文档视界 最新最全的文档下载
当前位置:文档视界 › 30 常系数齐次线性方程组—不同实根——第八章

30 常系数齐次线性方程组—不同实根——第八章

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

第三章 一线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n ==L det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-L L M M M L

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλL 这时 12100 n T AT λλλ-??????=?????? 方程组(3.20)变为 11122200n n n dz dx z dz z dx z dz dx λλλ??????????????????????=???????????????? ?????? M M (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=????????M 220010(),,()0001n x x n Z x e Z x e λλ????????????????==???????????????? L M M 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ???? ??==?????? M (1,2,,)i n =L

线性代数第四章线性方程组复习题()

(A). 有唯一解;(B). 有无穷多解; (C). 无解; (D). 可能无解。 3. 当( )时,齐次线性方程组?????=λ++=+λ+=++λ000321 321321x x x x x x x x x ,有非零解 (A) 1或2 (B) -1或-2 (C) 1或-2 (D) -1或2 4. 设A 为n 阶方阵,且秩12() 1.,A n αα=-是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( ) A 、1αk B 、2αk C 、)(21αα-k D 、)(21αα+k 5. A 、B 均为n 阶方阵,X 、Y 、b 为1?n 阶列向量,则方程??? ? ??=???? ?????? ??b O Y X O A B O 有 解的充要条件是( ) A 、n B r =)( B 、n A r <)( C 、)()(b A r A r = D 、n A r =)( 6. 若有 1133016,02135k k k ?????? ??? ?= ??? ? ??? ?--?????? 则k 等于 (A) 1 (B) 2 (C) 3 (D) 4 计算题:(共60分) 1.求 123412341 23420363051050x x x x x x x x x x x x ++-=??+--= ??++-=? 的通解

2. 求齐次线性方程组???????=+-+=++-=+-+-=-+-7 7931 83332154321432143214321x x x x x x x x x x x x x x x x 的通解.

3.求非齐次线性方程组 1234 1234 1234 1234 52 234 388 3976 x x x x x x x x x x x x x x x x -+-= ? ?+-+= ? ? -++= ? ?+-+= ? 的通解. 4. 求非齐次线性方程组 1234 1234 1234 1234 50 232 382 3974 x x x x x x x x x x x x x x x x -+-= ? ?+-+= ? ? -++= ? ?+-+= ? 的通解.

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

2021年常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 欧阳光明(2021.03.07) 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics,Chaohu CollegeAnhui,Chaohu) Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

(整理)常系数线性微分方程的解法

常系数线性微分方程的解法 摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法 Method for solving the system of differential equation with Constant Coefficients Linear Abstract: Based on the linear equations with constant coefficients of analysis and synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution. Key Words: Characteristic root ;Variation law ;The undetermined coefficient method 前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。 1.预备知识 复值函数与复值解 如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ?ψ=+与它对应,其中()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,1i =-是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于 0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

(完整版)线性方程组单元练习题

线性方程组单元练习题 1(96年,数学一,6分).?? ???=++=-+=++的基础解系求齐次方程组00054332152 1x x x x x x x x x 分析:求基础解系分三步:系数矩阵行变换到最简,写出通解方程组,自由变量取定值。 .10101,00011,10,01;0.,,235)(010001010010011~010001010010011~11100001111001121524 5 352152????? ?? ? ??--=???????? ??-=???? ?????? ??=??? ? ????? ??==--==-=-????? ??????? ??--????? ??-ξξ则基础解系为通解方程组为:自由变量为解:x x x x x x x x x x A R n 2.(98年,数学一,5分) ?? ?????=+++=+++=+++?? ?????=+++=+++=+++的通解,并说明理由 试写出线性方程组的一个基础解系为 已知线性方程组0 00)(;),,(,),,(,),,(000)(22,221122,222212122,12121112,212,222212,1121122,221122,222212122,1212111n n n n n n n n n T n n n n T n T n n n n n n n n n n y b y b y b y b y b y b y b y b y b B b b b b b b b b b x a x a x a x a x a x a x a x a x a A ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ T n n n n T n T n T T T T T T T a a a a a a a a a n B By A A AB BA AB B Ax B B B B A A ),,,(,),,,(,),,,()(0,0)(0 0)()(2,212,222212,11211ΛΛΛΛΛΘ个解的一组方程组的解。由此得到的每一行是的每一列即又满足的解,所以的每一列都是即的每一行。由于的系数矩阵为,的系数矩阵为解:设方程组=∴====, ,)(2)(A ,)()()(),,(,),,(,),,(2,212,222212,11211线性无关的行向量组即)的解的结构由(的基础解系,故是由于A n S R n A R n S R B R A b b b b b b b b b A A T n n n n T n T n =-===ΛΛΛΛΛ

二阶常系数线性微分方程的解法

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.

2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,

齐次和非齐次线性方程组的解法(整理)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组练习题

第一章 练习题 一、选择题 1、向量组r ααα,,,21 线性相关,且秩为s ,则( ) A.s r = B .s r ≤ C.r s ≤ D .r s < 2、设A 为m ×n 矩阵,齐次线性方程组0=Ax 有非零解的充分必要条件是( ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关 D .A 的行向量组线性无关 3、设3元非齐次线性方程组b Ax =的两个解为T T )3,1,1(,)2,0,1(-=β=α,且系数矩 阵A 的秩2)(=A r ,则对于任意常数21,,k k k ,方程组的通解可表为( ) A .T 2T 1)3,1,1()2,0,1(-+k k B .T T )3,1,1()2,0,1(-+k C .T T )1,1,0()2,0,1(-+k D .T T )5,1,2()2,0,1(-+k 4、设矩阵)2,1(=A ,???? ??=4321B ,??? ? ??=654321C 则下列矩阵运算中有意义的是( ) A .AC B B .AB C C .BAC D .CBA 5、r ααα,,,21 线性无关?( ) A.存在全为零的实数r k k k ,,,21 ,使得02211=α++α+αr r k k k . B.存在不全为零的实数r k k k ,,,21 ,使得02211≠α++α+αr r k k k . C.每个i α都不能用其他向量线性表示. D.有线性无关的部分组. 6、设向量组321,,ααα线性无关,421,,ααα线性相关,则( ) A. 1α必可由432,,ααα线性表示 B.2α必不可由431,,ααα线性表示 C. 4α必可由321,,ααα线性表示 D.4α必不可由321,,ααα线性表示 7、设4321,,,αααα是三维实向量,则( ) A.4321,,,αααα一定线性无关 B.1α一定可由432,,ααα线性表出 C.4321,,,αααα一定线性相关 D.321,,ααα一定线性无关

线性代数练习题集--线性方程组

线性代数练习题集--线性方程组 线性代数练习题第四章线性方程组 系姓名第一节解线性方程组的消元法 一.选择题: 1.设A 是m ?n 矩阵,Ax =b 有解,则 [ C ] (A )当Ax =b 有唯一解时,m =n (B )当Ax =b 有无穷多解时,R (A ) 3.设A 是m ?n 矩阵,齐次线性方程组Ax =0仅有零解的充要条件是R (A ) [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题: 1??12?1??x 1? ???设A = 23a +2?,b = 3?,x = x 2? 1a -2? 0? x ??????3? (1)齐次线性方程组Ax =0只有零解,则a ≠3或a ≠-1 (2)非齐次线性方程组Ax =b 无解,则a 三.计算题: ?2x +y -z +w =1 ? 1.求解非齐次线性方程组?4x +2y -z +w =2 ?2x +y -z -w =1? ?21-111?r 2-2r 1?21-111??21001??r 3-r 1 ?r +r 2 ?42-112???→001-10???→001-10 ??? 21-1-11? 000-20? 000-20??????? ?1-y ?x =2=1?2x +y ?y =1-2x ??? z -w =0∴z =0或. ???z =0 ??w =0-2w =0?w =0??? ? ?λx 1+x 2+x 3=1?

3.λ取何值时,非齐次线性方程组?x 1+λx 2+x 3=λ ⑴ 有唯一解⑵ 无解⑶ 有无穷多解 ?x +x +λx =λ2 23?1 λ 1 1 1 λ 1 1 1=λ3-3λ+2=(λ-1) 2(λ+2) λ 11??111 ? 11?→ 000 00011??? 111??2 ? -21-2?→ 1 01-24??? 1? ? 0?,有无穷多解;0?? 111?

3线性方程组典型习题解析

3 线性方程组 3.1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=?*? ??++ += ? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=?? ??++ += ?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2,n a a a α?? ? ?== ? ? ??? 则上述方程游客一写成向量形式 1122 n n x x x b.ααα+++=*** 。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它是一定有解的(至少零就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r. 2、非齐次线性方程组x b A = ()<() ()= ()=n , ()=()()=() () A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解,秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组 解的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r ,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解.

线性代数练习题集--线性方程组

线性代数练习题 第四章 线性方程组 系 专业 班 学号 第一节 解线性方程组的消元法 一.选择题: 1.设A 是n m ?矩阵,b Ax =有解,则 [ C ] (A )当b Ax =有唯一解时,n m = (B )当b Ax =有无穷多解时,<)(A R m (C )当b Ax =有唯一解时,=)(A R n (D )当b Ax =有无穷多解时,0=Ax 只有零解 2.设A 是n m ?矩阵,如果n m <,则 [ C ] (A )b Ax =必有无穷多解 (B )b Ax =必有唯一解 (C )0=Ax 必有非零解 (D )0=Ax 必有唯一解 3.设A 是n m ?矩阵,齐次线性方程组0=Ax 仅有零解的充要条件是)(A R [ D ] (A )小于m (B )小于n (C )等于m (D )等于n 二.填空题: 设????? ??-+=21232121a a A ,????? ??=031b ,???? ? ??=321x x x x (1)齐次线性方程组0=Ax 只有零解,则 31a a ≠≠-或 (2)非齐次线性方程组b Ax =无解,则a = 1=- 三.计算题: 1. 求解非齐次线性方程组?? ? ??=--+=+-+=+-+122241 2w z y x w z y x w z y x 21 3122211112111121001421120011000110211110002000020121122000 .2000r r r r r r y x x y y x z w z z w w w --+--?????? ? ? ?-???→-???→- ? ? ? ? ? ?----?????? -?=?+==-????? -=∴==??????-===??? ? 或

线性方程组-练习(带答案)

1.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,2,1,0)’+k2(1,1,0,1)’ 2.设A 是数域F 上的m ×n 矩阵,b 是F 上m 维非零列向量, η是线性方程组AX b =的一个解,12,,,s ξξξ是对应的齐次线性方程组0AX =的一个基础解系。求证:12,,,,s ηηξηξηξ+++线性无关。 2‘.设*η是非齐次线性方程组AX b =的一个解,,,,12n r ξξξ-是对应的齐次线性方程组 的一个基础 解系,证明:(1)*η,,,,12n r ξξξ-线性无关, (2)*η,***,,12n r ξηξηξη+++-线性无关, (3)非齐次线性方程组AX b =的任一个解可表示为*1122x k k k k n r n r ηηηη=+++--(其中 1η=*1ξη+, ,*n r n r ηξη=+--且112k k k n r ++=-) 。 3.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 1231 2,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 1231 2,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 4.已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是0Ax =的基础解系,12,k k 为任意常数,则方程组Ax b =的通解必是( B )

相关文档
相关文档 最新文档