文档视界 最新最全的文档下载
当前位置:文档视界 › Proe设计冲压模具

Proe设计冲压模具

Proe设计冲压模具
Proe设计冲压模具

用Proe设计冲压模具时,可以使用装配体设计的方法。装配体设计分为自上而下和自下而上的两种方法,采用先设计装配体的结构、再对每个零件进行细节设计的方法,也就是自上而下的设计方法较好。下面就以电控支架加工用的第1

套模具—打包凸筋模具为例来说明这种方法的应用。(Proe 版本为wildfire 4.0 )

1,建立模具工程

第1步:加载冲压件模型

步骤1:建立模具工程目录—dkzj1

先建立一个名为dkzj1的文件夹,然后将冲压零件模型dkzj1.Prt文件复制到d kzj1目录中。

步骤2:设置工作目录

启动Proe wildfire 4.0,执行【文件︱设置工作目录】菜单命令,在系统弹出的【选取工作目录】对话框,选择dkzj1文件夹为工作目录,单击【确定】按钮。

步骤3:建立模具装配体文件—dkzj1.asm

执行【文件︱新建】菜单命令,在【新建】对话框中,选择【组件】、【设计】,在名称栏内输入dkzj1,取消【使用缺省模板】的勾选,单击【确定】按钮,在【新文件选项】对话框中选择公制mmns_asm_design。

步骤4:装配冲压件模型

单击【装配组件】工具按钮,在系统弹出的【打开】对话框中双击dkzj1.Prt,接着屏幕上会出现【装配组件】对话框和冲压件模型。将装配约束栏内的类型设为【坐标系】,然后在屏幕中分别选择元件参照坐标系CS0和组件参照坐标系A SM_DEF_CSYS,预览无误后单击【确定】按钮完成冲压件模型的装配。

第2步:建立模具子装配体文件

建立上模和下模子装配体便于零件的分类和管理。

步骤1:建立上模子装配体—UP.ASM

单击【创建元件】工具按钮,在【元件创建】对话框中选择【子组件】、【标准】,输入名称UP,单击【确定】,再在【创建选项】对话框中勾选【空】,单击【确定】。

步骤2:建立下模子装配体—DOWN.ASM

同理建立名为DOWN的下模子装配体。在模型树下会发现模具装配体dkzj1.a sm底下会增加两个子装配体文件—UP.ASM和DOWN.ASM。

第3步:保存模具工程

执行【文件︱保存】菜单命令,在【保存文件】对话框,单击【确定】。检查模具工程目录,会发现其中共有四个文件—dkzj1.Asm、dkzj1.Prt、UP.AS

M和DOWN.ASM。

2,上模零件设计

提示:所有上模的零件均要建立在上模子装配体—UP.ASM节点之下,这样可以使装配结构清晰,零件间的父子关系明确,便于日后对零件的管理和操作。

由于Proe不支持中文名称,所以零件模型一般均以零件的序号来命名。上模零件名称如下表:

因为凹模板与冲压件直接接触,所以第一个建立的元件是03.pr t。

下面以为03.pr t为例说明零件的建立方法。

步骤1:激活子组件UP.ASM

在模型树下,用鼠标右键单击子组件UP.ASM,选择【激活】命令,激活子组件UP.ASM。激活状态的子组件前面有个星号标记。

步骤2:建立元件—03.pr t

单击【创建元件】工具按钮,在【元件创建】对话框中选择【零件】、【实体】,输入名称03,单击【确定】,再在【创建选项】对话框中勾选【空】,单击【确

定】。在模型树下会发现底下子组件UP.ASM节点下产生了一个新的元件03.pr t。在模型树下,用与步骤1同样的方法激活03.pr t。选择冲压件模型的上表面作为绘图平面,再选择一个参照面,就可以进行草绘了。

同理,可进行其他零件模型的建立。

在设计冲模时还要用到以下功能:

1,建立通过孔

执行【应用程序︱模具布局】菜单命令,进入装配体布局模式,单击菜单管理器中的【型腔腔槽︱腔槽开孔】菜单命令,按照系统提示,按住【Ctrl】键,选取需要开孔零件,然后在【选取】对话框中单击【确定】,接着选取参照零件,单击【确定︱完成︱完成/返回】,完成通过孔的设计。执行【应用程序︱标准】菜单命令,返回标准装配体编辑模式。(在模板上装配标准件时就可以用这个功能。先在模板上建立基准轴,将标准件调入装配体,将标准件的旋转轴和基准轴对齐,再加上别的约束即可完成标准件的装配。然后可用这种方法建立模板的标准件安装孔。)

2,建立与几个零件相交孔

执行【应用程序︱模具布局】菜单命令,进入装配体布局模式,单击菜单管理器中的【喷射销钉孔︱线性︱完成】菜单命令,选择要做沉头孔的零件表面作为放置平面,先选择水平参考基准面,输入参考距离,单击√按钮;再选择垂直参考基准面,输入参考距离,单击√按钮。单击【正向】命令,系统弹出【相交元件】对话框,在等级下拉菜单中选择零件级。先选择要做沉头孔的零件作为相交元件,输入孔的直径值,单击√按钮;再选择其他的零件作为相交元件,输入孔的直径值,单击√按钮。直到要做相交孔的所有元件的直径值设置完成后,在【相交元件】对话框中,单击【确定】按钮,按照系统提示输入沉头孔的直径,并输入沉头孔的深度,单击【确定】按钮,完成相交孔的设计。(这个功能在设计卸料螺钉过孔时非常有用。)

3,用分割曲面修剪零件

步骤1:分割曲面的制作将采用边界曲面的方法通过曲面复制得到。用右键查询选出边

界曲面的种子平面,选择【复制】【粘贴】按钮,系统弹出曲面复制控制面板。按住【shift】键,选取几个连续面作为边界,松开【shift】键,则会在种子平面和边界之间(包括种子平面)形成一个完整的边界曲面,单击√按钮完成分割曲面的制作。

步骤2:先激活零件,再选择分割曲面,然后单击下拉菜单【编辑︱实体化】命令,弹出实体化控制面板,单击【剪切材料】按钮,同时屏幕会给出曲面分割的方向(箭头指向哪个方向,去除哪个方向的特征),单击√按钮完成分割操作。(冲压件模型中的凸筋特征和打包特征,都要用到相应的凸模和凹模来成型,为了使凸模和凹模等工作零件建模比较方便,先要采用复制曲面的方法,将冲压件模型的上表面和下表面复制出来,以用来分割凸模和凹模的成型部分。)

4,装配体干涉检查

执行下拉菜单【分析︱模型】命令,弹出子菜单,在这个菜单中提供了【体积干涉】和【全局干涉】两种干涉类型检测。体积干涉只检查所选曲面之间的干涉,而全局干涉则检查整个装配体所有零件之间的全部干涉。在冲模设计中,一般都用全局干涉。全局干涉操作方法如下:选择【全局干涉】命令,弹出【全局干涉】对话框。单击【分析】标签,选中【设置】选项组中的【仅零件】单选按钮,选中【计算】选项组中的【精确】单选按钮,单击【预览】按钮,显示出分析结果,同时模型上以红色显示干涉部位。

冲压模具设计

设计题目: 零件图:

前 言 从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A-2r) 和 2 个长度为 (B-2r) 的直边加上 4 个半径为 r 的 1/4 圆筒部分。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即321L L L ?=?=?,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图1所示) 。这些变化主要表现在: 图 1 ⑴直边部位的变形 直边部位的横向尺寸变形后间距逐渐缩小,愈向直边中间部位缩小愈少,纵向尺寸变形后,间距逐渐增大,愈靠近盒形件口部增大愈多,可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越

向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 盒形件拉深有以下变形特点: σ的分布是不均匀的。在圆角部分最大,直 (1) 凸缘变形区内径向拉应力 1 σ也远小于相应的圆筒形件的拉应力。边部分最小。即使在角部,平均拉应力 1 因此,就危险断面处载荷来说,矩形盒拉深时要小得多;对于相同材料,矩形盒拉深的最大成形相对高度要大于相同半径的圆筒形零件拉深时的最大成形相对高度。 (2) 由于直边和圆角变形区内材料受力情况不同,直边处材料向凹模流动的阻力要远小于圆角处,并且,直边处材料的径向伸长变形小而圆角处材料的径向变形大,使变形区内两处材料的变形量不同,直边处大于圆角处。由此引起两处位移速度差,因而必然诱发出切应力(图2),以协调直边与圆角处的变形。 图2 盒形件拉深时的应力分布 σ的分布也是不均匀的。从角部到中间直 (3)在毛坯外周边上,切向压应力 3 σ的数值逐渐减小。通常情况下,起皱都发生在角部,但是起边部位,压应力 3 皱的趋势要小于拉深相应圆筒形件时的情况。 常用相对圆角半径r/B表示矩形盒的几何形状特征,0

ProE现代电风扇产品设计及制造

目录 第1章绪论 (3) 1.1三维造型设计的现状和发展 (3) 1.2常用三维造型软件介绍 (3) 1.3Pro/E软件的简介 (4) 1.4本文主要研究的内容 (4) 第2章现代电风扇产品设计与功能的发展 (5) 2.1设计的突破 (5) 2.2功能彰显人性 (5) 第3章 Pro/E设计落地电风扇的步骤 (6) 3.1设计思路 (6) 3.2 实体建模 (8) 3.2.1电风扇前盖的设计 (8) 3.2.2电风扇叶片的设计 (11) 3.2.3电风扇后盖的设计 (14) 3.2.4电风扇马达的设计 (15) 3.2.5电风扇底盘的设计 (18) 第4章电风扇的装配设计 (20) 4.1新建组件文件 (20) 4.2工件的装配过程 (20) 4.3生成装配爆炸图 (28)

(一)结束语 (29) (二)致谢 (29) (三)参考文献 (29)

第1章绪论 计算机辅助设计是一种将人和计算机的最佳特性结合起来以辅助进行产品的设计与分析的技术,是综合了计算机与工程设计方法的最新发展成果而形成的一门新兴学科。它的产生和不断发展、对工业生产、工程设计和科学研究等领域的技术进步和发展产生了巨大影响。 1.1三维造型设计的现状和发展 经过四十多年的发展,CAD/CAM技术有了长足的进步。而三维CAD技术到目前为止共经历了5次大的技术革新,按顺序分别介绍如下: (1)三维线框系统 20世纪60年代,新出现的三维CAD系统是简单的线框式系统,只能表达基本的几何信息,而不能有效表达几何数据间的拓扑关系。 (2)曲面造型系统 法国达索飞机制造公司基于巴塞尔算法,在上世纪70年代开发出以表面模型为特点的三维造型系统CATIA,从而标志着CAD技术突破了单纯模仿工程图纸三视图的模式,首次实现完整描述产品零件的主要信息,使得CAD技术有了实现基础。 (3)实体造型技术 实体造型技术带来了算法改进、未来发展和希望,同时也带来了数据计算量的极度膨胀。 (4)参数化技术 进入20世纪80年代中期,由于设计理念上的冲突,策划参数化技术的人员单独成立了参数化技术公司,开始研制名为PRO/ENGINEER的参数化软件,并一次实现了尺寸驱动零件设计修改。 (5)变量化技术 变量化技术既保持了参数化技术的原有优点,同量又克服了它的许多不足。他的成功应用,为CAD技术的发展提供了更大的空间的机遇。 从我国目前的应用现状看,以PRO/ENGINEER为首的参数化设计技术占据着主导地位,并且还在迅速膨胀,其发展势头犹如AUTOCAD刚刚进入中国时一样。随着变量化技术的逐步扩展和完善,预计在不远的将来会进入新的应用时期。 1.2常用三维造型软件介绍 三维软件技术经过几十多年的发展,每个时代都有当时流行的软件。现在,工作站的微机平台CAD/CAM软件已经占据主导地位,并且出现了一批比较优秀的商业化软件。 (1)Unigraphics(UG) UG是Unigraphics Solutions公司的拳头产品。该公司首次突破传统CAD/CAM模式,为用户提供一个全面的产品建模系统。在UG中,优越的参数化和变量化技术与传统的实体、线框和表面功能结合在一起,这一结合被实践证明是强有力的,并被大多数三维设计软件厂商所采用。 (2)SoliddWorks

冲压模具设计

毕业设计(论文)开题报告 系(部):机械工程系年月日(学生填表)课题名称挡环冲压模具设计 学生姓名专业班级课题类型工程设计 指导教师职称课题来源生产 1.综述本课题国内外研究动态,说明选题的依据和意义 近些年来我国模具工业迅速发展,中国正成为世界模具大国,但模具水平和生产工艺水平比国际先进水平低很多,成为真正的模具强国任重而道远。 改革开放以来,随着科学技术的不断进步和工业生产的迅速发展,许多新技术、新工艺、新设备、新材料不断涌现,因而促进了冲压技术的不断革新和发展。近年来,模具工业一直以15%左右的增长速度快速发展。 21世纪,随着科技的发展,计算机的普及以及操作性能的提高,CAD/CAM 开始技术逐渐普及,现在具有一定生产能力的冲压模具企业基本都有了CAD/CAM 技术。近年许多模具企业加大了用于技术进步的投资力度,将技术进步视为企业发展的重要动力。一些国内模具企业已普及了二维CAD,并陆续开始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等国际通用软件,个别厂家还引进了Moldflow、C-Flow、DYNAFORM、Optris和MAGMASOFT等CAE软件,并成功应用于冲压模的设计中。此外,许多研究机构和大专院校开展模具技术的研究和开发。经过多年的努力,在模具CAD/CAE/CAM技术方面取得了显著进步;在提高模具质量和缩短模具设计制造周期等方面做出了贡献。 近几年来,随着工业和高科技产业的飞速发展,我国冲压模具的设计与制造能力已达到较高水平。尽管如此,我国的冲压模具设计制造能力与市场需要和国际先进水平相比仍有较大差距。为了弥补这一技术上的差距,我国正在努力改善生产工艺,提高生产技术,紧追世界模具发展步伐,现如今代表着最先进冲模技术水平的多工位级进模和多功能模具,是我国重点发展的精密模具品种。其中具有代表性的集机电一体化的铁芯精密自动阀片多功能模具,已基本达到国际水平。但总体上和国外多工位级进模相比,在制造精度、使用寿命、模具结构和功能上,仍存在一定差距。 模具的专业化程度也是限制冲压模具发展的一大因素,因此想要提高我国整体冲压模具水平,还得从最基础做起,首要的就是多与国外的先进技术进行交流,教育知识与国外的相同步,另外,国内企业也应多和国内外大中专学院开展模具技术的研究和开发,确保能获得最前沿的知识与最先进的技术。 就全球模具发展现状而言:日本模具产能约占全球的40%,居世界第一位;德国在模具行业具有领先世界的技术;美国模具占有率逐渐减少,但在高端模具领域占有重要地位。 国外模具发展趋势——工业发达国家在模具设计上已经大量使用计算机辅助设计模拟软件进行模具结构的设计;模具加工上已大量使用数控机床,应用计算机辅助加工和数控编程技术对模具进行加工,使模具的加工质量和附加值大大

对模具设计软件proe和UG的比较

对模具设计软件proe和UG的比较 昨天和几个做模具设计的朋友聊他们做设计时用的软件的话题,有人用proe的也有人用UG的。都在争论哪个会更适合做设计。之后我也特意总结了自己的个人小观点。我是用UG的对proe只是了解谈不上精通。这里只是自己的片面观点。 UG主要适合于大型的汽车、飞机厂建立复杂的数模,而PRO/E主要适合于中小企业快速建立较为简单的数模。从我个人来说,PRO/E偏向于设计,UG能力更强一点,在各个方面都能做到得心应手,对于一些乱糟糟的面啊、线啊,改模啊、改设计啊、UG用起来还是更顺利些,至少可以随时把参数去掉,减少特征树。PRO/E在装配设计方面也有长处,草图功能非UG所能比。不过做高精密模具设计肯定是Proe好,因为它的尺寸精度要比UG 高得多。 UG混合建模时,可以局部参数化(当然完全参数化更没问题),对于模型更新有利。PTC 为完全参数化,编辑更新小的设计(家电)可以,大的(飞机,汽车),一更新不死机,其刷新时间会影响到设计师的思路。UG的核心PARASOLID是一般以上的三维软件都支持的!只有PROE坚持最简单的!加工软件用的最多的是MASTERCAM,PROE只能通过原始的IGES或者STEP转吖这是ug的曲面与渲染,可以说是很完美!proe搞这种东西好像,大家说是不是有点腰软!我还没看到proe出这种渲染质量的图片! 应该说UG的综合能力是很强大的:从产品设计到模具设计到加工到分析到渲染几乎无所不包;pro强调的是单纯的全相关产品设计,显得有点力单势薄;至于哪个更好,其实要看我们能用到什么程度,对于大部分用户我相信两个软件都能完成我们所要求的功能;如果要求多面手,那当然首选UG,如果单做产品设计都可以不过一定要学精不要单纯的讲哪个软件好关键是你能用它做到多少东西!从初学的角度出发,我个人意见是UG入门及自学能更快上手!GUI的界面,功能可以记图标,一目了然,再加上现在UG的资料也多了!学模具设计,UG是第一选择,模具标准件都有,一套简单的模具,5分钟模,5分钟装模胚,再装顶针及其它标准件,布水路,30分钟搞定,不过你要有模具设计实际经验才好.比较之七:支持用UG,因为PROE的分模确实比不上UG。 本文转自:模具网https://www.docsj.com/doc/1a441290.html,/news/show-htm-itemid-2812.html

proe产品设计茶壶设计1

茶壶设计 姓名:王闯班级:车辆1093班学号:1091504314 一:茶壶身的设计 (1)单机菜单栏【文件】【创建】按钮,系统弹出如图1-1所示的对话框,选择类型为Part类型,同时取消【使用缺省模版】选项。 图1-1 建立新文件 (2)单机【确定】按钮,系统弹出如图1-2所示的对话框,选择公制模版作为主要基准。

图1-2 模版对话框 (3)单机菜单栏【插入】【旋转】选项,打开旋转特征面板,如图1-3所示。 图1-3 旋转特征面板 (4)如图1-4所示,选择生成实体方式,然后单机,选择FRONT基准面作为草绘平面,默认系统参照面。 图1-4 生成草绘平面 (5)在该草绘平面上绘制如图1-5所示的草图,完成后单机按钮退出草绘模式。

图1-5 草绘示意图 (6)输入旋转角度“360”。完成后效果如图1-6所示。 图1-6 旋转效果图 (7)在菜单栏中选择【插入】【扫描】选项,选择其中的伸出项选项,系统弹出如图1-7所示的对话框。 图1-7 曲面:扫描对话框图1-8 扫描轨迹选项 (8)选择【扫描轨迹】选项,如图1-8。 (9)系统弹出如图1-9所示的菜单,选择使用先前的基准面作为草绘面,系统弹出如图1-10所示的菜单,选择【正向】选项,然后选择默认作为草图的放置方式。 选择【正向】【缺省】 图1-9 设置平面图1-10 设置草绘方向 (10)绘制如图1-11所示的草绘图,单击,并选择合并终点,完成操作。

图1-11 草绘示意图 (11)在草绘模式下,绘制扫描剖面,如图1-12所示,单击按钮,退出草绘模式。 图1-12 扫描剖面 (12) 如图1-13所示,定义完所有内容,单击【确定】按钮,生成扫描实体,如图1-14所示。 图1-13 定义扫描内容图1-14 扫描实体示意图(13)以FRONT为基准面创建草绘,如图1-15所示。

冲压模具设计课程设计

冲压工艺及模具设计模具课题设计 班级: 姓名: 学号: 日期: 材料科学与工程学院 College of Materials Science and Engineering

引言 在工业产品中,板材件占据了一个大比例。许许多多的机械零件,产品覆盖件都是用板料加工而成的,因此,研究板料的成形方法对产品的设计与加工有着重要的意义。 现在的板材成形方法有许许多多种,其中冷冲压占据很大的一部分。冷冲压是利用安装在压力机上的冲模对材料施加压力,使其产生分离或塑性变形,从而获得所需要的零件的一种压力加工方法。冷冲压可以分为两大类,即分离工序和成形工序。分离工序是指使板料按一定的轮廓线分离而获得一定形状,尺寸和切断面质量的冲压件的工序;成形工序是指使坯料在不破裂的条件下产生塑性变形而获得一定形状和尺寸冲压件的工序。 冷冲压过程主要依靠冲模和压力设备完成加工的,便于实现自动化生产,生产率很高,操作简单。而且产品壁薄、质量轻、刚度好、可以加工成形复杂的零件,小到钟表的秒针,大到汽车纵梁,覆盖件等。 冷冲压与其他加工方法相比具有独到的特点,所以在工业生产中,尤其在大批量生产中应用十分广泛。 本课程即将结束之时,为了了解冲压工艺的基本原理,掌握冲压工艺的编制和模具的设计,我将选择了一个垫片零件。通过设计冲裁模实现零件的大规模的生产与制造。

目录 引言 .............................................................................................................. I 一零件的工艺性分析.. (1) 1.1 零件要求 (1) 1.2 冲裁件的工艺性分析 (1) 1.3 冲裁工艺方案的设定 (2) 二冲模设计相关计算 (2) 2.1 排样的相关设计与计算 (2) 2.2 冲裁力的计算 (3) 2.3 冲裁压力中心的计算 (4) 2.4 冲裁模刃口尺寸及公差的计算 (4) 2.5主要零件的尺寸计算 (5) 三定位装置的设计 (7) 3.1 横向送料定位装置设计 (7) 3.2 纵向送料定位装置的设计 (8) 四标准件的选用 (9) 4.1 模座选用 (9) 4.2 压力机选用 (10) 4.3 紧固件选择 (10) 五模具加工工艺 (11) 5.1 凸模加工工艺 (11) 5.2 凹模加工工艺 (11)

ProE产品研发设计技巧

产品研发设计技巧 前言:产品研发不仅仅需要体现一个人的设计灵感,同时也需要具有一定的绘图技巧。一个完美的产品就看你如何去展现,下面我将用实例来列出产品在研发过程中的注意事项以及结构与外型的设计等。 1、Pro/E绘图步骤 绘图过程中,绘图步骤可体现一个人的绘图水平与Pro/E运用熟练程度。下面是用两种方法绘制的一个圆柱体,前一种是直接点击拉伸工具绘制的,后一种是先通过草绘工具先将2D绘制出来,然后再使用拉伸工具进行拉抻,这两种方法可明显看出前者的步骤比后者少,若遇到需设置基准面的情况下,使用后者所绘制的步骤将会更多。 图(1) 图(2)

2、三边曲面的处理 通常在绘制过度曲面或处于圆弧过度的曲面时会碰到尖角面,也就是三边曲面,三边曲面偏移量小,甚至无法偏移,对后续模具设计或结构变更等带来极大的不便, 图(3) 面对于此类曲面需将三边面转为四边面。或将尖角面切除,重新绘制一个四边曲面。 图(4)

3、倒圆角 在设计产品时,倒圆角步骤应放在整个产品设计的最后,原因有两方面:一是,倒圆角在设计重新生成时速度很慢,二是,倒完圆角后在后续的设计过程中在使用倒圆角的边做某一步骤的参照后,若想删除这个圆角时不好删除,有连带父子关系。只有将参照转移后方可删除。 图(5) 4、实体化工具的使用 实体化工具在一个产品设计中可以将曲面转为实体,也可以切除材料,但是一个很完美的产品设计中,实体化工具最多使用二次左右,甚至一次。实体化工具适合在一个产品用曲面设计成型后使用一次让其变为实体。其它几乎可以不用。 下面请看一个错误的实体化运用:很多人在做隔层时喜欢用下面这种方法来切除材料。看看使用此方法错在何处。 图(6)

ProE模具设计教程[1]

ProE模具设计教程 ——裙边面分模方法实例(WildFire版本) 作者:TomLee 本教程将详细讲解在Pro/E中创建标准模具装配的流程,裙边面的创建方法已经常用的技巧,本教程将只讨论正常的使用分型面进行体积块拆分的分模方法,对于各种各样的“暴力”分模方法不加以讨论。 MFG的创建 创建工作目录 新建一个工作目录,因为在分模过程中会产生一系列的文件: ? MOLDNAME.MFG------------------模具设计制造文件 ? MOLDNAME.ASM------------------模具组件 ? FILENAME_WRK.PRT----------------------工件 ? MOLDNAME_REF.PRT------------参考零件 ? FILENAME.PRT---------------------设计零件 ? MOLDNAME.ACC------------------相关零件精度报表(零件间精度不同是产生) 新建模具文件 选择制造“Manufacturing”——模具型腔“Mold Cavity”(铸造型腔“Cast Cavity”界面和方法都跟模具型腔基本相同,只多一个沙芯的功能。)

进入模具界面,现在增加了工具条基本可以完成分模的动作,同时也保留有老的菜单在右侧。不过被PTC干掉是迟早的事情,哈哈! 加入参考模型 不要直接装入零件开始模具设计,因为还需要添加一些零件上不需要的模具特征。选择 模具的装配方法 ?模具模型(Mold Mold)——装配(Assemble)——参考模型(Ref Mold),这样跟组件装配零件的界面和方法相同 ?模具模型(Mold Mold)——定位参照零件(Locate RefPart),这样会有专门的布局窗口提供我们进行更多的设置。也可以 点击图标

Proe的主要应用

Pro/E的主要应用 摘要:Pro/E是美国PTC公司旗下的产品Pro/Engineer软件的简称,是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品。Pro/E是一款集CAD/CAM/CAE功能一体化的综合性三维软件,在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。 关键词:三维软件,Pro/e,机械,应用 正是由于Pro/E的强大功能,使得它在很多领域得到了广泛的应用。下面主要通过Pro/E在各方面的应用来介绍其作用和功能。 一、建模 Pro/E是一款参数化建模软件,具有丰富的零件实体建模功能,能进行变量化的草图轮廓绘制,并能自动进行动态约束检查。通过拉伸、旋转、薄壁特征、抽壳、特征阵列,以及打孔等操作,更简便地实现机械产品的开发设计。通过扫描、混合、填充,以及拖动可控的相关操作,能生成形状复杂的构造曲面,可以直观地对曲面进行修剪、延伸、倒角和缝合等操作。 Pro/E的所有模块都是相关联的。这就意味着在产品开发过程中某一处进行的修改,能够扩展到整个设计中,同时自动更新所有的工程文档,包括装配体、设计图纸,以及制造数据。在开发周期的任一点进行修改,却没有任何损失,并使并行工程成为可能,所以能够使开发后期的一些功能提前发挥其作用。 Pro/E是基于特征的参数化造型,可以按预先设置很容易地进行修改、装配、加工、制造,通过给这些特征设置参数,然后修改参数,很容易进行多次设计叠代,实现产品开发。Pro/E的数据管理模块可以加速产品投放市场,在较短的时间内开发更多的产品。 参数化设计是指零件或部件的形状比较定型,用一组参数约束该几何图形的一组结构尺寸序列,参数与设计对象的控制尺寸有显式对应,当赋予不同的参数序列值时,就可驱动达到瓶的目标几何图形,其设计结果是包含设计信息的模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品,大大提高了设计效率。

冲压模具设计和制造实例

冲压模具设计与制造实例 例:图1所示冲裁件,材料为A3,厚度为2mm,大批量生产。试制定工件冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。 零件名称:止动件 生产批量:大批 材料:A3 材料厚度:t=2mm 一、冲压工艺与模具设计 1.冲压件工艺分析 ①材料:该冲裁件的材料A3钢是普通碳素钢,具有较好的可冲压性能。 ②零件结构:该冲裁件结构简单,并在转角有四处R2圆角,比较适合冲裁。 ③尺寸精度:零件图上所有未注公差的尺寸,属自由尺寸, -0.74 0 -0.52 -0.52 -0.52 -0.52

可按IT14级确定工件尺寸的公差。孔边距12mm 的公差为-0.11,属11级精度。查公差表可得各尺寸公差为: 零件外形:65 mm 24 mm 30 mm R30 mm R2 mm 零件形:10 mm 孔心距:37±0.31mm 结论:适合冲裁。 2.工艺方案及模具结构类型 该零件包括落料、冲孔两个工序,可以采用以下三种工艺方案: ①先落料,再冲孔,采用单工序模生产。 ②落料-冲孔复合冲压,采用复合模生产。 ③冲孔-落料连续冲压,采用级进模生产。 方案①模具结构简单,但需要两道工序、两套模具才能完成 零件的加工,生产效率较低,难以满足零件大批量生产的需求。由于零件结构简单,为提高生产效率,主要应采用复合冲裁或级进冲裁方式。由于孔边距尺寸12 mm 有公差要求,为了更好地保证此尺寸精度,最后确定 用复合冲裁方式进行生产。 +0.36 0 0 -0.11

工件尺寸可知,凸凹模壁厚大于最 小壁厚,为便于操作,所以复合模 结构采用倒装复合模及弹性卸料 和定位钉定位方式。 3.排样设计 查《冲压模具设计与制造》表 2.5.2,确定搭边值: 两工件间的搭边:a=2.2mm 工件边缘搭边:a1=2.5mm 步距为:32.2mm 条料宽度B=D+2a1 =65+2*2.5 =70 确定后排样图如2所示 一个步距的材料利用率η为: η=A/BS×100% =1550÷(70×32.2)×100% =68.8% 查板材标准,宜选900mm×1000mm的钢板,每钢板可剪裁为14条料(70mm×1000mm),每条料可冲378个工件,则η为: η=nA1/LB×100%

PROE模具设计实例教程

7
模具體積塊 與 元件

7-1 7-2 7-3 7-4 模具體積塊 建立體積塊-分割 建立體積塊-聚合 模具元件


7-1 模具體積塊
在分模面完成之後,接下來的工作是準備將工件一分為二。利用分 模 面 可 將 模 具 組 合 中 的 工 件 ( Workpiece ) 分 割 成 兩 塊 , 即 公 模 (Core)和母模(Cavity)。一般而言,利用 Split(分割)的方式來建 立模具體積塊是較為快速的方法,但是在使用分割時卻有一個先決條 件,那就是先前所建立的分模面必須是正確且完整的,否則將會造成分 割的失敗。 此 外 , Pro/E 同 時 也 提 供 了 手 動 的 方 式 來 建 立 模 具 體 積 塊 , 即 Create(建立)。Create(建立)方式主要有兩種,分別是 Gather(聚 合)及 Sketch(草繪)。Gather(聚合)指令是藉由定義曲面邊界及封 閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體特徵的建構方 式來產生。利用手動的方式來建立模具體積塊並不需要事先建立好分模 面,因此,在使用上並不如分割那樣容易、快速,但是卻可以省下建立 分模面的時間。 模 具 體 積 塊 是 3D、 無 質 量 的 封 閉 曲 面 組 , 由 於 它 們 是 閉 合 的 曲 面 組,故在畫面上皆以洋紅色顯示。 建立模塊體積與元件的指令皆包含在 Mold Volume(模具體積塊) 選單中,選單結構如【圖 7-1】所示。
7-2

【圖7-1】
Mold Volume(模具體積塊)選單結構
Mold Volume(模具體積塊) 在 Mold Volume ( 模 具 體 積 塊 ) 選 單 中 有 十 個 指 令 , 分 別 為 Create( 建 立 ) 、 Modify( 修 改 ) 、 Redefine( 重 新 定 義 ) 、 Delete ( 刪 除 ) 、 Rename ( 重 新 命 名 ) 、 Blank ( 遮 蔽 ) 、 Unblank(撤銷遮 蔽)、Shade(著色) 、 Split(分 割) 以及 Attach(連接)。 Create(建立) 建立一個模具元件體積塊。在輸入體積塊名稱後便可進入模具體 積選單中,可利用 Gather(聚合)或是 Sketch(草繪)的方式 來建立模塊體積。使用 Gather(聚合)指令必須定義曲面邊界 及封閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體
7-3

基于proe的产品外壳模具设计

本科毕业设计(论文) 基于Pro/E的产品外壳模具设计 学院名称机械与汽车工程学院专业班级材控12-2 学生姓名 导师姓名 年月日

基于Pro/E的产品外壳模具设计 作者姓名 专业材料成型及控制工程 指导教师姓名 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1选题依据 (3) 1.2国内外研究现状及其发展趋势 (4) 1.2.1国外的发展现状 (4) 1.2.2国内的发展现状 (5) 1.3研究内容、目的及意义 (7) 1.3.1研究内容 (7) 1.3.2研究目的及意义 (8) 第二章塑件的工艺性分析 (9) 2.1塑件原材料分析 (9) 2.2塑件结构特征分析 (10) 2.3模流分析 (11) 2.3.1浇口位置分析 (11) 2.3.2塑料熔体填充分析 (11) 2.3.3冷却质量分析 (12) 2.3.4熔接痕分析 (12) 2.3.5气泡分析 (13)

第三章模具结构设计 (13) 3.1模具型腔数目及排布方式的确定 (13) 3.2注塑机的选用 (14) 3.3分型面的设计 (15) 3.4成型零部件设计 (17) 3.5浇注系统设计 (19) 3.5.1主流道设计 (19) 3.5.2分流道设计 (20) 3.5.3 浇口设计 (22) 3.5.4冷料穴与拉料杆设计 (22) 3.6注塑机有关参数校核 (23) 3.7排气系统设计 (25) 3.8模架设计 (25) 3.9推出机构设计 (26) 3.9.1顶杆设计 (27) 3.9.2复位杆设计 (27) 3.9.3推杆固定板和推板设计 (28) 3.10合模导向机构设计 (29)

PROE模具设计试题

PROE模具设计(助师级)试题 专业基础课程考试 一、选择(共10分,每题0.5分) 1、若零件模型进行了修改,其相关元件() A可以不做修改B可修改可不修改C相应修改D重做 2、( ):在模具模型中插入零件或者装配特征 A Pattern B Insert Mode C Reorder D Insert 3、增加精度会使文件大小() A 变小B变大C不变D没影响 4、按照注塑机的类型可将注塑模具分为:立式注塑模、卧式注塑模、() A斜式注塑模B角式注塑模C倒式注塑模 D 综合式注塑模 5、不同塑料的收缩率() A相同B不变C不同 D 相等 6、如果毛坯提前设计好了,则在模具设计时可以将其装配到模具模型,否则需要进行毛坯() A设计B修改C新建D删除 7、SPLIT VOLUME菜单中的各个选项一般组合使用。Two V olume + ( ):将模具体积分割为两个模具体积 A All Wrkpcs B Mold V olume C V olume D Split Volume 8、模具模型是由参考模型和()生成的 A毛坯件B非参考模型C毛坯装配D实际模型 9、模具中的分模面用来()模具取出制作 A分开B聚合C合并D定位 10、塑料制件从模具中取出后,由于冷却、缩水等原因会引起制件的体积() A膨胀B收缩C不变 D 变小 11、冲模是将实体体积充满型腔以及浇注系统形成的空间,即模拟向模具型腔注入()生成零件的过程。 A塑料B铸铁C冷却液 D 空气 12、()模具特征创建,设计浇注系统等 A Modify B Feature C Shrinkage D Volume 13、()提取凸模、凹模等模具体积,即将Mold V olume切割出来的体积转化成模具组件 A Mold V olume B Mold Comp C Mold Opening D Mold Feature 14、增加精度会使再生时间() A、加长B缩短C不变 D 没影响 15、按照模具的安装方式可将注塑模具分为:移动式注塑模、()注塑模 A平动式B竖直式C固定式 D 水平式 16、( ):以收缩比例来设置尺寸的收缩率 A Shrink Ratio B Final Value C After Rels D Value Ratio 17、Ex_femail.mfg:( )文件。 A凹模零件B所有模具组件的装配C模具模型工程 D 毛坯零件18、毛坯模型的创建有自动创建() A手动创建B简单创建C复杂创建 D 导入创建 19、():重新定义参考零件和毛坯模型的几何参考 A Redefine B Resume C Reroute D Reference

冲压模具设计步骤

冷冲压模具设计步骤 冷冲模设计的一般步骤如下: 1 .搜集必要的资料 设计冷冲模时,需搜集的资料包括产品图、样品、设计任务书和参考图等,并相应了解如下问题: l )了解提供的产品视图是否完备,技术要求是否明确,有无特殊要求的地方。 2 )了解制件的生产性质是试制还是批量或大量生产,以确定模具的结构性质。 3 )了解制件的材料性质(软、硬还是半硬)、尺寸和供应方式(如条料、卷料还是废料利用等),以便确定冲裁的合理间隙及冲压的送料方法。 4 )了解适用的压力机情况和有关技术规格,根据所选用的设备确定与之相适应的模具及有关参数,如模架大小、模柄尺寸、模具闭合高度和送料机构等。 5 )了解模具制造的技术力量、设备条件和加工技巧,为确定模具结构提供依据。 6 )了解最大限度采用标准件的可能性,以缩短模具制造周期。 2 .冲压工艺性分析 冲压工艺性是指零件冲压加工的难易程度。在技术方面,主要分析该零件的形状特点、尺寸大小(最小孔边距、孔径、材料厚度、最大外形)、精度要求和材料性能等因素是否符合冲压工艺的要求。如果发现冲压工艺性差,则需要对冲压件产品提出修改意见,经产品设计者同意后方可修改。 3 .确定合理的冲压工艺方案 确定方法如下: l )根据工件的形状、尺寸精度、表面质量要求进行工艺分析,确定基本工序的性质,即落

料、冲孔、弯曲等基本工序。一般情况下可以由图样要求直接确定。 2 )根据工艺计算,确定工序数目,如拉深次数等。 3 )根据各工序的变形特点、尺寸要求确定工序排列的顺序,例如,是先冲孔后弯曲还是先弯曲后冲孔等。 4 ) 根据生产批量和条件,确定工序的组合,如复合冲压工序、连续冲压工序等。 5 ) 最后从产品质量、生产效率、设备占用情况、模具制造的难易程度、模具寿命、工艺成本、操作方便和安全程度等方面进行综合分析、比较,在满足冲件质量要求的前提下,确定适合具体生产条件的最经济合理的冲压工艺方案,并填写冲压工艺过程卡片(内容包括工序名称、工序数目、工序草图(半成品形状和尺寸)、所用模具、所选设备、工序检验要求、板料规格和性能、毛坯形状和尺寸等): ; 4 确定模具结构形式 确定工序的性质、顺序及工序的组合后,即确定了冲压工艺方案也就决定了各工序模具的结构形式。冲模的种类很多,必须根据冲件的生产批量、尺寸、精度、形状复杂程度和生产条件等多方面因素选择,其选原则如下: l )根据制件的生产批量确定采用简易模还是复合模结构。一般来说简易模寿命低,成本低;而复合模寿命长,成本高。 2 )根据制件的尺寸要求确定冲模类型。 若制件的尺寸精度及断面质量要求较高,应采用精密冲模结构;对于一般精度要求的制件,可采用普通冲模。复合模冲出的制件精度高于级进模,而级进模又高于单工序模。 3 )根据设备类型确定冲模结构。 拉深加工时有双动压力机的情况下,选用双动冲模结构比选用单动冲模结构好很多

proe模具设计入门

第1讲Pro/ENGINEER Wildfire 模具设计基础 本讲要点 ?操作界面简介 ?模具设计的一般操作流程 ?Pro/ENGINEER软件的启动 Pro/ENGINEER作为一种最流行的三维设计软件,目前,越来越多的工程技术人员利用它进行产品与模具的设计和开发。本讲主要让读者了解Pro/ ENGINEER软件的模具设计模块和模具设计的一般操作过程。

2 Pro/E Wildfire 4中文版模具设计入门视频教程 1.1 模具设计基础应用示例 对如图1-1所示的零件进行分模、流道系统、冷却系统的设计,初步了解Pro/ENGINEER 模具设计的一般操作过程。 图1-1 示例零件 STEP 1 启动Pro/ENGINEER 选择【开始】/【所有程序】/【PTC】/【Pro ENGINEER】/【Pro ENGINEER】命令,如图1-2所示。启动Pro/ENGINEER软件,界面如图1-3所示。 图1-2 命令菜单 图1-3 启动的Pro/ENGINEER软件界面

3 第1讲 Pro/ENGINEER Wildfire 模具设计基础 → STEP 2 设置工件目录 选择主菜单上的【文件】/【设置工作目录】命令,如图1-4所示,弹出【选取工作目录】对话框,选择用户要保存文件的目录,如图1-5所示,完成后,单击【确定】按钮。 图1-4 选择【设置工作目录】命令 图1-5 【选取工作目录】对话框 → STEP 3 新建文件 单击工具栏上的【新建】按钮。 弹出【新建】对话框,设置选项如图1-6所示,完成后,单击【确定】按钮。 弹出【新文件选项】对话框,设置选项如图1-7所示。完成后,单击【确定】按钮,进入模具设计模块,如图1-8所示。 图1-6 【新建】对话框 图1-7 【新文件选项】对话框 → STEP 4 导入零件 在如图1-9所示的菜单管理器中选择【模具模型】/【装配】/【参照模型】命令。 系统弹出【打开】对话框,如图1-10所示,选择零件E1,再单击【打开】按钮。 系统弹出【装配】面板,如图1-11所示,选择如图1-12所示的零件坐标系PRT_ CSYS_DEF 和模具坐标系MOLD_DEF_CSYS 进行装配,完成后,单击【确定】按钮。

冲压模具设计步骤

给个实例。由于无法上图,只有文字,见谅。 抽引连续模设计步骤及要点, [摘要] 文章在对抽引加工工艺作了简单的概述後,著重总结了抽引连续模设计步骤及要点,并列举了较实用之模具结构形式. 关键词抽引连续模冲压冲模排样 1. 概述 抽引加工工艺在连接器五金件制造中应用极为广泛. 它是一种将平片毛坯抽制成立体空心件的冲压加工方法,在工业及生活用品的制造中应用极为广泛. 诸如汽车覆盖件,连接器中的D型铁壳,生活用品中的易拉罐等都离不开抽引加工工艺.抽引加工一般分为旋转件抽引(如Audio Jack Shell),盒形件抽引(如D-SUB Shell) 及复杂曲面抽引(汽车覆盖件)等. 抽引加工的成形机理是材料内部产生塑性流动,平片毛坯向径向流动逐步转移到筒壁的过程,如图一所示: (图一) 由此可见,抽引加工必然存在以下特点: a. 材料内部塑性流动, 必然产生加工硬化; b. 材料从外围向径向流动时,在切向相互间产生挤压应力,由此导致材料失稳起皱,甚至抽裂. 签于抽引成形机理是材料整体流动,变数太多,故模具设计时光靠理论计算往往不够,需在实际试模中加以修正.在抽引连续模设计时,由於连续模之结构特点以及料带之送料顺畅要求,使得模具设计时有更多的考量要点.以下就抽引连续模设计步骤及要点作些许总结. 2. 抽引件工艺性评估及成形工序确定 在抽引连续模设计之前,首先应对抽引件图面进行工艺性审查评估,评估内容主要包括以下几部分: a. 抽引件之精度要求:一般而言抽引件在圆筒侧壁之材料厚度无法做到等料厚t, 故产品尺寸标注时不能同时对圆筒内外同时有尺寸要求, 只能满足其中一项, 其精度要求可达±0.05mm.在高度方向也可控制到±0.05mm, 其标注方式最好以抽引件底部为基准; b. 抽引件之外观要求: 材料在抽引流动时与模仁摩擦剧烈,外观无法做到车制零件那麼光滑,筒侧壁可能会有内凹或弧形; c. 零件之抽引工艺性: 由於抽引连续模之模具结构特点决定,抽引过程中无法加退火工序,故必须对制件之连续抽引进行工艺评估.如果其总抽引系数小於材料所允许之最小总抽引系数,那麼就不具备连续抽引工艺; d. 如果抽引件深度太高,无法连续抽引完成时,可考虑先抽引後翻底工艺,看能否达到目的,此时产品侧壁外观不平整.另外当总抽引系数太小时, 可考虑用胀形工艺完成; e. 产品形状尽量简单对称,有利於材料均匀流动; f. 产品之圆角半径不宜过小,一般底部圆角r和口部圆角R都应大於 (0.1~0.3)t;

基于PROE的注塑模具设计(DOC)

基于UG的某型号插座注塑模具设计与方案优化 刘涛 (宝鸡文理学院,机电工程学院,陕西,宝鸡,721016) 摘要:在当下,模具工业已渗透到人们生活和生产的各个领域,并成为一门不可或缺的技术。因而在此针对某型号插座进行注塑模设计。首先,对制件进行工艺分析,提出一模四腔,嵌入式和平衡布置型腔的方案;其次,为便于调整冲模时的剪切速率及封闭时间,选择侧浇口进行浇注;而后,选择以最大截面为分型面和便于成型的侧抽芯;最后,为保证制件的质量,采用双型号的推杆对其进行脱模。经过仿真实验验证了该模具满足设计要求。 关键词:插座;注射模;侧抽芯 Design Of Socket Injection Mold And Project Optimization Based On UG Liu Tao (Baoji University Of Arts And Sciences, Mechanical and Electrical Engineering Institute,Shanxi,Baoji,721016) Abst ract:In the present,Mould industry has penetrated into every field of people's life and production,and become an indispensable technology.So the paper designed injection mold of the certain type socket.Firstly,the injection process of the certain type socket was analyzed,and proposed idea of one module and four cavities,insert structure and balances layout. Secondly, select the side gate to casting can make the die shear rate and closed time easy to adjust, And then,the parting surface and side core pulling was designed based on the principle of the largest cross-sectional area and easy to mold.Finally, designed double models of push rod to demould to guarantee the quality of the parts.Simulated test showed that the design can meet the requirements. Key words:socket, injection mold, side core pulling 引言 随着社会生产的迅猛发展,塑料已渗透到人们生活和生产的各个领域,并成

ProE家电产品设计的一般流程

Pro/ENGINEER家电产品设计的一般流程 Pro/ENGINEER家电产品设计的一般流程如下所述 步骤一:对市场客户进行分析及写出可行性分析报告,提出开发计划书及订定产品规格。 步骤二:对设计资料进行必要的准备,包括以下几个部分 ?初期零件表 ?初期制造流程图 ?关键性零组件适用报告 步骤三:拟定产品外观设计作业办法,包括以下几个部分。 ?外观设计方针说明表 ?草绘/概念图 ?外观实际尺寸图/三维文档 ?产品外观色彩计划,即配色表 ?外观手板模型制作 步骤四:进行软件设计,包括以下几个部分。 ?软件规划说明书 ?软件设计说明书,测试表 步骤五:进行硬件设计作业(PCB Layout),包括以下两项。 ?电子线路图、零件外观及尺寸规格 ?Layout注意事项与规格书 步骤六:拟定结构设计作业,包括以下几项。 ●提出结构开发计划,对产品的材料先定好,如软胶、硬胶或透明件。对一些不太肯定的塑胶材料向模 具厂请教参照意见 ●设计三维结构图,考虑好上下盖的固定方式,设计出扣位和螺丝的位置,检查里面空间是否足够。想 好按钮的固定方式和操作情况,注意按键和按钮之间的距离,特别注意设计在侧面按钮空间和操作可行性 ●对透明件尽量不要用扣位,因扣位会使产品露白,建模前应把整体构思结构向上司汇报并确认后方可 行进行。检查三维模型的干涉,进行机构模拟,对两件之间的配合要考滤,预留空间(因喷漆和电镀都会使产品空隙很紧,对上下盖的配合能通过挤压和落地测试检查)。结构完成后要存储成图片给客户确认。 ●给出PCB的具体尺寸及限高,以便电子工程师列PCB ●绘制结构零件图、爆炸图、产品规格检验表,做零件样品检查记录 ●制作结构手板和零件打样。对手板需严格要求,对做出的手板和图纸进行对照。利用手板的时间,准 备其他东西,如充电片和螺丝等。将检查的结果再次给客户确认(同时将方件给模具厂报价,并定好模块)。出工程图时标明零件材质,是否有喷漆、电镀等进行标明,并注明产品不能有缩水、毛刺、溶接痕、露白和尺寸误差等。 ●做零件承认计划及量产准备计划 步骤七:制定模具开发作业,包括以下两项 ●签定模具开发合约书 ●试模检查。看纹路是否均匀一致,夹水线是否严重,美工线是否均匀,宽度是否符合要求。如有胶垫 就要看胶垫是否一致,扣位工作是否可靠,披锋是否严重。螺丝柱是否对正,上下螺丝柱是否顶住,是否虚位太大。表面缩水是否严重,入水位置是否影响外观,用手掐四周是否有异响,锁螺丝后是否离壳,锁螺丝是否可靠(打爆或打滑),胶壳是否变形严重、是否顶白、是否料花,是否脱花,胶件颜色是否符合要求,塑胶材料的强度是否满足要求等。 步骤八:进行样品验证,提交测试报告 步骤九:制作样品包装设计及包装图面资料 步骤十:量试通知,召开量试正式会试,进行量试产品测试及验证。

相关文档