曲线顺接,最小半径5000m;隧道平面共4条曲线,最小曲线半径

400m,线间距11.9~15.5m。

左线里程为DK21+822.591~DK23+819.487,累计长链7.066m,总长度为2003.962m,右线里程为DK21+761.391~DK23+819.487,短链0.468m,总长度为2057.628m,左右线合计4061.59m。区间共设3个联络通道(DK22+200、DK22+800、DK23+400)和1个通风井(DK22+525),以满足通风、消防和疏散要求。

盾构进出洞段、联络通道及风井暗挖段采用旋喷桩加固,桩径800mm,间距600mm,梅花形布置,在盾构机通过之前完成,风井明挖段围护结构采用密排钻孔桩加固,桩径1.0m,桩间距1.2m,桩顶采用1m*1m冠梁连接,以保证桩的整体性,桩间采用高压旋喷桩止水。

2 工程及水文地质

本区间上覆第四系填土、坡积粘土,残积层,下伏风化花岗岩体,地质构造简单。区间隧道穿越地层主要为砾质粘性土和全风化花岗岩。场地内不存在岩溶、滑坡、活动断层等不良地质作用,属稳定区。场地外动力地质作用弱,地面处于稳定状态。场地土类型为中硬土,场地类别为Ⅱ类。

地下水位埋深1.2~8.0m,水位高程58.2~77.0m,水位变幅0.5~3.0m。地下水对混凝土结构不具腐蚀性,对钢筋混凝土结构中钢筋不具腐蚀性,对钢结构具有弱腐蚀性。

3 管线状况

区间内的地下管线主要有:线路拐入布龙公路入口处的1根电信管线,1根直径150mm的电力管线,1根给水管线。位于靠近五和站的垂直于区间线路方向的5根电信管线,1根电力管线,1根给水管线。

三、监测方案说明

1 监测目的

(1)了解和掌握盾构施工过程中地表隆陷情况及其规律性。

(2)了解盾构掘进过程中因地表隆陷而引起的建筑物、地下管线下沉及倾斜情况,确保建筑物及地下管线的安全。

(3)了解施工过程中地层不同深度的垂直变位与水平变位情况。

(4)了解施工过程中水位变化情况。

(5)了解围岩与结构物的相互作用及管片衬砌的变形情况,实现信息化施工。监测主断面位置在离始发井100m范围的监测实验段选取。

(6)施工监测中,应对测量结果及时进行分析与反馈,当遇到下列情况时,应暂停施工,并根据具体情况制定加强措施。a当地表沉降值超过30mm;b当地表隆起超过10mm;c当房屋倾斜超过3%时;d当隧道掌子面通过一倍洞径,变位速率超过5mm/d,仍持续增加时。

(7)每断面不少于9个监测点,施工监测应有可靠的基准点系统,基准点应不少于2个,基准点系统应定期校核。

2 量测项目

(1)洞内外观察:核对土层的地质情况,了解开挖面土体的自立性和支护衬砌的变形、开裂、地下水渗漏等情况以及地表路面和建筑物变形、下沉开裂情况等。

(2)隧道净空变形:根据变形值、变形速度、变形收敛情况等用以判断土层的稳定性、初期支护设计、临时支护设计和施工方法的合理性

(3)拱顶下沉:监视拱顶绝对下沉值,了解断面变化情况,判断拱顶的稳定性,防止塌方。

(4)地表、地层内部沉陷:判断隧道开挖对地表产生的影响及防止沉陷措施的效果,推测作用在隧道上的荷载范围,判断地下管线的安全情况。

(5)建筑物及其桩基的监测:隧道通过临近建筑物尤其是通过铁路涵洞、平南铁路地段时,排洪涵等,应加强建筑物及其桩基的监测,以便及时调整开挖速度、支护和加固措施。

3 开挖后按要求迅速安装各量测设备并编号(量测断面距开挖断面2m内)。

4地面沉降达到控制值的80%时,视为警戒值,应立即通知查明原因,及时采取有效措施。

5围岩和初期支护结构基本稳定应具备以下条件:a 隧道周边收敛速度有明显减缓趋势;b 收敛量已达总收敛量的80%以上;c 收敛速率小于0.15mm/d 或拱顶位于速度小于0.1mm/d。

6量测数据整理与信息反馈

(1)对量测资料应认真检查、审核和计算,每次量测结束后,应及时将量测结果整理、填入有关图表,分析数据所反映的变化规律,便于各断面和不同量

测手段之间的对比,及时向施工负责人汇报洞内围岩稳定状态,并定期提出围岩稳定性和支护可靠性的书面报告。

(2)量测数据整理结果应配合地质、施工等各方面信息,在与由经验和理论所建立的标准进行比较,对于设计所确定的结构形式、支护衬砌设计参数、预留变形量、施工方法和工艺及各工序施作时间等进行检验,以作为验证设计或修改设计、改变施工方法、调整施工作业时间的依据。

(3)当量测结果出现反常或危险信息时,应立即采取处理措施,加大量测频率,密切注视洞内外动态,必要时停止施工,并通知甲方、监理和设计等有关单位,磋商后进行进一步处理。

(4)本设计一般地段地面最大沉降量不大于30mm,最大隆起量不大于10mm,对于邻近构筑物地段则应按允许的限值控制,围岩稳定性判别标准应执行有关的规范并应考虑周边环境因素。

7 本方案未详之处,参见相关规范、规程和施工资料。

深圳地铁5号线(环中线)5304标段施工监测方案民五盾构区间隧道

表1 监测项目及方法

中铁西南科学研究院有限公司- 5 -

表2民五区间各断面监测项目和测点数量汇总表

表3 安全监控基准值表

表4 民五区间监测小组投入人员名单一览表

表5 拟投入本项目的设备仪器一览表

四、质量保证、成果及时性保证、安全保证措施

4.1 质量保证措施

在本项目的实施工程中,将充分利用资源优势,合理配置技术力量,投入先进的技术设备,保证优质、高效地完成好监控工作。

(1)严格按照我院质量保证体系规定实施过程控制;

测试工作中必须遵守国家、交通部的技术规范和规程,同时执行我院的《质量手册》、《程序手册》等相关计量认证文件。

(2)制定切实的监测实施方案,并纳入到施工进度计划中;

(3)仪器、元件需进行标定、合格方可使用;

保证测试所需仪器设备在标定有效期内,在仪器设备使用前进行检查、调试,保证进场测试数据的科学性和准确性。保证仪器在测试期间有足够的电能。

(4)人员相对固定;

本项目配备具有检测资质的身体好、技术熟练、经验丰富的工作人员。要求技术人员对测试规范、测试方法比较熟悉,能够处理现场测试出现的技术问题,使测试工作能够顺利完成。坚持“严肃认真、公正科学、热情诚信、求实创新”的质量方针,坚决抵制影响工作质量和公正性的干扰和压力,为业主提供优质服务。

(5)在监测过程中严格遵守相应的实施细则。具体如下:

①项目负责人负责组织人员、协调仪器设备及材料管理、进行报告审查;

②技术负责人负责项目实施方案及报告的复核;

③测试人员负责设备正常运行、确保现场使用的仪器设备在检定周期内、熟悉与工程相关的验收规范、设计规范、施工规范及相关的技术规程,负责现场的工作准备及测试工作;

④记录人员负责记录现场环境情况、使用仪器、参加测试人员、测试的工程及其所在位置、记录测试数据或电子数据存储的位置等;

⑤复核人员对原始数据及测试数据逐一进行复核,发现问题及时进行处理并报告项目负责人;

⑥报告编写由测试人员编写。

4.2 成果及时性保证

(1)我们将在进场后,3周内完成施工监测工作大纲的编制,并在工作大纲明确监测通报、周报、总报告的提交时间,并提交指挥部审查。

(2)我们将在接到指挥部的进场通知书后,在合同协议书规定的日期内进场开工,按照工作大纲的监测频率及时进行现场监测,每日监测数据当天进行分析;每次工作后力争最短时间内提交阶段报告,以利于工程处理。

(3)配备充足的仪器、设备,并保证测试所需仪器设备在标定有效期内,在仪器设备使用前进行检查、调试,保证进场测试数据的准确性。保证仪器在测试期间有足够的电能。

(4)要求监测人员对测试规范、测试方法比较熟悉,能够处理现场测试出现的技术问题,使测试工作能够及时完成。监测人员相对固定,避免因工作交接导致的不及时。

(5)监测人员每日对监测数据及时输入为电子文档并进行备份,防止因数据丢失造成的报告不及时。

(6)项目负责人和技术负责人加强对各监测小组成员的管理协调,每日对现场监测工作进行监督,对监测通报、周报、总报告进行及时审核。发现有不及时的情况,立即分析原因,并进行处理。

(7)在进行施工监测过程中,认真对待来自指挥部或其他方面的抱怨(投诉),正确处理,积极改进,1周内提出整改措施并予以整改。

4.3 安全保证措施

安全目标:不出现任何安全事故。

(1)人员安全

现场人员应牢固树立“安全第一”的思想,严格遵守国家及院有关安全生产规定,同时应遵守业主、施工单位现场的有关安全规定。

在现场,有关安全事宜应听从现场安全监督人员的隧道施工中如发现险情,立即将施工人员全部撤离危险地段,并立即在指挥。遇有险情,必须撤离现场。

遇到监测数据出现异常时,首先应该进行初步安全判断,在确定安全情况下才能继续进行其他工作。

(2)仪器设备安全、安全

严格按院质量保证体系中对仪器设备的保护措施,仪器表面应注意清洁,防止震动,确保仪器的正常。

(3)数据安全:监测原始数据应妥善保管,电子文档应注意备份及刻盘保存,分类保存。

五、民五盾构区间重要建(构)筑物专项监测方案

隧道沿线比邻平南铁路和居民区。隧道平行经过民兴工业区后穿越梅观高速立交桥,近距离经过坂田车站后两次下穿平南铁路,然后跨平南铁路桥基础进入五和站。盾构掘进施工时如果平衡控制不好,地层损失超限,容易引起地表不均匀沉降,造成管线和构筑物的损害,铁路轨道的不均匀沉降,影响铁路行车安全。特别是以下建(构)筑物:

(1)民兴工业区

工业区厂房边缘离盾构外壳净距离 3.8m,房屋为天然地基基础,房屋沿线路轴线长度为58m。盾构穿越前在房屋与隧道之间采用一排钻孔桩对房屋进行加固,防止房屋倾斜,钻孔桩直径0.8m,间距1.0m,共65根,桩顶采用1m*1m 钢筋砼冠梁连接。在盾构隧道经过工业区期间,我们将在冠梁和厂房的承重墙、柱上每10m布置测点进行沉降及位移监测。

图1 民兴工业区厂房与盾构隧道关系平面图

图2 民兴工业区厂房与盾构隧道关系立面图

(2)梅观高速公路立交桥

桥梁轴线与隧道轴线夹角67度,桥面宽40m,桥梁1#墩的8根桩位于隧道左右线之间,桥墩为桩柱结构,钻孔桩直径1.8m,桩外缘与盾构机外缘间距1.8~3.6m不等。在盾构隧道经过立交桥期间,我们将在每个桥墩上布置测点进行沉降及位移监测。

图3 盾构隧道与梅观高速立交桥关系平面图

(3)下穿平南铁路

盾构隧道在DK23+287.173及DK23+616.516位置两次下穿平南铁路。

图4 盾构隧道与平南铁路关系平面图

图5 盾构隧道下穿平南铁路立面图

表6平南铁路监测项目

表7监控指标

六、附图

图6 民五盾构区间主要地段监测断面图

图7 隧道洞内收敛及拱顶沉降布置示意图

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

暗挖隧道监测方案全解

目录 第一章工程概况 (2) 1.1 工程概况 (2) 1.1.1 项目概况: (2) 1.2 工程基本情况 (2) 1.3 工程特点简要说明 (2) 1.4 工程地质和水文地质 (3) 1.5 工程环境 (5) 1.5.1 既有建(构)筑物 (5) 1.5.2 地下现况管线 (5) 第二章施工监测 (6) 2.1.1 监测原则 (6) 2.1.2 监测准备 (6) 2.1.3 监测内容及监测频率 (7) 2.1.4 监测点布置 (8) 2.1.5 监控标准及预警值 (12) 2.1.6 观测要求及报告制度 (13) 2.1.7 变形超过允许值时采取的措施 (14) 第三章风险控制系统 (15) 3.1 监控量测控制标准 (15) 3.2 数据分析与处理 (15) 3.3 风险控制控制方法 (15) 3.4 监测应急预案 (15)

第一章工程概况 1.1工程概况 1.1.1项目概况: 工程名称:丽泽铁路桥区积水治理工程 工程地点:北京市丰台区京九铁路立交与丽泽路交汇处的东南角; 1.2工程基本情况 本工程为雨水泵站新建雨水调蓄设施,对高强度降雨进行消峰,可以有效应对极端情况下(例如断电、来不及切换发电车等情况)的桥区排水;同时能在雨量较大等特殊情况下进行强排(调蓄池和泵站同时抽水),提高排放能力。 1.3工程特点简要说明 本工程调蓄池设计为浅埋暗挖结构,新建调蓄池位于现状丽泽泵站东侧,采用暗挖施工,开挖竖井在泵站东侧,暗挖调蓄池断面为拱顶直墙型式,净宽7.3m,净高 6.3m,拱顶净高0.7m。调蓄池顶板覆土厚度约2.55-3.1m,隧道共计长度40.6m。 调蓄池初期支护采用钢筋格栅+C20喷射混凝土,厚度300mm,格栅纵向间距500mm。二次衬砌结构为C35强度等级模筑钢筋混凝土,防水等级P8,二衬厚度400mm。 调蓄池暗挖施工采取拱顶小导管超前注浆加固措施,小导管为?42mm花孔无缝钢管,长2.5m,环向间距0.3m,纵向搭接 1.0m。隧道采用台阶法留核心土开挖,初衬贯通后再施做二衬结构。 竖井侧壁开马头门时需在洞口拱顶提前打设大管棚,大管棚为?108mm花孔无缝钢管,长7m,环向间距0.3m。 因本工程埋深较浅,且隧道穿过现况泵站门前一条宽为5m的道路。考虑到施工安全,隧道穿越道路段将采取开挖前全断面注浆施工措施。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

地下工程电缆隧道监测方案1

电缆隧道施工监测方案 1.工程概况 本工程为220KV莫双1、2#线下地工程电缆隧道,隧道基本沿新建成的云锦路南北走向。 本工程在盾构隧道两端分别设置盾构到达井、盾构始发井。盾构基坑周边管线密集,道路交通繁忙,盾构始发井位于空地,距离道路较远,目前仅有一条在建的污水管。结合周边环境及地质资料,考虑到施工工期紧的因素,基坑围护结构采用SMW 桩(型钢水泥土搅拌墙)。 盾构隧道线路沿云锦路走向,从万达26#地块地下室及规划的云锦路下穿隧道之间以R=500m半径曲线穿过,曲线长度87.9695m,两端的直线段长度分别为29.336m、731.6945m,盾构隧道总长度849m。 隧道纵坡设计为单面坡形式,盾构始发井井深10.244m,隧道向北分别以1%和0.2%的坡度下坡,坡长分别为200.6 m和648.4m。盾构到达井井深14.747m,隧道最小覆土4.5m;隧道在变坡点设置半径R=5000m竖曲线。该线路隧道距离D800铸铁管最小净距离2.0m,距离D1200铸铁最小净距离2.4m。 2.工程地质及水文地质条件 (1)工程地质条件 拟建场地位于南京河西地区。地貌单元属长江漫滩,场地地层呈二元结构,上部以淤泥质粉质粘土为主,下部以粉土、粉细砂为主。隧道地质条件差,地层分层见表1-2。 隧道主要穿过②-2b4、②-3b3-4淤泥质粉质粘土地层。其中②-2b4淤泥质粉质粘土为隧道穿过的主要地层,有明显河湖相沉积特征,具有高含水量、高压缩性、高灵敏度、低强度,易产生土体流动、开挖面不稳等现象。 (2)水文地质条件 根据地质勘探资料,结合区域地质条件,长江漫滩沉积物呈二元结构,上部主要以淤泥质粉质粘土为主,下部以砂性土为主,赋存于粘性土中的地下水类型属孔隙潜水,赋存于下部粉土、砂性土中的地下水具一定的承压性。 地下水主要补给来源为大气降水及生产、生活用水的入渗。深部承压含水层中地下水与长江及秦淮河均有一定的水力联系。

盾构区间监测方案

南昌市轨道交通1号线一期工程土建施工三标段 长江路站~珠江路站区间上行线 盾构推进监测方案 编制: 审核: 审批: 中铁十六局集团有限公司 南昌市轨道交通1号线一期工程土建施工三标段项目经理部 2011年12月22日

目录 一、工程概况...................................................................................................................... - 1 - 二、监测方案编制原则与依据.......................................................................................... - 4 - 三、监测范围及内容.......................................................................................................... - 5 - 四、监测点的布设.............................................................................................................. - 5 - 五、监测作业方法.............................................................................................................. - 6 - 六、监测相关技术要求...................................................................................................... - 7 - 七、仪器设备选用.............................................................................................................. - 8 - 八、监测施工人员组织计划(管理网络图)................................................................ - 10 - 九、监测信息反馈体系.................................................................................................... - 10 - 十、监测质量保证措施.................................................................................................... - 15 - 十一、安全保证措施............................................................................................................ - 16 -

青岛地铁监测方案

测点布设原则及要求 3.1 监测点埋设 1)建(构)筑物沉降、倾斜监测 建筑物沉降监测采用水准测量,测点埋设形式按《建筑变形测量规范》JGJ8-2007要求形式埋设;对重要建(构)筑物倾斜监测采用平面测量,在建(构)筑物上下分别埋设水平位移测点。 2)地下管线沉降及差异沉降监测 地下管线沉降采用水准测量的方法,对有管沟的观测管沟结构顶沉降,有窨井的可直接在管顶或沟顶制作沉降标识。其它管线监测点的可用地表沉降测点替代。 3)道路、地表沉降监测 道路、地表沉降采用水准测量,对于路面、地表观测点的埋设可采用标准方法和浅层设点的方法。 4)地下水位监测 依据地下水分层情况设置一组地下水位观测孔,观测孔制作工艺包括:钻探成孔、下管、填砾封填、洗井、检查止水效果,最后封加孔盖。 5)爆破震速监测 传感器与埋件必须牢固固定在测点处,留出少量螺栓,以和传感器拧紧为原则,不要使传感器离测量面太远,以防止产生相对运动,影响测量精度。 6)桩(坡/墙)顶水平位移监测 桩(坡/墙)顶水平位移监测采用测水平小角度法或极坐标法,测点设置于围护结构桩顶或边坡坡顶,埋设强制对中装置。 7)桩顶沉降监测 桩顶沉降监测采用水准测量。 8)围护结构桩体水平位移监测

桩体水平位移采用测斜仪测量,测斜管绑扎在桩钢筋笼上随其一起下放到孔槽内,并将其浇筑在混凝土中。 9)支撑轴力监测 支撑轴力监测采用轴力计或钢筋计,对于钢支撑埋设于端头部位,钢筋砼支撑埋设于中部。 10)锚杆轴力监测 施工锚杆钻孔并注浆,并在墙体受力面之间增设钢垫板,将测力计套在锚杆外,放在钢垫板和工程锚具之间,然后进行张拉,最后将读数电缆引出、保护。 11)拱顶下沉 矿山法隧道初支拱顶下沉测点在拱顶布设,测点标志采用焊接的挂钩标志。 12)净空收敛 矿山法隧道初支净空收敛测点在腰部布设,测点标志采用焊接的挂钩标志。 13)采用钻孔方式埋设地表及管线测点前,应详细探明地下有无其他管线,保证施工安全。 14)水准沉降和水平位移基准点设于变形影响区(50m)外,每测区不少于3个,以便相互校核。 15)格栅钢架监测是在拱顶、拱腰或拱脚、边墙及仰拱等部位,在格栅内外侧主筋处埋设钢筋计进行监测,最好与拱顶下沉、净空收敛布置在相同断面处,以便结构的相互校核。 16)监测过程中,应注意协同施工单位加强对测点的保护。3.2 监测布点基本要求 1)同点监测原则:监测方案制定时同时考虑第三方监测及施工监测的要求,第三方监测项目、测点应包含在施工监测范围内。 2)优先布置、重点布置原则:监测点优先布置重点风险工程、

工程盾构区间监测方案

珠江三角洲城际快速轨道交通广州至佛山段金融高新区站~龙溪站区间盾构施工区间施工监测技术方案 方案编制: 审核: 批准: 中交集团隧道工程局有限公司 二○○九年六月

目录 一、工程概况2 二、技术方案编制依据2 三、监测范围、内容及监测要求2 四、各监测项目实施方案3 (一)地表沉降4 1、监测仪器设备4 2、测点布设4 3、监测方法4 (二)隧道隆陷4 1、监测仪器设备4 2、测点布设4 3、监测方法5 (三)地面建(构)筑物监测5 1、监测仪器设备5 2、测点布设5 五、信息化监测及成果反馈6 (一)信息反馈流程6 (二)监测成果报告7 1、监测成果日常报表的内容8 2、监测总报告的内容8 六、监测工作质量控制措施9 (一)质量保证体系9 (二)质量保证措施10

金融高新区站至龙溪站盾构施工区间金融高新区站至中间风井段施工监测技术方案一、工程概况 珠江三角洲城际快速轨道交通广州至佛山段【金融高新区站至龙溪站区间】以直线延海八路下行。两侧地面建筑物较少,无高层建筑。主线在五丫口大桥南侧下穿珠江支流,珠江支流宽约100米,然后继续延龙溪大道下穿行。 本区间隧道平面最小曲线半径为800M,线路轨面埋深为14-26米,左右线间 距18-11米,区间隧道最大线路纵坡为24.90/ 00,最小纵坡为4.0000/ 00. 竖曲线半 径为5000米。 区段隧道顶板主要位于<1>、<2-1A>、<2-1B>、<2-2>、<2-3>、<2-4>、<5-1>、<5-2>、中,区间盾构隧道用两台盾构机由东向西掘进,到达中间风井起吊。 二、技术方案编制依据 1.珠江三角洲城际快速轨道交通金融高新区站至龙溪站盾构区间平纵断面及 设计说明(含区间监测图); 2.《城市轨道交通工程测量规范》GB50308-2008 3.《建筑变形测量规程》JGJ/T8-97 4.《工程测量规范》GB50026-2007 5.国家其他测量规范、强制性标准。 三、监测范围、内容及监测要求 本方案包含监测范围为:珠江三角洲城际快速轨道交通金融高新区站至龙溪站盾构施工区间金融高新区站至中间风井段。沿线既有管线及建(构)筑物详见表1。

隧道施工监测方案

中铁十四局集团武广项目部XXTJIII标隧道监控量测实施方案 编制: 复核: 审核: 日期: 中铁十四局集团武广项目部XXTJIII标第三项目队 二○○六年八月

隧道施工监控测量方案 一、工程概况 我管区内共有四座隧道(马家冲1#隧道,长度133m(其中明洞28m);马家冲2#隧道,长度307m(其中明洞34m);茶园林隧道,长度231m(其中明洞97m);大塘冲隧道,长度150m,(其中明洞68m)),共计长度821m。所有隧道埋深浅,围岩属V级软岩,为褐黄~褐红色,全风化、强风化砂质板岩,强度在200~350Kpa之间。节理裂隙与板理及层面等结构面极发育,易软化、变形,易造成塌顶、坍塌。隧道范围内地下水总体不发育。设计采用双侧壁导坑法施工,后变更为三台阶留核心土法施工。 二、监控量测的目的 为了掌握围岩在开挖过程中的动态信息和支护结构的稳定状态,提供有关隧道施工全面、系统的信息资料,为评价和修改支护参数,力学分析及二次衬砌施作时提供信息依据,确保施工安全和支护结构的稳定。在新奥法施工中,监控量测是施工过程中必须的施工程序。对围岩支护系统的稳定状态进行监测,是确保施工安全、指导施工程序、便利施工管理的重要手段。三、监控量测项目 隧道施工监测量测项目主要有:洞内外观测、水平相对净空变化值的量测、拱顶下沉量测。 四、监控测量设备仪器、量测方法、频率

五、测量监控方案 A、洞内外观察 ①洞内外观察(即地质和支护状态观察)分开挖工作面观察和已施工区段观察两部分,开挖工作面观察在每次开挖后进行一次,内容包括围岩岩性、产状、变形、围岩风化变质情况、节理裂隙发育、断层分布和形态、地下水情况、工作面稳定状态、底板情况、及喷射砼的效果等,观测后应绘制开挖工作面地质素描图,填写工作面状态记录表及围岩类别识别卡,对已成区段的观测应每天进行一次,观察内容包括喷射砼、锚杆、钢架的状况,并将观测情况进行记录。 ②洞外观察包括洞口地表情况、地表沉陷、边坡及仰拱的稳定、地表水

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线(环中线)工程 民治~五和盾构区间隧道 施工监测方案 编制: 审核: 审查: 中铁西南科学研究院有限公司 深圳地铁5号线BT项目土建工程施工监测项目部 二○○九年一月十日

目录 一、编制依据........................................................................................................... - 1 - 二、工程概况........................................................................................................... - 1 - 三、监测方案说明................................................................................................... - 2 - 四、质量保证、成果及时性保证、安全保证措施............................................. - 11 - 五、民五盾构区间建(构)筑物专项监测方案................................................. - 13 - 六、附图............................................................................................................... - 16 -

地铁、隧道施工监测方案

施工监测方案 第一节监测方案设计和测点布设原则 18.1.1 监测组织机构 18.1.2 设计原则 1、本工程项目监测方案以安全检测为目的,根据不同的工程项目如(明挖、暗挖、盾构)确定监护对象(建筑物、管线、隧道等),针对监测对象安全稳定的主要指标进行方案设计。 2、本工程项目监测点的布置能够全面地反映监测对象的工作状态。 3、采用先进的仪器、设备和监测技术,如计算机技术、遥测技术等。 4、各监测项目能相互校验,以利数值计算,故障分析和状态研究。 5、方案在满足监测性能和精度的前提下,可适当降低检测频率,减少检测元件,以节约监测费用。 18.1.3 测点布设原则 1、观测点类型和数量的确定应结合工程性质、地质条件、设计要求、施工特点等因素综合考虑。 2、为验证设计数据而设的测点布置在设计中最不利位置和断面,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。 3、表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于来用仪器进行观察,还要有利于测点的保护。 4、除埋测点不能影响和妨碍结构的正常受力,不能削弱结构的变形刚度和强度。 5、在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。 6、深层测点应在施工前30 天布置好,以便监测工作开始时,监测元件进入稳定的工作状态。 7、测点在施工过程中遭到破坏时,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。 18.1.4 主要监测仪器

在本标中,若我局中标将采用由中国地震局第一地形变监测中心研制的“隧道形变自动化监测系统”用于本标监测控制。 该自动化监测系统是对整个被监测区域进行多点同时快速扫描式测量,测试的频率可根据实际情况来设定,因此所取得的每一瞬时观测值更真实、更可靠的反映当时被测目标的变形状态。 1、BOY—1 型臂式倾斜仪 该仪器具有传感器体积小,安装简单灵活,既能分散单个观测,又能多臂组合成隧道变形监测系统。该仪器可用来监测隧道纵向倾斜(沉降)、环缝变形错位及隧道收敛变形等。 主要技术指标 灵敏度:0.005mm—0.01mm(1—2 角秒) 测量范围:±5°或±10°(臂的最大倾斜度) 采数频率:自由选择 平均日漂移:小于0.05mm/d 测量精度(单臂):±0.017mm 适宜环境温度:0°—45℃ 适宜环境湿度:90% 电源:AC200V 50HZ 0.15W DC±9V 20Ma 2、激光水平位移监测仪 利用激光发散小,能量高的特性,使用激光束做为位移监测的参照系(基准线),用装有硅光电池的光电转换板对激光聚焦中心进行自动跟踪,光电转换板与一个精密位移传感器相连,这样就可以测量出接收端相对激光束的水平位移变化量。 主要技术指标 灵敏度:0.05mm 测量动态范围:50mm 采数速度、频率:2 分钟以上自由选择 日漂移:小于0.05mm/d 测站精度:0.1mm 非线性误差:小于2% 电源:AC220V 50HZ 3、数据采集及处理软件 为了使监测仪采集的数据使用电脑来分析处理,采用相应的软件和建立数据库。本次处理软件是在windows 下进行数据处理和操作,使用微软公司开发的Visual Basic 6.0 软件,Visual Basic 6.0 可以支持使用多种数据库,Access 是Visual Basic 6.0 的内部数据库,其操作方便,安全性强,因此选择Access 作为数据处理的数据库。 计算机接口采用DC1054A/D 转换器和DC1070A/D 转换器,前者用于激光位移仪,后者用于臂式倾斜仪。 本次采用的软件主要有下述几方面的功能: A、实时采集数据并同时显示各监测目标点的观测数据和连续变化的图形; B、对观测数据储存和各种形式的输出; C、打印数据报表和绘制输出观测图形(全部数据、小时值、日均值、五日均值、月均值); D、对监测到各项目各组数据(任意时间区段)进行精度计算统计和分析; E、对观测数据进行相关的数学处理: (1)滑动滤波(圆滑观测曲线); (2)低通滤波(去掉高频躁声);

盾构施工隧道监测方案

上海长兴岛域输水管线工程盾构推进 环境监测 技术方案 上海东亚地球物理勘查有限公司 二00八年五月

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容 五监测技术方案 六监测人员安排 七技术及质量保证措施 八附图

上海长兴岛域输水管线工程盾构推进环境监测技术方案前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全倚赖于经验,19世纪才逐渐形成自己的理论,开始用于指导地下结构设计与施工。于是在重大或长大隧道中,及时掌握现场的第一手资料,进行动态分析,就成为施工控制的重要项目之一。 因此施工量测项目显得更加突出和重要。为了验证设计和计算是否合理,运营是否安全,各种工程试验与测试技术的研究和应用也越来越受到施工和科研工作者的重视。地下工程的设计,必须将现场监控量测列入设计文件,并在施工中实施。现场监控量测是判断围岩和隧道的稳定状态,保证施工安全,指导施工顺序,进行施工管理,提供设计信息的重要手段。掌握围岩和支护动态,按照动态管理量测断面的信息,正确而经济的施工;量测数据经分析处理与必要的计算和判断,预测和确定到最终稳定时间,指导施工工序和实施二次衬砌的时间;根据隧道开挖后围岩稳定性的信息,进行综合分析,检验和修正施工前的预设计;积累资料,已有工程的量测结果可应用到其他类似的工程中,作为其他工程设计和施工的参考依据。 盾构在推进过程中必然会造成地面沉陷、位移现象,针对这种情况本监测工程设置了相应的监测手段,对在盾构推进过程中产生的各种变形进行实时监测。 一工程概况 长兴岛域输水管线工程位于长兴岛上,起点于牛棚圩以北的丁字坝附近,与青草沙水库出水输水闸井相接;终止于永和路以南120m左右的上海崇明越江通道东侧绿化带内,与长江原水过江管工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

地铁隧道及车站监控量测方案

地铁隧道及车站监控量测方案 1施工监测目的 将监控量测作为一道工序纳入到施工组织设计中去。其主要目的为: ⑴了解暗挖隧道和明开车站的支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。 ⑵为修改工程设计方案提供依据。 ⑶保证施工影响范围内建筑物、地下管线的正常使用,为合理确定保护措施提供依据。 ⑷验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 ⑸积累资料,以提高地下工程的设计和施工水平。 2监控量测设计原则 ⑴可靠性原则 可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。第二,应在监测期间保护好测点。 ⑵多层次监测原则 多层次监测原则的具体含义有四点: ①在监测对象上以位移为主,兼顾其它监测项目; ②在监测方法上以仪器监测为主,并辅以巡检的方法; ③在监测仪器选择上以机测仪器为主,辅以电测仪器; ④考虑分别在地表、及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。 ⑶重点监测关键区的原则 在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。 ⑷方便实用原则 为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。 ⑸经济合理原则 系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。 3监测项目

3.1监测项目分类 本工程的施工监测项目分为A类和B类。 ⑴A类监测项目: 包括地质及支护观察、周边位移、拱顶下沉、地表沉降、地下水位等项目,属必测项目,施工时严格按照有关规范设计要求进行监测。 ⑵B类监测项目: 包括土体水平位移、土体垂直位移、围岩压力、钢架应力,属于选测项目,根据设计要求,施工的实际要求和地层情况选择有实际意义的监测项目进行监测,以保证结构施工满足设计要求。 各种观测数据相互印证,确保监测结果的可靠性,为确保周围建筑物的安全,合理确定施工参数提供依据,达到反馈指导施工的目的。 3.2区间隧道监测项目 区间隧道标准断面监测项目如下表所示。 区间隧道标准断面监测项目表

地铁盾构隧道施工技术现状

地铁盾构隧道施工技术现状 发表时间:2019-04-26T15:54:01.173Z 来源:《建筑学研究前沿》2018年第36期作者:张磊翟宝伶[导读] 利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。天津国际工程建设监理公司天津市 300191 摘要:随着我国私家车数量的不断增多,交通拥堵已成为城市发展难题之一,空气质量也受之影响,在一定程度上阻碍了社会的发展。在低碳环保,科学发展观的践行之下,必须行,绿色出行为前提下,乘坐公共交通地铁的出行为交通拥堵疏解了巨大的压力。截止目前,我国的很多城市都已经有了正式的轨道交通,并且各种线路在逐渐的发展和扩大,地铁轨道的运行在我国有了很大的突破和进步,取得了很大的成绩,对于社会的发展具有很强的推动作用。地铁轨道的优点较多,例如地下轨道交通快捷,节约资源,对环境破坏较小,以及可以抵抗自然风雪的伤害,安全舒适。当然地铁的运行离不开地下隧道,盾构法作为地铁工程建设的常用方法,在地铁工程建设中发挥了至关重要的作用。利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。 关键词:地铁;盾构;隧道;施工技术 1盾构的分类 盾构机按其适用的地质情况不同主要分为泥水式盾构机、土压平衡式盾构机等类型。下面简单介绍通用的两种:泥水盾构机是在盾构机前面设置挡板,与刀盘泥浆槽之间形成稳定的开挖面,泥土进入泥浆仓内,形成一个不透水的薄膜在掌子面以此为张力来保持水压力,与开挖面的土压和水压之和保持平衡。挖出的土泥以泥浆的方式运输到地面,然后泥浆和水通过处理设备将泥土分离出来,分离出来的泥水经过处理后再循环利用到开挖中。 土压平衡盾构机是当盾构机向前推时,通过前面刀盘旋转切削土体切下来的土被运到土仓。当土仓被削下来的土填满时,被动土压力与开挖面上的土压和水压力之和保持平衡,因此实现掌子面平衡。 2盾构法施工的原理 盾构法开挖隧道本质上就是在盾构机开挖的过程中同步进行管片的拼装和盾尾注入浆体。根据开挖面所处的土层条件等状况,选择相应的盾构机机型。现在常见的形式包括密闭式、敞开式、土压式、泥水式等类型的盾构机。盾构机开挖隧道的施工过程:1.在隧道两端各建造一个盾构工作井:2.在两端的工作井处分别安装盾构设备;3.当盾构区间较长时宜进行设置中间维修井并在起始工作井处由千斤顶来提供推力使盾构机从开孔位置顶出;4.盾构机进行掘进时是根据设计位置来开挖并在开挖过程中管片安装和土体的排出同步进行;5.对盾尾的注浆必须及时用以固定衬砌管片的位置和减小土体的变形。盾构机在开挖的整体流程下存在的重要技术分为四块:1刀盘切入土层过程2开挖土层过程3盾构时管片衬砌的安装过程和最后的盾尾同步注浆过程。 (a)切入土层:盾构顶推力的大小是由本身存在的千斤顶来进行支持,当盾构的切口环进入到土体所顶进的长度和千斤顶所顶进的距离相对等。 (b)土体开挖:相对应地区的地质特性和机械的类型不同所进行的开挖方式也会有着千差万别。具体开挖方式有:网格式机械切削式敞开式和挤压式等开挖方式。 (c)衬砌拼装:在地质情况或承载力较小时一般会使用衬砌管片预制拼接来施工,同时根据设计要求存在其他的衬砌施工方法例如现浇式和复合式。 (d)盾尾同步注浆:在实际盾构开挖过程中盾构机开挖出的洞口大小比要拼接管片外径还要大一些,所以在盾构继续开挖时前期拼装好的管片会受到周围围岩作用并在盾尾通过后形成盾尾空隙。这种空隙在盾构施工中是一种十分严重的问题,如果没有对空隙及时的进行填充就会严重影响到管片的整体安全性。 3盾构隧道工程施工工艺 3.1盾构机进出洞时作业控制 地铁工程施工人员在进行盾构机的进出洞操作时,必须对作业、操作进行严格控制。利用盾构机挖掘隧道,必然会涉及到盾构机的进出洞,而这一过程的作业控制直接关系到盾构法的施工质量。如果盾构机进出洞操作出现问题,则整个地铁工程建设都有可能失败。为此,施工人员必须充分重视盾构机的进出洞作业控制。通常情况下,盾构机首先进行进洞作业,而后再进行出洞作业。在盾构机进行进洞作业之前,施工人员必须明确地铁隧道的作业路线,避免出现较大的轴线误差。同时,施工人员还应仔细勘察施工路线周围的环境,根据实际情况进行具体的操作。如果存在威胁盾构机施工作业的潜在因素,则必须在作业前制定好预防措施以及应急措施,避免在施工过程中出现重大事故,干扰盾构机的顺利施工。在进行盾构机的出洞作业前,施工人员需彻底审查各项工作,避免存在漏洞影响出洞作业。 3.2盾构机挖掘施工时作业控制 盾构机的挖掘作业是地铁施工盾构法的主要工作,此项作业在地铁工程建设的盾构施工中具有十分重要的作用。在盾构机进行挖掘施工的过程中,应尽量避免挖掘施工对周边土层产生较大影响,以保证开挖土层的稳定性。要减少盾构机挖掘施工对周边土层稳定性产生的影响,施工人员必须在挖掘作业前科学合理地调整盾构机的参数。同时,在挖掘施工过程中,使用人员应注意盾构机的姿态,避免盾构机因姿态问题影响挖掘工作的顺利进行。盾构机的姿态不仅会影响挖掘工作的进行,还会影响管片作业的拼装质量。为此,在盾构机的挖掘施工过程中必须严格控制其姿态。盾构机的姿态控制与注浆方式、盾构坡度等各项参数具有十分密切的关系,只有在控制好各项参数的前提下才能真正实现对盾构机姿态的有效控制。盾构机各项参数量的控制需要建立在可靠的测量工作之上,在进行可靠性的测量之后,才能实现对盾构机各项参数量的精准控制。此外,要将土体压力控制在可控范围内,还需严格调控盾构机的前进速度和排土容量。 3.3推进操作和纠偏 盾构在实施的时候,首先需要对围岩的范围进行观察,以此确保实施的安全性,实时对千斤顶的行程和推力进行观察,沿既定路线方向准确掘进。因此,有必要正确推进盾构的运行,随时纠正偏差。盾构掘进过程中,为了保证盾构掘进功能在计划路线上的正确性,防止偏移、偏转和俯仰,应适当调整千斤顶行程和推力,破坏不方便掘进面的稳定性。一般采用开挖后立即推进。或者一边挖一边推。因此,任何时候都要正确操作屏蔽体,任何时候都要进行纠偏的路线。

盾构施工监测方案

广州市轨道交通三号线北延段工程施工 8 标段 【龙归站~人和站盾构区间(二) 】土建工程 盾构隧道施工监测方案
§1 编制依据 §1 编制依据
1、 广州市轨道交通三号线北延段工程施工 8 标段工程合同文件 (GDJCDG-0521) 2、 《盾构法隧道工程施工及验收规程》 (DGJ08-233—1999) 3、 《地下铁道、轻轨交通工程测量规范》 (GB50308-1999) 4、 《地下铁道工程施工及验收规范》 (GB50299-1999) 5、 《建筑变形测量规范》 (JGJ/T8-97) 6、 《土木工程监测技术》 夏才初等编著,中国建筑工业出版社,2001.7
§2 工程概况 §2 工程概况
三号线延长线出龙归站沿 106 国道继续向北行进,穿过沙坑涌、北二环高速 公路、泥坑涌、流溪河后到人和站。本区间为龙归~人和区间的第二段盾构施工 段,由南端风井始发往北掘进至北端中间风井吊出,掘进长度为 1750.4 米(右 线) 。 本标里程范围 YCK19+830~YCK21+660,即南端风井终点~北端风井起点 段盾构和南端风井;含 4#、5#、6#联络通道。 南端风井起点里程 YCK19+830,终点里程 YCK19+909.6,结构净长度为 78m;4#联络通道里程 YCK19+900,与风井合建。 盾构区间起点里程 YCK19+909.6, 终点里程 YCK21+660, 右线盾构长 1750.4 米, 左线盾构长 1749.2 米, 区间盾构总长 3499.6 米; 5#联络通道里程 YCK20+500, 6#联络通道里程 YCK21+100。 见图 2-1。
1

隧道施工监测方案

中铁十四局集团武广项目部XXTJIII标隧道监控量测实施方案 编制: 复核: 审核: 日期: 中铁十四局集团武广项目部XXTJIII标第三项目队 二○○六年八月

隧道施工监控测量方案 一、工程概况 我管区内共有四座隧道(马家冲1#隧道,长度133m(其中明洞28m);马家冲2#隧道,长度307m(其中明洞34m);茶园林隧道,长度231m(其中明洞97m);大塘冲隧道,长度150m,(其中明洞68m)),共计长度821m。所有隧道埋深浅,围岩属V级软岩,为褐黄~褐红色,全风化、强风化砂质板岩,强度在200~350Kpa之间。节理裂隙与板理及层面等结构面极发育,易软化、变形,易造成塌顶、坍塌。隧道范围内地下水总体不发育。设计采用双侧壁导坑法施工,后变更为三台阶留核心土法施工。 二、监控量测的目的 为了掌握围岩在开挖过程中的动态信息和支护结构的稳定状态,提供有关隧道施工全面、系统的信息资料,为评价和修改支护参数,力学分析及二次衬砌施作时提供信息依据,确保施工安全和支护结构的稳定。在新奥法施工中,监控量测是施工过程中必须的施工程序。对围岩支护系统的稳定状态进行监测,是确保施工安全、指导施工程序、便利施工管理的重要手段。 三、监控量测项目 隧道施工监测量测项目主要有:洞内外观测、水平相对净空变化值的量测、拱顶下沉量测。 四、监控测量设备仪器、量测方法、频率

五、测量监控方案 A、洞内外观察 ①洞内外观察(即地质和支护状态观察)分开挖工作面观察和已施工区段观察两部分,开挖工作面观察在每次开挖后进行一次,内容包括围岩岩性、产状、变形、围岩风化变质情况、节理裂隙发育、断层分布和形态、地下水情况、工作面稳定状态、底板情况、及喷射砼的效果等,观测后应绘制开挖工作面地质素描图,填写工作面状态记录表及围岩类别识别卡,对已成区段的观测应每天进行一次,观察内容包括喷射砼、锚杆、钢架的状况,并将观测情况进行记录。 ②洞外观察包括洞口地表情况、地表沉陷、边坡及仰拱的稳定、地表水渗透的观察。 ③观测方法:地质罗盘和眼睛进行观测。 ④在观察过程中如发现地质条件恶化,初期支护发生异常现象,立即通

相关文档
相关文档 最新文档