文档视界 最新最全的文档下载
当前位置:文档视界 › 1.匀加速直线运动与单摆运动规律的研究

1.匀加速直线运动与单摆运动规律的研究

1.匀加速直线运动与单摆运动规律的研究
1.匀加速直线运动与单摆运动规律的研究

匀加速直线运动与单摆运动规律的研究

实验仪器:电磁打点计时器,学生电源,节拍器,铁架台,带槽的木板,斜面木板,钢球,带底

座的小旗子,米尺,长纸条;几个大小不同的的有孔小球,秒表,游标卡尺,细线若干,铁架台,计算机,计算机辅助物理实验系统等。

一、 利用木板斜槽和节拍器研究初速度为零的匀加速直线运动

1、 调制恰当的节拍,使得小球在到达底端前可以达到足够的节拍(4个节拍),手扶小球静止于斜

槽上端,听到节拍器的某一声响的同时释放小球,然后跟随钢球在每次响铃时钢球所在位置放一个小旗子(包括起点)。之后重复实验,调整小旗均处在节拍器响铃时的位置。 2、 测出各位置到起点的距离1s ,2s ,3s …,数据如表1所示:

表 1 小旗位置数据

计算得位移的比例是1:4.1:9.2:15.5,与理论比值1:4:9:16基本相符。

3、 对此部分的想法:实验中我们重复了多次以调整小旗均处在节拍器响铃时的位置,但还是不能

保证位置的高度准确性;再者,节拍器每次响的时候人的反应很难准确跟上,放置小旗放不准;第一次放置比较重要,由于之后的位移的不断放大,之后的误差会越来越大;所以,本实验只能粗略的验证初速度为零的匀加速直线运动的位移关系。

二、 用电磁打点计时器和斜面小车研究匀加速直线运动,并测定小车加速度

实验所用的示意图和所得纸带如图1、2所示,数据如表2所示:

图 1利用电磁打点计时器和斜面小车研究匀加速直线运动

图 2利用电磁打点计时器和斜面小车研究匀加速直线运动所得纸带

表 2 研究匀加速直线运动所得纸带数据

1

2n n n s s v T

-+=

的推导: 111112n n n n n n v v v v v v

a T T T -++----=== ○1,112

n n n v v v +-+=○2 22

122

111111122

1122()()()2n n n n n n n n n n n n n n

aS v v a S S v v v v v v aS v v -++-+-+-++?=-??+=-=+-?=-??○3, 将 ○1和○2代入○3得:

1

2n n n s s v T

-+=

三、 利用电磁打点计时器测重力加速度

实验如图3所示,所得纸带情况与图2所示,数据如表3:

图 3 电磁打点计时器测重力加速度

表 3 电磁打点计时器测重力加速度数据处理

(完整版)探究单摆的振动周期正式版.doc

第四节探究单摆的振动周期 从化中学李东贤 【教学目标】 一、知识与技能 1.知道什么是单摆;理解摆角很小时单摆的振动是简谐运动; 2.知道单摆做简谐运动时具有固定周期(频率); 3.知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算; 4.知道探究单摆的振动周期时采用的科学探究方法。 二、过程与方法 1. 通过单摆的教学,知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型. 2.猜想单摆的固定周期跟那些因素有关,进一步认识到有根据的、合理的猜想与假设是物理学的 研究方法之一。 3.通过探究单摆的周期,使学生领悟用“控制变量”来研究物理问题的方法,学习设计 实验步骤,提高学生根据实验数据归纳物理规律的能力。 三、情感态度与价值观 1.在实验探究的过程中,培养兴趣和求知欲,体验战胜困难、解决物理问题时的喜悦; 2.养成实事求是、尊重自然规律的科学态度,知道采用科学方法解决问题,而不是乱猜、盲从。 【教学重点、难点】 重点: 1. 了解单摆的构成。 2.单摆的周期公式。 3.知道单摆的回复力的形成。 难点: 1.单摆振动的周期与什么有关。 2.单摆振动的回复力是由什么力提供的,单摆做简谐运动的条件。 【教学用具】 教师演示实验:多媒体投影仪、铁架台、沙子、单摆、秒表、米尺、磁铁 学生分组实验:游标卡尺,铁架台,铁夹,细线,秒表,米尺,磁铁,一组质量不同的带小 孔的金属小球

【教材分析和教学建议】 教学方法: 1.关于单摆的构成的教学——采用问题教学法. 电教法和讲授法进行 . 2.关于单摆周期的教学——采用猜想、实验验证、分析推理、归纳总结的方法进行. 3.关于单摆的振动 . 单摆做简谐振动的条件及单摆回复力的教学——采用分析归纳法、 电化教学法、讲授法、推理法进行 . 4. 关于单摆在摆角很小时做简谐运动的证明——采用数学公式推导法进行. 教材分析: 1.课标要求:通过观察与分析,理解谐运动的特征,能用公式和图像描述 谐 运动的特征 2.本节主要定性研究单摆作简谐运动的周期和那些因素有关,最后给出定量的公式。首先,教师 应当实际生活使用的各种各样的摆抽象出单摆,例如挂钟,秋千等通过对单摆的受力分析,使学生掌握单摆作谐运动的条件。通过观察和猜想,估计单摆的振动周期和那些因素有关,并且通过设计实验验证自己的猜想。主要分三步:⑴从实际的摆中抽象出单摆,⑵探究单摆运动周期,⑶研究单摆作谐运动的条件。 【教学过程】 一.创设情境,引入新课 在日常生活中,我们经常可以看到悬挂起来的物体在竖直平面内摆动,如摆钟、秋千,等等。生活中的这些摆动都属于振动。如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆. 为什么对单摆有上述限制和要求呢?①线的伸缩和质量可以忽略, 就使质量全部集中在摆 球上 .②线长比球的直径大得多,就可把摆球当作一个质点,只有质量无大小,悬线的长度 就是摆长。这样,单摆就抽象成一种物理模型,便于我们研究它们振动的情况。 二、进行科学探究 1.提出问题 弹簧振子做简谐运动时具有固有周期,做简谐运动的单摆是否也有固有周期呢? 2.猜想或假设 弹簧振子做简谐运动的固有周期取决于振子本身的质量和弹簧的劲度系数,与振幅等外 界条件无关。即固有周期仅仅取决于弹簧振子的组成系统。那么,做简谐运动的单摆的固有 周期又取决于哪些因素呢? 引导学生可从单摆的结构思考:单摆振动的周期可能与振幅、摆球质量、摆长、当地的 重力加速度及空气阻力有关,也可能与摆线的质地、小球的密度、体积有关

基于MATLAB的单摆运动概要

Matlab仿真技术作品报告 题目:MATLAB在单摆实验中的应用 系(院): 专业: 班级: 学号: 姓名: 指导教师: 学年学期:2012~2013 学年第 1 学期 2012年11月18日

设计任务书 摘要 借助MATLAB 计算软件, 研究无阻尼状态下单摆的大摆角运动, 给出了任意摆角下单摆运动周期的精确解。同时利用MATLAB 函数库中的ode45 函数, 求解出大摆角下的单摆的运动方程。并利用其仿真动画形象的展现出单摆的运动规律, 为单摆实验中大摆角问题的讲解提供了较好的教学辅助手段。 关键词单摆模型;周期;MATLAB;

目录 一、问题的提出 (2) 二、方法概述 (2) 2.1问题描述 (2) 2.2算法基础 (3) 2.2.1单摆运动周期 (3) 2.2.2单摆做简谐运动的条件 (4) 三、基于MAT LAB的问题求解 (5) 3.1单摆大摆角的周期精确解 (5) 3.2、单摆仿真(动画) (7) 3.3单摆仿真整个界面如下: (10) 四、结论 (12) 五、课程体会 (12) 参考文献 (13)

一、问题的提出 在工科物理教学中,物理实验极其重要,它担负着训练学生基本实验技能、验证学生所学知识、提高学生综合实力的重要职责。通过一系列的物理实验,学生可在一定程度上了解并掌握前人对一些典型物理量的经典测量方法和实验技术,并为以后的实验工作提供有价值的借鉴,进而培养学生的动手实践能力和综合创新能力。然而,物理实验的优劣很大程度受限于物理实验条件的制约。当前,受限于以下条件(很多情况下物理实验环境都是难以有效构造的),物理实验的效果并不理想: 1)一些实验设备比较复杂并且昂贵,难以普及应用; 2)有效实验环要求非常苛刻,是现实环境中难以模拟,甚至根本无法模拟; 3)除此以外,有些实验的实验环境即使可以有效构造,它的实验结果却仍然是难以直接、完整观察获取的,如力场、电场、磁场中的分布问题等。 鉴于以上原因,物理仿真实验已引起了大家的关注,出现了一些软件。但很多是基于Flash、Photoshop 、3D Studio MAX之类的图形图像软件制作。这些软件可以制作逼真的实验环境和生动的实验过程动画,还可以制作出实际实验所无法达到的效果。但这类软件本身是制作卡通动画的,对物理实验规律和过程很少涉及,很难做到真正的交互使用,及精确的计算分析同时开发也很困难。因此,基于这些软件的仿真在工科物理实验教学中应用很少。本文利用MATLAB 计算软件及其仿真功能对单摆实验过程进行模拟、仿真及后期分析,对物理实验教学改革提供一种新思路。 具体地,本文将描述一种新颖的单摆实验方法, 其主要的意义在于给学生以综合性实验技能训练。一个综合性实验, 它必须涉及多方面的知识和实验技能。本文描述的单摆实验方法即具备这样的特征。它的实验原理虽然简单, 但所涉及到的知识点极为丰富: 力学振动, 计算机编程等。学生通过这样的实验不仅可以得到综合性的实验技能训练, 而且可以在如何将现代技术改造传统实验、理论联系实际等方面得到很多启示。另外,本文引入计算机技术分析法, 对单摆实验进行了改造, 既实现了基础物理实验的现代化, 又为MATLAB课程实验提供了很好的应用落足点, 可以使学生得到多方面的实验技能训练。 二、方法概述 2.1问题描述 单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。单摆在摆角

高中物理实验:研究匀速直线运动

高中物理实验:研究匀速直线运动 研究匀速直线运动 实验目的: 研究匀速直线运动规律 实验原理: 物体在一条直线上运动,且在相等的时间间隔内通过的位移相等,这种运动称为匀速直线运动。做匀速直线运动的物体,在不同的位移或时间段中,位移与时间的比值是一个常数,称为速度,速度的大小直接反映了物体运动的快慢。严格地讲,匀速直线运动是一种理想运动状态,本实验只做近似的研究。 实验器材: Edislabpro400数据采集器、位移分体传感器、计算机、力学轨道及配套小车等附件 实验准备:

实验装置:将力学轨道放置于平稳实验台上,安装轨道配件,在小车上放置位移传感器发射端,轨道末端固定放置接收端,使其发射、接收口基本正对,连接传感器与数据采集器以及电脑,如图(6-1)。 软件配置: 打开Edislab软件,在“实验配置”中的“采集参数”选项中“限定时间”调整到35秒左右,如图(6-2)。 实验步骤: 1、调整力学轨道,使一端垫高,用小车重力分力克服小车与轨道之间的摩擦力,调节高度到小车基本匀速滑下。 2、将小车放在轨道远离传感器接收端的一头,打开小车上的位移传感器的发射端的开关。 3、用手轻推一下小车,小车自动沿轨道平稳滑下,待运动稳定后点击“开始”,系统自动记录一系列点(注意:在小车靠近接收端时,用手阻止小车以避免二者相撞)。

数据处理分析 (1)如图(6-3)为本次实验测量数据图。 (2)观察分析阶段一、二、三对应的实际运动状态是怎样的? (3)利用“选择”工具选择有效区段二,进行直线拟合,拟合图 线完全重合,表明在匀速直线运动时位移与时间为线性关系,而其拟合直线的斜率即为运动物体的速度。速度从拟合结果中可以直接显示,也可以从“切线”工具选项详细查看每点的斜率情况。对比拟合结果,可以发现选择区域部分斜率均值为-0.12(为什么斜率是负值?),如图(6-5) 实验拓展 (1)尝试用其他方法研究匀速直线运动规律,条件允许的学校可 使用气垫导轨系统。 (2)在实验方法上稍做改进,把接收端垫高,在以上实验步骤2 中将小车的初始位置放置在靠近接收端的一端,重做实验观察数据图象(本轨道系统具有同性磁铁保护装置,建议使用此种方法)。

单摆运动规律的研究培训资料

单摆运动规律的研究 摘要单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。受各种因素的影响,其运动规律较为复杂。本文建立了理想模式下单摆的数学模型,现实情况下单摆的数学模型.等对单摆的运动进行了探究。 首先,本文从理想情况出发,由牛顿第二定律进行推理,建立了无阻尼小角度单摆运动模型,对单摆的运动进行了初步探究。 然后,本文又建立了无阻尼大角度单摆运动模型,进一步完善了理想模式下单摆的数学模型。 最后,本文从实际出发,考虑单摆运动中受到的阻力因素,以理想模式下单摆的数学模型为基础,建立了现实情况下单摆的运动模型,深度的对单摆运动进 行了探索。 关键词简谐运动角度阻尼运动单摆运动 目录 一、问题的描述 二、模型假设 三、模型建立及求解 1 理想模式下单摆的数学模型 1.1 小角度单摆运动模型 1.1.1 模型建立 1.1.2 模型求解 1.1.3 结果分析 1.2 大角度单摆运动模型 1.2.1 模型建立 1.2.2 模型求解 1.2.3 结果分析 2 现实模式下单摆的数学模型 2.1 小、大阻尼单摆运动模型 2.1.1 模型建立 2.1.2 模型求解 2.1.3 结果分析 四模型分析 问题的描述 根据平常接触到的摆钟、秋千等实物中,我们可以抽象出单摆的模型。细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略,球的直接与线的长度相比也可以忽略,这样的装置就叫做单摆.我们从理想情况出发进行分析,并逐渐完善从而推导出单摆实际运动规律。 二模型假设

1悬挂小球的细线伸缩和质量均忽略不记,线长比小球的直径大得多; 2. 装置严格水平; 3. 无驱动力。 三模型建立及求解 1理想模式下单摆的数学模型 mg 图1简单单摆模型 在t时刻,摆锤所受切向力ft(t)是重力mg在其运动圆弧切线方向上的分力,即f(t) =mg si n(t) 完全理想条件下,根据牛顿第二运动定律,切向加速度为: a(t) = g sin (t) 因此得到单摆的运动微分方程组: dv(f) ------- =gain ff (r) + —sin(9 = 0 (1)打I 1.1小角度单摆运动模型1.1.1模型建立 当摆角B很小时,sin B?,B故方程1可简化为: —+-^(9=0 (2) 护I 1.1.2模型求解 利用matlab软件在[0, 5o]分别作出方程(1)和方程(2)的解得图像

高中物理-单摆教案 (3)

高中物理-单摆教案 【教学目标】 一、知识与技能 1.知道单摆是一种理想化模型和做简谐运动的条件 2. 知道单摆做简谐运动时回复力的特点和表达式 3.知道单摆(偏角θ较小时)的周期与振幅、摆球质量、摆长和当地重力加速度g的关系。 二、过程与方法 1.知道测量单摆周期的方法,会用单摆测定重力加速度 2.通过探究过程体会猜想、设计实验、分析论证、评估等科学探究要素; 3.通过制定探究方案体会“控制变量”的研究方法。 三、情感、态度和价值观 1.通过实验,领悟实事求是的理念,并在探究活动中培养合作精神。 2.通过动手合作调动学生的学习主动性,培养他们的探究意识,激发他们的学习热情,体会研究的乐趣。 【重点、难点、疑点】 1.重点:单摆的振动规律和周期公式。 2.难点:单摆回复力的分析。 3.疑点:怎样确定单摆的振动周期与哪些因素有关,以及具体关系。 【教具准备】 摆球、铁架台、细线、支架、盛砂漏斗、硬纸板、砂、计算机、投影仪等 【教学过程】 一、复习引入新课 在前面我们学习了弹簧振子,知道弹簧振子做简谐运动。 那么:怎么判断物体的运动是否是简谐运动 答:有两种方法:方法一:位移时间图像为正弦 函数 方法二:物体在跟位移大小成正比、并且总是指 向平衡位置的回复力作用下的振动F =-kx 在生活中有很多种机械振动。比如建筑物挂钟的 振动、房顶吊灯的摆动、秋千的运动、座钟的钟 摆的摆动。这些运动都是摆动。我们对实际生活 中的摆进行理想化处理,忽略次要因素、突出主 要因素,这样所构建的模型称之为单摆。

二、新课教学 (一)单摆 问题:以上这些运动有什么共同点? 物理中常抽象出一种模型 1、单摆概念:细线一端固定在悬点,另一端系一个小球,如果 细线的质量与小球相比可以忽略;球的直径与线的长度相比也 可以忽略,这样的装置就叫做单摆。 ①摆线质量m 远小于摆球质量 M,即m << M ②摆球的直径 d 远小于单摆的摆长L,即 d <<L。③摆球所受空气阻力远小 于摆球重力及绳的拉力,可忽略不计。④摆线的伸长量很小, 可以忽略。 2、摆长:悬点到摆球重心的距离。摆长 L=L0+R (二)单摆的运动 问题1:运动的平衡位置在哪里 细线竖直下垂,摆球所受重力G和悬线的拉力F平衡,O点就是摆球的平衡位置。问题2:摆球的受力情况小球收到的力有重力、拉力 问题3:小球的运动情况分析以点O为平衡位置的振动 以悬点O’为圆心的圆周运动 问题4:力与运动的关系 回复力大小:向心力大小: O` O θ sin mg F= 回 θ cos mg N F- = 向

研究匀变速直线运动的规律

研究匀变速直线运动的规律(二) 一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号) 1.从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( ) A.保持不变B.不断增大 C.不断减小D.有时增大,有时减小 答案:B 2.正在匀加速沿平直轨道行驶的长为L的列车,保持加速度不变通过长度为L的桥.车头驶上桥时的速度为v1,车头经过桥尾时的速度为v2,则列车过完桥时的速度为( ) A.v1v2 B.v21+v22 C.2v22+v21 D.2v22-v21 答案:D 3.(2011年高考天津理综)质点做直线运动的位移s与时间t的关系为s=5t+t2(各物理量均采用国际单位制单位),则该质点( ) A.第1 s的位移是5 m B.前2 s的平均速度是6 m/s C.任意相邻的1 s位移差都是1 m D.任意1 s的速度增量都是2 m/s 答案:D 4.汽车以20 m/s的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m所需时间为( ) A.3 s B.4 s C.5 s D.6 s 答案:A 5.(2012年模拟)如图所示,水龙头开口处A的直径d1=2 cm,A离地面B 的高度h=80 cm,当水龙头打开时,从A处流出的水流速度v1=1 m/s,在空中形成一完整的水流束.则该水流束在地面B处的截面直径d2约为(g取10

m/s2)( ) A.2 cm B.0.98 cm C.4 cm D.应大于2 cm,但无法计算 答案:B 6.物体以速度v匀速通过直线上的A、B两点,所用时间为t.现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a1),到某一最大速度v m后立即做匀减速直线运动(加速度大小为a2),至B点速度恰好减为0,所用时间仍为t,则物体的( ) A.v m只能为2v,与a1、a2的大小无关 B.v m可为许多值,与a1、a2的大小有关 C.a1、a2须是一定的 D.a1、a2必须满足a 1 ·a2 a 1 +a2 = 2v t 答案:AD 7.(2011年高考理综)一物体做匀加速直线运动,通过一段位移Δs所用的时间为t1,紧接着通过下一段位移Δs所用的时间为t2,则物体运动的加速度为( ) A.2Δs t1-t2 t 1 t 2 t 1 +t2 B. Δs t1-t2 t 1 t 2 t 1 +t2 C.2Δs t1+t2 t 1 t 2 t 1 -t2 D. Δs t1+t2 t 1 t 2 t 1 -t2

探究单摆的物理原理教案

探究单摆的物理原理教案 【教学目标】 (一)知识与技能 1、知道什么是单摆,了解单摆的构成。 2、掌握单摆振动的特点,知道单摆回复力的成因,理解摆角很小时单摆的振动是简谐运动。 3、知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。 4、知道用单摆可测定重力加速度。 (二)过程与方法 1、知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型。 2、通过单摆做简谐运动条件的教学,体会用近似处理方法来解决物理问题。 3、通过研究单摆的周期,掌握用控制变量的方法来研究物理问题。 (三)情感、态度与价值观 1、单摆在小角度情况下做简谐运动,它既有简谐运动的共性,又有其特殊性,理解共性和个性的关系; 2、当单摆的摆角大小变化时,单摆的振动也将不同,理解量变和质变的变化规律。 3、培养抓住主要因素,忽略次要因素的辨证唯物主义思想。 【教学重点】 1、知道单摆回复力的来源及单摆满足简谐运动的条件; 2、通过定性分析、实验、数据分析得出单摆周期公式。 【教学难点】 1、单摆振动回复力的分析; 2、与单摆振动周期有关的因素。 【教学方法】 分析推理与归纳总结、数学公式推导法、实验验证、讲授法与多媒体教学相结合。

【教学用具】 单摆、秒表、米尺、条形磁铁、装有墨水的注射器(演示振动图象用)、CAI 课件。 【教学过程】 (第一课时)单摆的回复力 (一)引入新课 教师:1862年,18岁的伽利略离开神学院进入比萨大学学习医学,他的心中充满着奇妙的幻想和对自然科学的无穷疑问,一次他在比萨大学忘掉了向上帝祈祷,双眼注视着天花板上悬垂下来摇摆不定的挂灯,右手按着左手的脉搏,口中默默地数着数字,在一般人熟视无睹的现象中,他却第一个明白了挂灯每摆动一次的时间是相等的,于是制作了单摆的模型,潜心研究了单摆的运动规律,给人类奉献了最初的能准确计时的仪器。 在第一节中我们以弹簧振子为模型研究了简谐运动,日常生活中常见到摆钟、摆锤等的振动,这种振动有什么特点呢本节课我们来学习简谐运动的另一典型实例——单摆。 (二)进行新课 1.单摆 (1)什么是单摆 秋千和钟摆等摆动的物体最终都会停下来,是因为有空气阻力存在,我们能不能由秋千和钟摆摆动的共性,忽略空气阻力,抽象出一个简单的物理模型呢 (出示各种摆的模型,帮助学生正确认识什么是单摆) ①第一种摆的悬绳是橡皮筋,伸缩不可忽略,不是单摆; ②第二种摆的悬绳质量不可忽略,不是单摆; ③第三种摆的悬绳长度不是远大于球的直径,不是单摆; ④第四种摆的上端没有固定,也不是单摆; ⑤第五种摆是单摆。 定义:如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆。 绳绕在杆上

匀变速直线运动规律的应用教学反思

匀变速直线运动规律的 应用教学反思 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《匀变速直线运动规律的应用》教学反思 高一物理组郭云 我所教的班级是高一(1305)班为二层次,(1306)班为三层次,(131 0)班为四层次,虽学生层次不同,可是学生是刚进高一,我在灌输物理思想上是一样的,在教学上的区别也并不大,只是在二层次习题的要求更高一些。 《匀变速直线运动规律的应用》是力学的重要内容之一,对这一章知识掌握的好坏,将会直接影响以后各章知识的学习,因此,本章知识就显得尤其重要。本章的一个重要特点就是概念多、公式多,处理问题可以用公式法,也可以通过图象法加以处理。内容包括:基本概念、基本公式、基本运动规律以及图象和实验等。 我对本章的教学首先从基本概念入手,主要让学生理解本章的相关的概念,特别是对质点这一理想化的模型理解和对加速度的物理意义的理解,并能用之来解决相关的问题,与此同时通过举例对公式进行讲解,然后对基本的运动规律进行透彻的分析,让学生能熟练掌握相关的运动规律。第三是对两种图象的物理意义进行分析和比较,通过对图象的复习使学生能掌握图象的物理意义,并能用图象解决实际问题,最后通过对实验让学生学会使用电磁打点计时器,掌握测定匀变速直线运动的加速度的方法。 一、存在的问题 在《匀变速直线运动的研究》这一章中,虽然在备课时作了充分的准备,课堂上从逻辑、条理、思维等方面都感觉到自己做得很到位,但是一章下来总

是感觉没有达到预定的目标,得不到应有的收效原因在哪里通过对这个问题的思考,我觉得主要在于以下两个方面: 1、在“基本知识”的教学中。通过归纳成条文来罗列、梳理知识,这种做法,虽然自己讲得口若悬河,学生却听得漫不经心,没精打彩,枯燥乏味,无法激发学生的兴趣。但当提出一些创设性的问题,通过问题来推倒公式和规律,学生则精神振奋,精力集中地思考问题,这就是明显反映了学生需要通过问题来学习“基础知识”的迫切要求。“问题”是物理的心脏,把“问题”作为教学的出发点,因而也就理所应当地顺应学生的心理需要发挥主导作用。 2、在“图象和实验”的教学中。图象的意义、应用图象解决问题的方法,实验的目的、原理、步骤和对实验数据的处理之后,立即出示相应的例题或练习,学生只管按老师传授的“方法”套用即可,这样,学生就省略了“方法”的思考和被揭示的过程,即选择判断的过程,同时也限制了学生的思维,长此以往,也就形成了“学生上课一听就懂,题目一做就错”的现象。在解答问题上,学生就会束手无策,无从下手,这就是课堂效果不理想的重要原因。 二、解决途径 出现了以上几个方面的问题之后,在以后的教学中要怎样才能提高物理课堂的质量,使师生辛勤劳作,换得丰富的硕果我认为,要想让学生听懂学会,就必须为学生创造和安排练习的机会,让学生有独立思考的时间,提出一些探究性的问题让学生合作学习。可以根据本章公式多;解决问题的途径也多等特点,设计一组可将有关公式溶于其中的小题目,让学生做,这样就把主动权交给了学生,学生应用自己的知识和思维方法掌握物理、运用物理的知识,解决物理问题,使学生在分析问题、解决问题的探索过程中,回顾所学的“方法”并

探究匀变速直线运动规律

探究匀变速直线运动规 律 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第二章探究匀变速直线运动规律 第一节探究自由落体运动(探究小车速度沿时间变化的规律) Ⅰ、实验操作 实验中应注意: ⒈实验物体在桌面摆放平整:左右水平,前后水平; ⒉若有必要,适当把桌面垫斜,以免挂的钩码太轻拖不动小车:平衡摩擦力; ⒊先通电打点计时器,后放手是小车运动; ⒋多次测量:重复2-3次,选择清晰的一组) ⒌注意小车、限位孔、纸带是在同一直线上,以免纸带发生倾斜与限位孔的旁边发生摩擦,增大摩擦对实验的误差 Ⅱ、数据处理 1.选点(选看得清的点开始为计数点) 2.计数点:每间隔四个点取一个“计数点”,t= 3.匀变速直线运动时,等时间间隔的时间中点的速度等于这段时间内的平均速度 Ⅲ、作图原则 ⒈剔除偏差较大的点(排除实验当中出现的偶然误差) ⒉用一条平滑的直线或曲线尽可能地穿过更多的点 ⒊尽可能地让未能落到线上的点均匀分布在线的两侧 第二节速度与时间的关系(匀变速直线运动) 1.从加速度的角度出发a=△v/△t=(v-vo)/t 推出v=vo+at 适用于匀变速直线运动 矢量式 例题: 1、40km/h的速度匀速行驶,如果以0.6m/s2的加速度加速,10s后速度是多少km/h 17m/s=61km/h 2、做匀变速直线运动的物体在时间t内的位移是s,若物体通过这段时间位移中间时刻的瞬时速度为 v1,中间位置的瞬时速度为v2,那么下列说法正确的是() A、匀加速直线运动时,v1> v 2 B、匀减速直线运动时, v1> v 2 C、匀减速直线运动时,v1< v2 D、匀加速直线运动时,v1< v2 (为了不引发它的特殊性,使它初速度为Vo作图,做出t/2,讨论中间位置,讨论匀加速和匀减速的情况) 3、木块从静止下滑做匀加速直线运动,接着又在水平面上做匀减速运动直至停止,整个过程经过 10s,那么斜面长4m,水平面长6m,求(1)木块在运动过程中的最大速度(2)木块在斜面和水平面上的加速度各多大 4、汽车在紧急刹车时加速度是6m/s,必须在2s内停下,汽车行驶最高速度不得超过多少 5、汽车的初速度Vo=12 m/s,做加速度大小a=3 m/s2的减速运动,求6s后的速度和位移。 今天我们介绍了加速度,实验,匀变速直线运动中速度与时间的关系和它们图像关系,以及运用它们解题 第二节匀速直线运动速度与时间之间的关系 一、匀变速直线运动

匀变速直线运动规律的理解与应用

匀变速直线运动规律的理解与应用 1.规范解题流程 画过程分析图? 判断运动性质?选取正方向 ?选用公式列方程 ?解方程 并讨论 2.恰当选用公式 题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量) 没有涉及的物理量 适宜选用公式 v 0,v ,a ,t x v =v 0+at v 0,a ,t ,x v x =v 0t +1 2at 2 v 0,v ,a ,x t v 2-v 02=2ax v 0,v ,t ,x a x =v +v 02 t 3.两类特殊的匀减速直线运动 刹车类问题 双向运动类 其特点为匀减速到速度为零后即停止运动,加速度a 突然消失,求解时要注意确定其实际运动时间。如果问题涉及最后阶段(到停止运动)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动 如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变,求解时可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义 [典例] 如图所示,水平地面O 点的正上方的装置M 每隔相等的时间由静止释放一小球,当某小球离开M 的同时,O 点右侧一长为L =1.2 m 的平板车开始以a =6.0 m /s 2的恒定加速度从静止开始向左运动,该小球恰好落在平板车的左端,已知平板车上表面距离M 的竖直高度为h =0.45 m 。忽略空气阻力,重力加速度g 取10 m/s 2。 (1)求小车左端离O 点的水平距离; (2)若至少有2个小球落在平板车上,则释放小球的时间间隔Δt 应满足什么条件? [解析] (1)设小球自由下落至平板车上表面处历时t 0,在该时间段内由运动学公式 对小球有:h =1 2 gt 02 ①

高中物理匀加速直线运动知识点汇总

专题三 匀变速直线运动规律及应用 2016.1.29 一、知识点梳理 平均速度:运动物体位移和所用时间的比值叫做平均速度。定义式:t s v ??==时间位移一 平均速率:平均速率等于路程与时间的比值。 t S v == 时间路程一 (平均速度的大小不一定等于平均速率。) 分析:速度,加速度,合外力之间的关系 物理意义:描述速度变化快慢的物理量(包括大小和方向的变化),速度矢端曲线的切线方向。 加速度是矢量:现象上与速度变化方向相同,本质上与质点所受合外力方向一致。 速度增加加速度可能减小 基本公式 两个基本公式(规律): V t = V 0 + at S = v o t + at 2 及几个重要推论: 1、 推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值) 2、 A B 段中间时刻的即时速度: V t/ 2 == (若为匀变速运动)等于这段的平均速度 3、 AB 段位移中点的即时速度: V s/2 = V t/ 2 =V == ≤ V s/2 = 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2

高中物理匀加速直线运动知识点汇总

高中物理匀加速直线运动知识点汇总 一、机械运动 一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式.①运动是绝对的,静止是相对的。②宏观、微观物体都处于永恒的运动中。 二、参考系 在描述一个物体运动时,选作标准的物体(假定为不动的物体) ①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便, 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体. 用来代替物体的有质量的点叫做质点. 质点没有形状、大小,却具有物体的全部质量。质点是一个理想化的物理模型,实际并不存在,是为了使研究问题简化的一种科学抽象。 把物体抽象成质点的条件是: (1)作平动的物体由于各点的运动情况相同,可以选物体任意一个点的运动来代表整个物体的运动,可以当作质点处理。 (2)物体各部分运动情况虽然不同,但它的大小、形状及转动等对我们研究的问题影响极小,可以忽略不计(如研究绕太阳公转的地球的运动,地球仍可看成质点).由此可见,质点并非一定是小物体,同样,小物体也不一定都能当作质点. 【平动的物体不一定都能看成质点,{物体的形状与运动的距离相比不能忽略};转动的物体可能看成质点来处理{研究绕太阳公转的地球的运动},也就是研究的问题不突出转动因素时。】 【能否看成质点一看研究问题,二看物理的形状与研究物体的关系】 【一个实际物体能否看成质点,决定于物体的尺寸与物体间距相比的相对大小】 四、位置、位移与路程 1、位置:质点的位置可以用坐标系中的一个点来表示,在一维、二维、三维坐标系中表示为s(x) 、s (x,y) 、s (x,y,z) 2、位移:【矢量】 ①位移是表示质点位置的变化的物理量.用从初位置指向末位置的有向线段来表示,线段的长短表示位移的大小,箭头的方向表示位移的方向。 ②位移是矢量,既有大小,又有方向。它的方向由初位置指向末位置. 注意:位移的方向不一定是质点的运动方向。如:竖直上抛物体下落时,仍位于抛出点的上方; ③单位:m 3、路程【标量】: 路程是指质点所通过的实际轨迹的长度.路程是标量,只有大小,没有方向; 路程和位移是有区别的:一般地路程大于位移的大小,只有做直线运动的质点始终向着同一个方向运动时,位移的大小才等于路程. 五、速度 速度:表示质点的运动快慢和方向,是矢量。它的大小用位移和时间的比值定义,方向就是物体的运动方向;轨迹是曲线,则为该点的切线方向。 速率:在某一时刻物体速度的大小叫做速率,速率是标量. 瞬时速度:由速度定义求出的速度实际上是平均速度,它表示运动物体在某段时间内的平均快慢程度,它只能粗略地描述物体的运动快慢,要精确地描述运动快慢,就要知道物体在某个时刻(或经过某个位置)时运动的快慢,因此而引入瞬时速度的概念。瞬时速度的含义:运动物体在某一时刻(或经过某一位置)时的速度,叫做瞬时速度 平均速度:运动物体位移和所用时间的比值叫做平均速度。定义式: x v t == 位移 时间 平均速率:平均速率等于路程与时间的比值。 s v t == 路程 时间 (当物体做单向直线运动时,二者相等) v1,队伍全长为L.一个通讯兵从队尾以速度v2(v1小于v2)赶到队前然后立即原速返回队尾。这个全过程中通讯兵通过的位移为。 专业技术分享

探究匀变速直线运动规律

探究匀变速直线运动规 律 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章探究匀变速直线运动规律 第一节探究自由落体运动(探究小车速度沿时间变化的规律) Ⅰ、实验操作 实验中应注意: ⒈实验物体在桌面摆放平整:左右水平,前后水平; ⒉若有必要,适当把桌面垫斜,以免挂的钩码太轻拖不动小车:平衡摩擦力; ⒊先通电打点计时器,后放手是小车运动; ⒋多次测量:重复2-3次,选择清晰的一组) ⒌注意小车、限位孔、纸带是在同一直线上,以免纸带发生倾斜与限位孔的旁边发生摩擦,增大摩擦对实验的误差 Ⅱ、数据处理 1.选点(选看得清的点开始为计数点) 2.计数点:每间隔四个点取一个“计数点”,t= 3.匀变速直线运动时,等时间间隔的时间中点的速度等于这段时间内的平均速度 Ⅲ、作图原则 ⒈剔除偏差较大的点(排除实验当中出现的偶然误差) ⒉用一条平滑的直线或曲线尽可能地穿过更多的点 ⒊尽可能地让未能落到线上的点均匀分布在线的两侧 第二节速度与时间的关系(匀变速直线运动) 1.从加速度的角度出发a=△v/△t=(v-vo)/t 推出v=vo+at 适用于匀变速直线运动 矢量式 例题: 1、40km/h的速度匀速行驶,如果以0.6m/s2的加速度加速,10s后速度是多少km/h? 17m/s=61km/h 2、做匀变速直线运动的物体在时间t内的位移是s,若物体通过这段时间位移中间时刻的瞬时速度为v1,中间位置的瞬时速度为v2,那么下列说法正确的是() A、匀加速直线运动时,v1>v2 B、匀减速直线运动时,v1>v2 C、匀减速直线运动时,v1

单摆模型

单摆模型 模型特点:单摆模型指符合单摆规律的模型,需满足以下三个条件: (1)圆弧运动; (2)小角度往复运动; (3)回复力满足F =-kx . 典例 如图1所示,ACB 为光滑弧形槽,弧形槽半径为R ,C 为弧形槽最低点,R ?AB .甲球从弧形槽的球心处自由下落,乙球从A 点由静止释放,问: 图1 (1)两球第1次到达C 点的时间之比; (2)若在圆弧的最低点C 的正上方h 处由静止释放小球甲,让其自由下落,同时将乙球从圆弧左侧由静止释放,欲使甲、乙两球在圆弧最低点C 处相遇,则甲球下落的高度h 是多少? 答案 (1)22π (2)(2n +1)2π2R 8 (n =0,1,2…) 解析 (1)甲球做自由落体运动 R =12gt 21,所以t 1= 2R g 乙球沿圆弧做简谐运动(由于AC ?R ,可认为摆角θ<5°).此运动与一个摆长为R 的单摆运动模型相同,故此等效摆长为R ,因此乙球第1次到达C 处的时间为 t 2=14T =14×2πR g =π2R g , 所以t 1∶t 2=22π . (2)甲球从离弧形槽最低点h 高处自由下落,到达C 点的时间为t 甲= 2h g 由于乙球运动的周期性,所以乙球到达C 点的时间为 t 乙=T 4+n T 2=π2R g (2n +1) (n =0,1,2,…) 由于甲、乙在C 点相遇,故t 甲=t 乙

联立解得h =(2n +1)2π2R 8 (n =0,1,2…). 1.解决该类问题的思路:首先确认符合单摆模型的条件,即小球沿光滑圆弧运动,小球受重力、轨道支持力(此支持力类似单摆中的摆线拉力);然后寻找等效摆长l 及等效加速度g ;最后利用公式T =2πl g 或简谐运动规律分析求解问题. 2.易错提醒:单摆模型做简谐运动时具有往复性,解题时要审清题意,防止漏解或多解.

单摆周期公式及影响单摆周期的因素研究

单摆周期公式及影响单摆周期的因素研究 摘要:结合理论知识,基础物理实验,构建线性数学模型。对单摆运动进行分析。其中,理论部分主要依据高等数学及数学物理方法的知识,对单摆运动周期公式进行论证;实验部分主要通过改变单摆摆线长度进行实验;观察、分析单摆运动规律。从而验证单摆周期公式。并对影响单摆周期的因素展开研究。最后总结出影响单摆周期的因素。 关键词:数学模型;单摆运动;周期公式 单摆运动问题是一个古老的问题,无论是中学物理还是大学物理,我们都在学习研究单摆。作为一个重要的理想物理模型,单摆的运动周期规律和实验研究在生产生活中意义重大。单摆问题是物理学中经典问题。从阅读物理学史并可知道,早在1583 年,十九岁的伽利略(1564—1642)在比萨教堂祈祷时注意到因被风吹而摆动的大灯,他利用自己的脉搏来测定大灯的摆动周期,发现了摆的等时性。但现在这个故事的真实性受到怀疑,因为比萨大教堂所保留的许多相关历史文献都表明该吊灯是在伽利略二十三岁那年才首次安装的。专家指出,伽利略是于1602 年注意到单摆运动的等时性,不过伽利略误认为在大摆动条件下等时性也成立,他说:“物体从直立圆环上任一点落到最低位置的时间相同。”随后吉多彼得做实验发现这个结论与实验不符,伽利略解释说可能是由于摩擦力。伽利略从实验中得出单摆周期与摆长的平方根成正比。他还指出周期与摆球质量无关。他说:“因此我取两个球,一个是铅的而另一个是软木的,前者比后者重100 多倍,用两根等长细线把它们悬挂起来、把每一个球从铅直位置拉到旁边,我在同一时刻放开它们,它们就沿着以这些等长线为半径的圆周下落,穿过铅垂位置,并且沿同一路径返回。”最早系统地研究单摆的是惠根斯(ChristiaanH uygens)。由于当时实验技术条件的落后,重力加速度在惠根斯之前是很难精确测出来的,所以惠更斯不可能从实验中总结出或猜出单摆周期公式的系数π2。事实上,反过来重力加速度是1659 年惠更斯根据单摆周期公式首次精确测出来的。他在巴黎用一个周惠更斯期为2s的单摆(即秒摆),测出摆长为 3.0565英尺,从而计算出2 /2.9s g=。惠更斯于1657 年取得了关于摆钟的专利权。惠更斯最伟大的著作《摆式时钟或用于时钟上的摆的运动的几何证明》于1673 年在巴黎问世。这本书共分5部分,第一与或第五部分讨论时钟,第二部分讨论质点在重力作用下的自由落体运动以及沿光滑平面或曲面所作的约束运动,并证明了在大摆动下约束在旋轮线上的物体等时降落的性质,第三部分建立渐屈线理论,第四部分解决了复摆问题。这是人类第一次系统地研究约束运动的论著。1659 年,在对单摆的研究中,他导出了摆动周期和沿着摆的长从静止开始的自由落体时间之间

匀变速直线运动规律的应用练习题

匀变速直线运动规律的应用 1、一个做匀加速直线运动的小球,在第1s内通过1m,在第2s内通过2m,在第3s内通过3m,在第4s内通过4m。下面有关小球的运动情况的描述中,正确的是( ) A.小球在这4s内的平均速度是2.5m/s B.小球在第3s和第4s这两秒内的平均速度是3.5m/s C.小球在第3s末的瞬时速度是3m/s D.小球的加速度大小为2m/s2 2、一物体作匀加速直线运动,通过一段位移所用的时间为,紧接着通过下一段位移 所用时间为。则物体运动的加速度为( ) A.B.C.D. 3、一辆小车做匀加速直线运动,历时5 s,已知前3 s的位移是12 m,后3 s的位移是18 m,则小车在这5 s内的运动中( ) A.平均速度为6 m/s B.平均速度为5 m/s C.加速度为1 m/s2 D.加速度为0.67 m/s2 4、一个小球从斜面顶端无初速度下滑,接着又在水平面上做匀减速运动,直至停止,它共运动了10 s,斜面长4 m,在水平面上运动的距离为6 m.求: (1)小球在运动过程中的最大速度; (2)小球在斜面和水平面上运动的加速度. 5、物块从最低点D以=4米/秒的速度滑上光滑的斜面,途经A、B两点,已知在A点时的速度是B点时的速度的2倍,由B点再经0.5秒物块滑到斜面顶点C速度变为零,A、B相距0.75米,求斜面的长度及物体由D运动到B的时间。

6、如图所示,在2009年10月1日国庆阅兵演习中,某直升飞机在地面上空某高度A位置处于静止状态待命,接上级命令,要求该机10时58分由静止状态沿水平方向做匀加速直线运动,10时58分50秒到达B位置,然后就进入BC段的匀速受阅区,10时59分40秒准时通过C位置,已知S BC=10km.问: (1)直升飞机在BC段的速度大小是多少? (2)直升飞机在AB段做匀加速直线运动时的加速度大小是多少? (3)AB段的距离为多少? 7、如图所示,甲、乙两个同学在直跑道上练习4×100 m接力,他们在奔跑时有相同的最大速度。乙从静止开始全力奔跑需跑出25 m才能达到最大速度,这一过程可看作匀变速直线运动,现在甲持棒以最大速度向乙奔来,乙在接力区伺机全 力奔出。若要求乙接棒时奔跑达到最大速度的80%,则: (1)乙在接力区须奔出多少距离? (2)乙应在距离甲多远时起跑? 8、某人骑自行车以v2=4 m/s的速度匀速前进,某时刻在他前面x=7 m处有以v1=10 m/s 的速度同向行驶的汽车开始关闭发动机,而以a=2 m/s2的加速度匀减速前进,此人需要多长时间才能追上汽车?

匀变速直线运动规律测试题

《匀变速直线运动的规律》测试题 班级姓名学号 一、选择题(下面每小题中有一个或几个答案是正确的,请选出正确答案填在括号内)1.两物体都作匀变速直线运动,在相同的时间内………………………………()A.谁的加速度大,谁的位移一定越大 B.谁的初速度越大,谁的位移一定越大 C.谁的末速度越大,谁的位移一定越大 D.谁的平均速度越大,谁的位移一定越大 2.做匀减速直线运动的质点,它的位移随时间变化的规律是x=24t-1.5t2(m),当质点的速度为零,则t为多少………………………………………………………………………()A.1.5s B.8s C.16s D.24s 3.在匀加速直线运动中…………………………………………………………………()A.速度的增量总是跟时间成正比 B.位移总是随时间增加而增加 C.位移总是跟时间的平方成正比 D.加速度,速度,位移的方向一致。 4.一质点做直线运动,t=t0时,x>0,v>0,a>0,此后a逐渐减小至零,则……( ) A.速度的变化越来越慢B.速度逐步减小 C.位移继续增大D.位移、速度始终为正值 5.汽车原来以速度v匀速行驶,刹车后加速度大小为a,做匀减速直线运动,则t秒后其位移为……………………………………………………………………………………()A.vt-at2/2 B.v2/2a C.-vt+at2/2 D.无法确定 m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,在乙车追上甲车之前,两车的距离的最大值是…………………………………………………………………………()A.18m B.23.5m C.24m D.28m v0,若前车突然以恒定的加速度刹车,则在它停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为…………………………………………………………………………()A.s B.2s C.3s D.4s

相关文档