文档视界 最新最全的文档下载
当前位置:文档视界 › 核磁共振成像实验报告

核磁共振成像实验报告

核磁共振成像实验报告
核磁共振成像实验报告

核磁共振成像实验

【目的要求】

1.学习和了解核磁共振原理和核磁共振成像原理;

2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程;

【仪器用具】

MRIjx 核磁共振成像仪、计算机、样品(油)

【原 理】

磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。

具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。

MRI 的特点:

● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。

● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。

● 能进行形态学、功能、组织化学和生物化学方面的研究。

● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。

一、核磁共振原理

产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。

1. 原子核的自旋和磁矩

原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。

原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

核的磁矩和角动量的比值,是各种原子核的特征常数。

当原子核处于外磁场中时,若原子核磁矩与外加磁场方向不同,则原子核的磁矩会绕外磁场方向旋转,与陀螺的运动相似,称为进动。进动的快慢(频率)遵循拉莫尔公式:0002B γπνω==,在确定的外磁场B 0情况下,原子核的进动频率是一定的。氢原子核在不同磁场中的进动频率是不同的,如主磁场B 0为1.0T 时,氢原子核的进动频率为42.6MHz 。

0ννh E h E =?==射射,处于低能级的1H 核吸收E ?的能量跃迁到高能级上,发

生1H 的核磁共振现象。因此,1H 发生核磁共振的条件是必须使射频的频率等于1H 的进动频率,π

γνν200B ==射。 而要使0νν=射,可以采用两种方法。一种是固定磁场强度0B ,逐渐改变电磁波的辐射频率射ν,进行扫描,当使0νν=射时,射ν与0B 匹配,发生核磁共振;另一种方法是固定辐射波的辐射频率射ν,然后从低到高逐渐改变磁场强度0B ,即改变0ν,当0B 与射ν匹配时,0νν=射,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。

2. 施加射频脉冲后(氢)质子状态

在外磁场的作用下,1H 核倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,出现与主磁场B 0方向一致的净宏观磁

矩(或称为宏观磁化矢量)M 。但由于两个能级之间能差很小,前者比后者只占微弱的优势。在低能态与高能态之间核的数目会达到动态平衡,称为“热平衡”状态。

射频脉冲作用质子磁矩后的进动路径及到达的位置

热平衡状态中的氢质子,被施以频率与质子进动频率一致的射频脉冲时,将破坏原来的热平衡状态,将诱发两种能态间的质子产生能态跃迁,被激励的质子从低能态跃迁到高能态,出现核磁共振。

受到射频脉冲激励的质子群偏离原来的平衡状态而发生变化,其变化程度取决于所施加射频脉冲的强度和时间。施加的射频脉冲越强,持续时间越长,在射频脉冲停止时,M 离开其平衡状态B 0越远。在MRI 技术中使用较多的是90°、

180°射频脉冲。施加90°脉冲时,宏观磁化矢量M 以螺旋运动的形式离开其原来的平衡状态,脉冲停止时,M 垂直于主磁场B 0。如用以B 0为Z 轴方向的直角座

标系表示M ,则宏观磁化矢量M 平行于XY 平面,而纵向磁化矢量M Z =0,横向磁化矢量M XY 最大。施加180°脉冲后,

施加90°脉冲后横向磁化矢量达到最大施加180°脉冲后的横向磁化分量为0 M与B0平行,但方向相反,横向磁化矢量M XY为零。

总之,施加90°、180°或其他角度的射频脉冲后,氢质子因接受了额外能量,其磁化矢量偏离了静磁场方向而转动90°、180°或其他角度,部分处于低能级的氢质子因吸收能量而跃迁到高能态,这一接收射频场电磁能的过程就称为磁共振的激励过程。在激励过程中氢质子吸收了额外的电磁能,由低能态升入高能态,从而进入了磁共振的预备状态。

3. 射频脉冲停止后(氢)质子状态

脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90 °脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向

B0。

90度脉冲停止后宏观磁化矢量的变化

在脉冲结束的一瞬间,M在XY平面上分量M XY达最大值,在Z轴上分量Mz为零。当恢复到平衡时,纵向分量Mz重新出现,而横向分量M XY消失。由于在弛豫过程中磁化矢量M强度并不恒定,纵、横向部分必须分开讨论。弛豫过程用2个时间值描述,即纵向弛豫时间(T1)和横向弛豫时间(T2)。

(1)纵向弛豫时间(T1)

90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时间越长,所测得纵向磁化矢量信号幅度就越大。弛豫过程表现为一种指数曲线,T1值规定为M z达到最终平衡状态63%的时间。

纵向弛豫时间T1横向弛豫时间T2 由于质子从射频波吸收能量,处于高能态的质子数目增加,T1弛豫是质子群通过释放已吸收的能量,以恢复原来高低能态平衡的过程,T1弛豫也称为自旋-晶格弛豫。

2.横向弛豫时间(T2)

90°脉冲的一个作用是激励质子群使之在同一方位,同步旋进(相位一致),这时横向磁化矢量M XY值最大,但射频脉冲停止后,质子同步旋进很快变为异步,旋转方位也由同而异,相位由聚合一致变为丧失聚合而各异,磁化矢量相互抵消,M XY很快由大变小,最后趋向于零,称之为去相位。横向磁化矢量衰减也

表现为一种指数曲线,T2值规定为横向磁化矢量衰减到其原来值37%所用的时间。

横向磁化矢量由大变小直至消失的原因是:样品组织中有水分子,水分子的热运动持续产生磁场的小波动,周围磁环境的任何波动可造成质子共振频率的改变,使质子振动稍快或稍慢,使质子群由相位一致变为互异,即质子热运动的作用使质子间的旋进方位和频率互异,但无能量交换纵向弛豫。这种弛豫也称为自旋-自旋弛豫。

二、核磁共振成像原理

1. 磁共振信号

在弛豫过程中通过测定横向磁化矢量M XY可得知样品组织的磁共振信号。横向磁化矢量M XY垂直并围绕主磁场B0以Larmor频率旋进,按法拉第定律,磁矢量M XY的变化使环绕在被测物体周围的接收线圈产生感应电动势,这个可以放大的感应电流即MR (核磁共振)信号。90°脉冲后,由于受T1、T2的影响,磁共振信号以指数曲线形式衰减,称为自由感应衰减。

自由感应衰减信号傅立叶变换磁共振信号的测量只能在垂直于主磁场的XY平面进行。由于脉冲发射和接收样品组织原子核的共振信号不在同一时间,而射频脉冲和样品组织发生的共振信号的频率又是一致的,因此可用一个线圈兼作发射和接收。

由于M XY指向或背向接收线圈,MR信号或正或负,横向磁化矢量转动,在接收线圈中出现周期性电流振荡,这些振荡为正弦波并逐渐阻尼(阻尼指信号幅度随时间减弱),幅度的变化可用信号演变来表示。由于质子和质子的相互作用,自由感应衰减的时间为T2,质子和质子间的相互作用以及磁场不均匀性的影响,自由感应衰减的时间为T2′,T2′显著短于T2。

在一个磁环境中,所有质子并非确切地有同样的共振频率。在一个窄频率带,自由感应衰减信号代表叠加到一起的正弦振荡,用数学方法(傅里叶变换)可把这一振幅随时间而变化的函数变成振幅按频率分布而变化的函数,后者即MR波谱,振幅随时间而降低的正弦信号经傅里叶变换后用窄细的钟形波为代表。由于振幅演变的起始值取决于横向磁矩,而该磁矩又取决于特定组织体素中受激励原子核的数目,因此波峰高度(信号强度)代表质子密度N(1H),如质子群为纯水且主磁场又很均匀,则质子群共振频率只有1个,钟形波为一直线。如由于质子群的自旋-自旋作用及磁场不均匀性的影响,在频率域坐标上就不是一直线,而表现为一钟形波,其宽度与T2′成反比,即钟形波越宽,T2′越短,而钟形波最宽处为其共振频率。

2. 梯度磁场

前面所讨论的是处在均匀恒定磁场B0中的样品,在射频脉冲的作用下产生核磁共振,此时接收到的信号来自整个样品,并没有把它们按空间分布区分开来,

无法用来成像。为了实现核磁共振成像,必须把收集到的信号进行空间定位。定位方法常用的主要有3种:投影重建法、二维傅里叶变换法(2DFT)和三维傅里叶变换法(3DFT)。以下主要介绍2DFT法。

MRI扫描用的主磁体均匀度越高,影像质量则越好。根据拉莫尔方程,在均匀的强磁场中,样品内质子群旋进频率由场强决定且是一致的,如在主磁场中再附加一个线性梯度磁场,由于被检物体各部位质子群的旋进频率可因磁感应强度的不同而有所区别,这样就可对被检体某一部位行MR成像。因此,MRI空间定位靠的是梯度磁场,MRI的梯度磁场有3种:选层梯度场Gz、频率编码梯度场Gx、相位编码梯度场Gy。这些梯度场的产生是通过3对(X、Y、Z)梯度线圈通以电流产生的,可通过人为地分别控制它的通断实现成像所需要的梯度场。

(1)选层梯度场Gz

以横轴位(Z)断层为例,于主磁场B0再附加一个梯度磁场Gz,磁感应强度为Bz,则总的磁感应强度为B0+Bz,即沿Z轴方向自左到右磁感应强度不同,根据拉莫尔定律,被检者质子群在纵轴平面上(垂直于Z轴)被分割成一个个横向断面,且质子群有相同的旋进频率,如以这个频率的90°脉冲激励,就可在物体纵轴上选出横轴层面。

选层原理

(2) 频率编码梯度场Gx

以横轴位断层为例,在启动Gx选出被激励的横轴层面后,在采集信号的同时启动Gx梯度磁场,由于物体X轴的各质子群相对位置不同,其对应的磁场Gx也不同,磁感应强度较大处的体素共振频率比磁感应强度较弱处的体素要高一些,从而达到了按部位在X轴上进行频率编码的目的。这时被激励平面发出的为一混合信号,用数学方法(傅里叶变换)区分出这一混合信号在频率编码梯度上不同的频率位置,则可在X轴上分出不同频率质子群的位置。

频率编码原理相位编码原理

(3). 相位编码梯度场Gy

在施加90°脉冲Gz梯度磁场后,人体相应的XY平面上质子群发生共振。如果在采集信号以前启动Gy梯度,到采集信号时停止。由于Gy梯度的作用,磁感应强度较大处的体素与磁感应强度较小处的体素相比,前者磁化矢量转动得快,后者转动得慢,从而使磁化矢量失去相位的一致性,其相位的改变取决于体素在垂直方向上的位置。当Gy停止时,所有体素又以相同的速率转动,但Gy 诱发的相位偏移依然存在,所以每一横排发出的信号之间相位不一致,通过以上Gx和Gy两路梯度的编码,一幅二维MRI影像由不同的频率和相位组合成的每个体素在矩阵中有其独特的位置,计算每个体素的灰度值就可形成一幅影像。

(4) 断层厚度与梯度磁感应强度的关系

MRI用的射频脉冲其频率并非很宽。因此MRI完全一致,它有一个频率范围称作射频带宽。射频脉冲越短,其带常用的短激励脉冲可选择断层面的厚度,断层面的厚度与带宽成正比。而增加梯度场的磁感应强度可减薄断层的厚度。但MRI的层厚是有一定限制的,一般为3~20mm。

MR影象的产生

3. 脉冲序列与参数

MRI是用磁共振信号来成像的,如果获取的信号大、噪音小,那么影像质量也好。为了得到高质量的影像,在MRI系统中常通过使用不同的脉冲序列,来

获得满足要求的影像。目前常用3个扫描序列:自旋回波序列(SE)、反转回复序列(IR)、梯度回波脉冲序列(GRE)。各个扫描序列的影像信号强度均与氢质子密度成正比,由于自旋回波序列克服了静磁场不均匀性带来的弊端,能显示典型的T2加权像,而T2信息是病理学最早最敏感的指标,所以SE序列在MR扫描中占了主宰地位。

梯度场强度与射频带宽决定层厚自旋回波时间序列

1).自旋回波序列(SE)

为现今MR扫描最基本、最常用的脉冲序列。先发射1个90°射频脉冲,90°脉冲停止后,开始出现磁共振信号,间隔T1时间后,再发射1个180°脉冲至测量回波的时间称作回波时间,用TE表示(TE=2T1),180°脉冲至下一个90°脉冲之间的时间为T′,重复这一过程,2个90°脉冲之间的时间称为重复时间,用TR表示。

第1个90°射频脉冲使纵向磁化矢量M转到XY平面,由于磁场的不均匀性,构成Mxy值的质子群经受着或强或弱的磁波动,某些质子以较高频率旋进,90°脉冲后同步旋进的质子群很快变为异步,相位由一致变为分散,即失相位,Mxy 即横向磁化矢量强度由大变小,最终到零。加入180°脉冲后,使得相位离散的质子群绕X轴旋转180°,此时旋进快、慢不同的质子又以其原速度反向聚拢,使离散的相位趋于一致,Mxy由零又逐渐恢复到接近90 °脉冲后的强度,TE达到最大值,如图所示。

180度相位重聚脉冲对自旋的作用

180°脉冲前后Mxy的变化可用队列操练的例子来说明。当班长对排得很整齐的一横列士兵发出跑步命令后,每个士兵各以自己不同的速度向前跑,班长喊立定时,各士兵所处位置不同,如班长再喊“向后转”(相当于180°脉冲),“跑步走”

时,各个士兵又以自己原来的速度奔向起跑线,当班长以与第1 次同样间隔的时间第2次喊立定时,士兵们肯定都处于原来的起跑线位置,只是方向相反。

自旋回波脉冲序列中的影像亮度、回波幅度不仅与受检组织的特殊参数即

T1、T2和质子密度有关,而且与操作者选择的参数TR、TE有关。MRI较CT可获得更多的信息。物体不同组织不论它们是正常的还是异常的,有它们的各自的T1、T2以及质子密度值,这是MRI区分正常与异常以及诊断疾病的基础。为了评判被检组织的各种参数,在操作中可通过调节重复时间TR、回波时间TE以突出某个组织特征的影像,这种影像被称作加权像。把分别反映组织T1、T2和质子密度N(1H)特性的影像,相应称作T1加权像、T1加权像和N(1H)加权像。

(1)质子密度N(1H)加权像(PDW1):如选用比受检组织T1显著长的TR (1500~2500ms),那么磁化的质子群在下1个周期的90°脉冲到来时已全部得到恢复,这时回波信号幅度与组织T1无关,而与组织的质子密度和T2有关。再选用比受检组织T2明显短的TE(15~20ms),则回波信号幅度与质子密度(即受检组织氢原子数量)有关,这种影像被称为质子密度加权像。由于多数生物组织质子数量相差不大。信号强度主要由T2决定。

(2)T2加权像(T2W2):如选择比受检组织T1显著长的TR(1500~2500ms),又选用与生物组织T2相似的时间为TE(90~120ms),则两个不同组织的T2信号强度差别明显,TE越长,这种差别越明显。

组织T1的与回波幅度的关系反转恢复序列时序图

(3)T1加权像(T1WI):因各种生物组织的纵向弛豫时间约500ms左右,如把重复时间TR定为500ms,则在下1个周期90°脉冲到来时,长T1的组织能量丢失少,纵向磁化矢量(M Z)恢复的幅度低,吸收的能量就少,其磁共振信号的幅度低,回波的幅度也低。相反短T1组织能量大部分丢失,M Z接近完全恢复,幅度高。下1个90°脉冲时将吸收大部分能量,磁共振信号高,回波幅度也高,信号强,如图5- 23所示。

在T2W2的讨论中我们知道,TE越长,T2对信号的影响越大。如T2对回波信号的影响可以忽略,对信号的影响主要是质子密度和T1,此时因选用的是短TR(500ms左右),回波信号反映的主要是组织不同的T1信号强度的差别,即T1加权像。

2) 反转恢复脉冲序列(IR)

该脉冲序列有利于测量T1,并几乎从扫描中删除了T2的作用,它可显示精细的解剖结构,如脑的灰白质。扫描时,先给一180°脉冲,随后以与组织T1相似的间隔(500ms)再给一90°脉冲。

180°脉冲使磁化矢量M由正Z轴转到负Z轴,因磁化矢量完全为纵向,无横向成分,不发出信号。在180°脉冲激励后,磁矢量以组织T1弛豫速度沿正Z 轴增长,500ms时磁矢量在Z轴增长的数量直接与组织T1有关,但不能直接测量。为测量横向成分,需施加90°脉冲,该脉冲使磁矢量倒向XY平面,随后出现FI D的强度与180°脉冲后组织的T1弛豫时间有关。

FI D信号虽可直接测量,但因90°脉冲的强能量爆发后难于测量再发出的信号,可在90°脉冲后迅速(如间隔10ms)再施加1个180°脉冲,如同标准的自旋回波序列那样出现FI D的早期回波(20ms时)。在扫描中以这种回波方式间接测量FI D,有一定程度轻度T2作用的介入。使用两个不同TR值的I R序列可测量T1值。

3) 梯度回波脉冲序列(GRE)

成像速度慢,检查时间长是MRI最主要的缺点,梯度回波脉冲序列既保持了影像较好的信噪比,又显著地缩短了检查时间。在梯度回波脉冲序列中,采用小于90°的射频脉冲激励,在横向部分有相当大的磁化矢量,而纵向磁化矢量M Z的变动相对较小。如30°脉冲可使50%的磁矢量倾倒到横向平面,而保留87%的纵向磁矢量,见图5-25。

30度射频脉冲时的磁化矢量及纵向磁化矢量

信号幅度分为纵、横向两部分,仅数十毫秒,M Z即可恢复到平衡状态。因此,与传统的自旋回波序列相比,重复时间TR可明显缩短。自旋回波序列90°脉冲后磁矢量M在XY平面最强,随后由于磁场不均匀及质子间的相互作用,相位很快分散,MR信号消失,施加180°脉冲后分散的相位再回归(相位一致),出现MR信号(回波)。而梯度回波脉冲序列中,施加梯度磁场后造成质子群自旋频率的互异,很快丧失相位的一致,MR信号消失。如再施加一个强度一样、时间相同、方向相反的梯度磁场,可使分散的相位重聚,原已消失的MR信号又复出现,在回波达到最高值时记录其信号。这种用一个方向相反的梯度磁场代替180°脉冲产生回波的小角度激励成像方法,称梯度的回波序列。

三、MRIjx20台式磁共振成像仪硬件概述

MRIjx台式磁共振成像仪硬件结构框图

磁共振成像仪的工作原理可简单地描述如下:在计算机的(脉冲序列) 控制下,DDS(直接数字频率合成源)产生满足共振条件的射频信号,在波形调制信号的控制下调制成所需要的形状(方波或SINC波形),并送到射频功放系统进行功率放大后经发射频线圈发射并激发样品产生核磁共振。在信号采集期间,射频线圈将对此核磁共振信号感应得到核磁共振信号,此信号为一自由感应衰减信号(FID)信号,此FID信号经前置放大后在二级放大板中与DDS产生的一等幅的射频信号进行混频后放大最后送入ADC(模数转换卡)进行数据采集与模数转换,采集的数据送入计算机进行相应处理就可得到核磁共振信号的谱线。在二维磁共振成像序列中,还需要从脉冲序列发生器中发出三路梯度控制信号,分别经梯度功放后经由梯度线圈产生3个维度上的梯度磁场,起到对磁共振信号进行空间定位的作用,通过计算机处理获取的数据从而得到样品的2D(二维)图像。

MRIjx20台式磁共振成像仪虽然成像空间小,只能做试管样品,但其具有临床医用核磁共振成像系统的基本功能,硬件结构和软件系统与医用设备本质相同,是一台微型化的核磁共振成像设备。

【实验步骤】

一、系统开关机

使用NMIjx台式核磁共振成像仪时,“开机”和“关机”均必须严格按以下顺序操作:

1)开机:

①启动计算机;

②在计算机桌面上启动应用程序“核磁共振成像技术试验仪”;

③开启射频单元电源;开启射频单元后部的恒温系统电源;

④打开梯度放大器机箱电源开关。

2)关机:

①关闭梯度放大器机箱电源开关;

②关闭射频单元电源;

③退出应用程序“核磁共振成像技术试验仪”;

④关闭计算机。

二、自旋回波成像:

1)开机:

①启动计算机;

②在计算机桌面上启动应用程序“核磁共振成像技术试验仪”;

③将装有10mm高大豆油的样品管小心放置入磁体柜上方样品孔内;

④开启射频单元电源;开启射频单元后部的恒温系统电源;

⑤打开梯度放大器机箱电源开关。

2. 运行“核磁共振成像技术试验仪”软件,进入到软件操作界面;

3. 将装有10mm高大豆油的样品管小心放置入磁体柜上方样品孔内;

4. 点击操作界面菜单栏中“MRIjx”,会出现原来已保存的图形,点击菜单栏中“New”,在出现的对话框中选择“软脉冲Fid(S-SPID)”,单击“OK”;

5. 设置中心频率:

1) 选菜单栏中“ZG(累加)”选项;

2)累加停止后,点击“FFT”(快速傅立叶变换),在对话框中S1参数选择:8192,点击“OK”;

3) 出现FFT变换的共振曲线图形后,点击左边菜单栏中“一维处理”,在对话

框中点击“ ”选项,移动到曲线峰值左右附近分别单击,选择一定峰值宽度;4)点击左边菜单栏中“设置中心频率”选项,移动鼠标到曲线峰值中心频率

处单击,在对话框“下次采样时,确定该点为谱图的中心吗?中单击“OK”;

5) 再次选菜单栏中“ZG(累加)”选项,重复2)、3)、4)步骤3-4次,完成设置

中心频率的操作;

6. 确定900软脉冲和1800软脉冲对应的宽度值(RFAmP1):

1) 点击菜单栏中“采样”,在下拉菜单栏中,点击“显示模数据”此时参数

设置为;

参数参数值参数参数值

RFAmP1(%) 1.0 DFW(KHz) 30

SP1(μs) 1200 SF1(MHz) 23

D3(μs) 100 O1(KHz) 320.464

D0(μs) 1000 RG 2

TD 1024 NS 4

SW(KHz) 100 DS 10

2)点击菜单栏中“Gs”(单次采样);

3)手动修改RFAmP1(%),设置P1值从1逐渐增大,可观察到信号波形峰值先

会逐渐增大,然后信号波形峰值会逐渐减小的现象,信号波形峰值第一次最大值

和第一次最小值出现时所对应的P1位置值,分别就是900硬脉冲对应的宽度值(参

考值:P1max=17.0)和1800硬脉冲对应的宽度值(参考值:P1min=28.0);

4)点击“停止”。

7. 自旋回波成像:

1)点击“New”,点击“自旋回波成像”,单击“OK”;

2)设置参数:

参数参数值说明参数参数值说明RFAmP1(%) 17.0 前面找到的数值SW(KHz) 100 不用改动RFAmP2(%) 28.0 前面找到的数值DFW(KHz) 30 不用改动SP1(μs) 1200 固定不变SF1(MHz) 23 前面找到的数值SP2(μs)1200 固定不变01(KHz) 319.609 前面找到的数值

D1(μs) 1000

一般样品:1000,

特殊样品(花生)2000

RG 4 成像时取3~4

D2(μs) 500 一般取500,(校准时,用油

样品(大豆色拉油))

NS 2~16 次数少,信号弱

D3(μs) 100 不用改动GxAmP(%) 50 D4(μs) 100 不用改动GyAmP(%) -48 D5(μs) 100 不用改动GzAmP(%) 50

D0(μs) 100-

1000

取值大,图像信噪比大,图

像越清晰,成像时间越长。

SLICE 0 选层方向

TD 512 最大值512,一般取512

说明:

*SLICE(选层方向)的选取:

选“0”时:GxAmP(%)表示选层的厚度;GyAmP(%)表示相位编码;GzAmP(%)表示频率编码。

选“1”时:GxAmP(%)表示相位编码;GyAmP(%)表示选层的厚度;GzAmP(%)表示频率编码。

选“2”时:GxAmP(%)表示频率编码;GyAmP(%)表示相位编码;GzAmP(%)表示选层的厚度。

选层的厚度范围:10%~90%,取值越小,切的越厚。一般取50%或80%,选10时,增益选3。

相位编码:一般选-48%,频率编码:一般取50%。

*调节D2参数的方法:

选取“选层方向为0”,将相位编码设置为0,将D0设置为1000,点击“ZG”,观察回波峰值大小,改变D2,使回波峰值最大(一般从300→500→600),一旦找到后保持参数不变,将相位编码复原至-48%,将D1设置成适当的值(如200),完成参数D2的调节。

3)成像:

①参数设置完毕后,点击菜单栏上“ZG”累加,进行成像自旋回波;

②运行128次(由TD值决定)结束后,点击“FFT”(快速傅立叶变换),在对话框中设置参数S11=512,S12=512(都要设置),点击“OK”,得到样品(油)的核磁共振图像。

③对图像进行二维处理:得到样品(油)的核磁共振图像后,点击菜单栏中“二维处理”,可对图像处理。

④点击菜单栏上“保存图像”,将图像保存,待退出程序后再打印。

参考文献:

复旦大学核磁共振实验开放式网址:

https://www.docsj.com/doc/1511195234.html,/doku.php?id=exp:mri

磁共振(MRI)检查注意事项

磁共振(MRI)检查注意事项 一、磁共振检查的禁忌症 1.带有心脏起搏器及人工瓣膜的病人; 2.带有神经刺激器(如膈肌刺激器)的病人; 3.术后体内置有动脉瘤止血夹的病人; 4.带有心脏人工瓣膜和人工耳蜗的病人; 5.疑有铁磁性植入者,如枪炮伤后存留及眼内铁磁性金属异物的病人; 6.体内有微量输液泵的病人,如胰岛素或化疗药物微量输液泵等; 7.手术后体内用金属钉缝合切口者及置有大块金属植入物如人工股骨头、人工关节、金属假肢、胸椎矫形钢板等; 8.患有幽闭恐惧症的病人; 9.体内有各种内支架者,如血管内支架、胆道、胃肠道支架、泌尿道等支架; 10.危重病人、昏迷躁动、有不自主运动或精神病不能保持静止不动者; 11.妊娠三个月以内的早孕患者; 二、填写MRI申请单的注意事项 1.详细标明检查部位。对称器官必须标清左右;胸、腹部检查必

须标明具体器官或检查目的;头颈部检查,如欲观察细小结构,如垂体、内耳等,必须明确标出; 2.认真填写病人信息及病史。详细的病人信息及病史对影像技术人员的扫描方案的确立有很大的帮助。门诊患者详细填写患者信息和病史,为日后随访提供了很大的方便; 3.对扫描范围和扫描序列有特殊要求,可以说明。如脊柱检查,可以根据查体情况说明要检查哪几个椎体。如果其它检查怀疑某处有病变,应详细说明,以使MRI操作员扫描时重点观察。对MRI较为熟悉的医生,可以根据自己的习惯要求扫哪个方位、哪个序列。MRA、MRCP、功能成像等特殊检查,因检查时间长,且可能另收费,临床医生如果需要,必须特殊标明。 三、关于增强检查。 一般情况下,是否进行增强检查应咨询MRI医生或技术人员,或在观察平扫图像后决定。有时MRI医生要求病人增强,病人来征求临床医生意见,临床医生应积极配合MRI医生的工作,说明增强检查的必要性。一般而言,肿瘤性病变直接平扫加增强。 四、对病人的检查前交代 1.说明此检查的意义和必要性,以及有可能出现阴性结果,以减少病人和MRI医生的不必要纠纷。 2.如患者手中有既往影像检查资料,应嘱咐病人进行MRI检查时

MRI检查前准备

MRI检查前准备及注意事项 一、适应证与禁忌证 1.适应证:适用于人体大部分解剖部位和器官疾病的检查,应根据临床需要以及MRI在各解剖部位的应用特点选择。 2.禁忌证: (1)体内装有心脏起搏器,除外起搏器为新型MRI兼容性产品的情况; (2)体内植入电子耳蜗、磁性金属药物灌注泵、神经刺激器等电子装置; (3)妊娠3个月内; (4)眼眶内有磁性金属异物。 3.有下列情况者,需在做好风险评估、成像效果预估的前提下,权衡利弊后慎重考虑是否行MRI检查。 (1)体内有弱磁性置入物(如心脏金属瓣膜、血管金属支架、血管夹、螺旋圈、滤器、封堵物等),一般建议在相关术后6~8周再进行检查,且最好采用以下场强设备; (2)体内有金属弹片、金属人工关节、假肢、假体、固定钢板等时,视金属置入物距扫描区域(磁场中心)的距离,在确保人身安全的前提下慎重选择,且建议采用以下场强设备; (3)体内有骨关节固定钢钉、骨螺丝、固定假牙、避孕环等时,考虑产生的金属伪影是否影响检查目标; (4)可短时去除生命监护设备(磁性金属类、电子类)的危重患者;

(5)癫痫发作、神经刺激症、幽闭恐怖症患者; (6)高热患者; (7)妊娠3个月及以上; (8)体内有金属或电子装置植入物者,建议参照产品说明书上的MRI安全提示。 二、MRI对比剂使用注意事项 1.核对受检者基本信息及增强检查申请单要求,确认增强检查为必需检查。 2.评估对比剂使用禁忌证及风险,受检者签署对比剂使用风险及注意事项知情同意书。 3.按药品使用说明书正确使用对比剂。 4. 增强检查结束后,受检者需留观15~30min,无不良反应方可离开。病情许可时,受检者应多饮水以利对比剂排泄。 5.孕妇一般不宜使用对比剂,除非已决定终止妊娠或权衡病情依据需要而定。 6.尽量避免大量、重复使用钆对比剂,尤其对于肾功能不全患者,以减少发生迟发反应及肾源性系统纤维化的可能。 7.虽然钆对比剂不良反应发生率较低,但仍需慎重做好预防及处理措施。 三、检查前准备 1.核对申请单,确认受检者信息、检查部位、目的和方案。 2.确认有无MRI检查禁忌证。

低场核磁共振技术在水泥基材料研究中的应用及展望_孙振平

低场核磁共振技术在水泥基材料研究中的应用及展望* 孙振平1,俞 洋1,庞 敏1,杨培强2,俞文文2,曹红婷2 (1 同济大学先进土木工程材料教育部重点实验室,上海200092;2 上海纽迈电子科技有限公司,上海200333)摘要 阐述了低场核磁共振技术在水泥基材料研究中的应用现状,认为现有的研究主要集中于水泥水化进程和水在硬化浆体中的扩散特征,也包括对硬化水泥浆体孔结构和比表面积的测试。分析了低场核磁共振技术在实际应用中面临的挑战,展望了该技术在新拌水泥浆体结构性能研究中的应用前景。 关键词 低场核磁共振 孔径分布 横向弛豫时间 硬化水泥浆体中图分类号:T Q172 文献标识码:A A pplications and Outlook of 1 H Low Field NM R Probing into Cement based M at erials SUN Zhenping 1,YU Yang 1,PAN G M in 1,Y ANG Peiqiang 2,YU Wenw en 2,CAO H ongting 2 (1 K ey L abo rato ry of A dv anced Civil Eng ineering M aterials,M inistry of Educatio n,T o ng ji U niversit y, Shang ha i 200092;2 Shanghai N iumag Co rpor atio n,Shanghai 200333)Abstract T he cur rent applications o f lo w f ield N M R in cement based mater ials ar e demo nstr ated.It is found that researches are focused o n cement hydration and w ater diffusio n in har dened cement paste,as well as por e size dis tributio n and specific surface area o f hy dr ated cement paste.Challenges in the curr ent resear ch are analyzed and the fu tur e applications of low field N M R in r esear ch o n fr esh cement paste are fo recast. Key words low field nuclear mag net ic r eso nance,por e size distributio n,tr ansver se relaxation time,hydrated cement paste *国家973基础研究项目(2009CB623104 5) 孙振平:男,1969年生,博士,副教授 T el:021 ******** E mail:g rtszhp@https://www.docsj.com/doc/1511195234.html, 自1945年美国物理学家Bloch 和Purcell 发现核磁共振现象以来,核磁共振作为一种重要的现代分析手段已广泛应用于多个领域,如物质结构分析、医学成像和油气资源的勘探等[1]。低场核磁共振分析仪采用价格低廉的钕铁硼永磁材料作为场源,大大降低了仪器制造成本和运行成本,进一步扩展了核磁共振技术的应用。近年来,低场核磁共振技术的应用已逐步从生命科学、地球物理等领域扩展到水泥基材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水泥基材料中水的含量及其分布的变化,具有快速、连续和无损的优势[2]。然而,由于低场核磁共振技术在水泥材料研究中的应用刚刚起步,尚面临许多亟待解决的问题,本文就低场核磁共振技术应用于水泥基材料研究的现状进行归纳评述,并就其发展趋势,尤其是低场核磁共振技术应用于新拌的水泥浆体结构研究的前景进行了展望,希望对该方向研究有所裨益。 1 低场核磁共振的应用 硬化水泥浆体由C S H 凝胶、CH 晶体、AFt 晶体、未水化的水泥颗粒以及毛细孔、水分等组成。M cDonald 等[3]将硬化水泥浆体中的水分为结合水、凝胶孔水和毛细孔水。结合水是与C S H 凝胶发生化学结合的水,纵向弛豫时间T 1大于100m s,横向弛豫时间T 2约为10 s;凝胶水是指在凝胶孔中的水,是C S H 凝胶的组成部分,由于其与凝胶孔壁的强烈作用,T 1和T 2在0.5~1m s 之间;毛细孔水的弛豫时间在5~10m s 范围内。除此之外,还可以将硬化浆体中的水分为自由水、物理结合水和化学结合水[4] 。自由水和物理结合水的横向弛豫时间通常为0.1~10ms [2,5],可以采用NM RD 将孔中的自由水和物理结合水分开[3];化学结合水的横向弛豫时间通常小于100 s,Jehng [4]将水泥浆体样品置于110 的烘箱中48h,以移除自由水和物理结合水,然后测得其表观横向弛豫时间为12 s 。研究表明[6-8],采用Carr Purcell M eiboom Gill(CPM G)序列测试时,水泥浆体第一自旋回波幅度正比于自由水和物理结合水氢核总量。 目前,低场核磁共振技术用于水泥浆体孔结构和硬化浆体比表面积的测试已比较成熟,也开始用于研究水泥水化进程和硬化浆体中水的扩散。 1.1 水泥水化进程 水泥的水化包括初始反应期、诱导期、加速期和减速期。研究发现,水泥浆体的T 1和T 2随水化的进行而逐渐减小, 其中T 1能够反映出水化的不同阶段,即在诱导期和减速期的减少比较缓慢,而在加速期的减小比较快速 [9-13] 。但是,

磁共振检查适应症

磁共振检查的适应症 颅脑MR 检查 先天性颅脑发育异常。 1、 脑积水。 2、 脑萎缩。 3、 卒中及脑缺氧:脑梗塞和脑出血等4、 脑血管疾病。 5、 颅内肿瘤和囊肿。 6、 颅脑外伤。 7、 颅内感染和其他炎性病变。 8、 脑白质病。 9、 ? 4眼及眶区MR 检查 眼眶前病变。 1、 肌圆锥内、外病变。 2、 眼外肌病变。 3、 视神经及其鞘病变。 4、 眼球病变。 5、 ? 亠鼻部MR 检查 鼻咽部良性、恶性病变。 1、 2、喉部良性、恶性病变。 四:口腔、颌面部MRI 检查 五:胸部MR 检查

1、肺脏。 2、纵膈及肺门。 3、胸膜与胸壁。 4、乳腺。 5、心脏、大血管。 六:肝脏、胆系胰腺、脾脏MR检查 1、肝脏、胆系、胰腺、脾脏的原发性或转移性肿瘤,以及肝海绵状 血管瘤。 2、肝寄生虫病。 3、弥漫性肝病。 4、肝、胆、脾、胰腺先天性发育异常。 5、胆道梗阻; 6、肝脓肿。 7、肝局限性结节增生和肝炎性假瘤。 8、手术、放疗。化疗及其它治疗效果的随访和观察。 9、胰腺炎及其并发症。 七:盆腔MR检查 1、膀胱、输尿管、前列腺、精囊腺、子宫、卵巢及其附件的病变。 2、骨盆及盆腔脏脏的损伤。 八:肾脏MR检查 九:肾上腺MR检查

十:腹膜腔及腹膜后间隙MR检查 」:脊柱MR检查 1、椎管内肿瘤。 2、脊髓病变。 3、脊柱及脊髓外伤性病变。 4、脊柱及脊髓先天性病变。 5、椎间盘突出。 6、椎管狭窄。 十二:骨关节和肌肉MR检查 十三:胃肠道MR检查 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

MRI核磁共振成像与CT成像的联系区别

MRI核磁共振成像与CT成像的联系区别 一、定义 MR(MagneticResnane lamge)中文译为核磁共振成像。它是一种生物磁自旋成像技术。工作原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在射频脉冲停止后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收录,经电子计算机处理获得图像,这就叫核磁共振成像。 CT(Computed Tomography)中文译为断层扫描。由于X线球管和探测器是环绕人体某一部位旋转,所以只能做人体横断面的扫描成像。工作原理:人体各种组织(包括正常和异常组织)对X 线的吸收不等。CT即利用这一特性,将人体某一选定层面分成许多立方体小块,这些立方体小块称为体素。X线通过人体测得每一体素的密度或灰度,即为CT图像上的基本单位,称为像素。它们排列成行列方阵,形成图像矩阵。分析CT图像, 一方面是观察解剖结构,另一方面是了解密度改变。后者可通过测定CT值而知,亦可与周围组织的密度对比观察。人体内肿瘤组织因部位、代谢、生长及伴随情况不同,其密度变化各异。CT对组织的密度分辨率较高,且为横断面扫描,提高了肿瘤诊断的准确率。 二、区别

1、成像面。CT成像为横断面,而MRI可做横断、矢状、冠状和任意切面的成像。 2、分辨率。CT比MRI的空间分辨率高,但只能辨别有密度差的组织,对软组织分辨力不高。MRI对软组织则有较好的分辨力,如肌肉、脂肪、软骨、筋膜等。 3、各自特点。MRI固然被认为分子水平上的成像有许多优点,但在氢质子缺乏或含量很少的组织如致密的骨骼、钙化、含气的肺部等,皆无法成像。由于MRI成像时间较长,昏迷、躁动病人不能获得清晰的图像,体内有金属异物的患者不能进入磁场,此为禁忌症。所以MRI与CT相互不能取代,二者相辅相成。 三、肺部影像检查举例 对于肺部的影像学检查,CT和MRI诊断价值基本相似,但各有特点。如MRI在明确肺部肿瘤与血管之间关系上要明显优于CT,但在发现肺部小病灶(<5mm)方面则不如CT敏感。此外对于诊断支气管扩张、肺结核、小量气胸等疾病,CT可作为常规检查。而对于肺栓塞患者,其MRI诊断价值高于CT.对于肺部检查到底是CT好还是MRI好,不能一概而论,应根据具体病情及所需要了解的情况进行选择。

关于低场核磁共振采购的一些看法

关于低场核磁共振采购的一些看法 核磁共振成像系统(以下简称核磁)随着时代的发展,其技术水平和临床应用能力越来越高,而其生产成本和市场售价却越来越低,这为大规模的工业化生产和普及型的临床应用带来了可能。在西方国家,磁共振的检查因其与CT检查相比无辐射伤害而成为常规检查和早期肿瘤普查的首选手段。在国内,也有越来越多的医院拥有或正在考虑购买磁共振。特别是因资金条件和病员量少的医院,多数采购低场核磁共振。下面,就低场核磁的有关情况谈一下个人看法,供参考: 在磁共振中,磁场强度在0.1T-0.5T之间的称为低场核磁.按磁场条件又可分为三种:永磁型、超导型和常导型。又可分为开放和非开放型两类。因低场超导型运行费用高和技术特点不突出且在市场上很少就不再介绍。 永磁型:是采用人工合成材料在电磁场中充磁后做成小磁体再经过有序堆积形成磁场。其特点是材料简单,可采用减少磁间距降低开放度来提高主磁场强度(如日立能做到0.4T,这也是永磁设备厂家卖点最重要的一点。但国外的高场强开放式0.6/0.7T磁共振都采用超导)制造工艺难度小成本较低而销售价格低(销售型式也很好,分期\卖方信贷\投资或合作经营都可以),安装简单,一经成型匀场不需再调整.所以,它特别适合于像中国这样的发展中国家生产和普及运用.据不完全统计,自1990年以来,国内有超过18家企业在生产,如安科、威达、东软和近年新加入的三九、迈迪特、鑫高益等。在国内市场投放可能超过千台(没见过在国外医院大量使用的报道)。在国际上,近年来生产并在国内销售的只有日立0.2T、0.3T和0.4T(原装进口),西门子0.2T(原装进口),GE 0.35T(原装进口),而西门子迈迪特0.35T和所有的国产机一样都是采用国产磁体,外购梯度线圈,射频系统等进口件拼装而成。 常导型:1992年,原马可尼公司芬兰工厂研发了具有独家专利的ESR电子自旋稳态磁场技术和垂直磁场相控阵技术,一举突破原来常导核磁的立磁时间和耗电量大的技术瓶颈(在原来的教科书里所举例安装在广州南方医院西门子常导核磁的问题就在此),使常导型核磁共振在临床上应用得到实现。其优质图像,全面的临床功能,先进的技术,优良的制造工艺和可靠稳定的质量很快被用户接受。(西门子公司在2000年以前,也得以使用马可尼这两项技术生产并销售常导型核磁共振,直至飞利浦收购马可尼公司收回专利为止,不能生产常导而转产其并不成功的永磁型)至2000年,国外医院的使用量突破600台。1995年,全亚洲第一台开放式核磁共振马可尼outlook0.23T(第一代机型,现已发展到第四代Panorama/Proview)被引进中国,安装在合肥市第二人民医院。这台机器已正常使用到今天,仍然保持了装机时的优良图像,开机率近100%。在核磁设备中磁场强度的大小是和二磁极的距离成反比的(只针对开放式磁场,高场超导型不同),磁极离的越近,磁场强度越大。不考虑磁极间距而单比磁场大小是无意义的,而且,水分子的共振频率约为10兆赫,恰与我们的核磁共振频率0.23X41兆赫的相近,共振效果最好。这也就是这么多年来,飞利浦一直生产0.23T的最主要原因。在国内,有包括著名的天坛医院、天津医院、浙江省人民医院、山东省人民医院等五十多家用户,算上西门子公司的常导型核磁几十家用户,常导型核磁是原装进口低场核磁共振(包括永磁和低场超导)市场占有率最高的机型。常导型核磁近百台市场占有率确实不能和国产18家生产的过千台机器占有量相比。但是,我们的几十台机器不论装机时间长短,都正在临床一线正常使用,而在国内市场上投放过千台这种型号的永磁型核磁共振能在临床上正常使用超过4年的有多少台呢?

磁共振检查能吃饭吗

全国体检预约平台 全国体检预约平台 磁共振检查能吃饭吗? 现代人热衷于磁共振检查,为了检查结果的准确性,医生总会叮嘱检查者各种注意事项。那么,磁共振检查能吃饭吗?这是不少人关心的话题。 做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。以下就是核磁共振成像检查注意事项: 1.核磁共振检查由于检查时间相对较长,每日检查人数有限,为核磁共振成像。避免您长时间等待,需要医生开单预约,按预约时间前去检查。 2.检查前请取下一切含金属的物品,如金属手表、眼镜、项链、义齿、义眼、钮扣、皮带、助听器等;否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示,并可能造成个人财物不必要的损失及磁共振机的损伤。 3.如果您装有心脏超搏器、人工心脏金属瓣膜、血管金属夹、眼球内金属异物、体内有铁质异物、胰岛素泵、神经刺激器,以及妊娠三个月以内,不能做此检查,以免发生意外。 4. 昏迷、危重及不能配合的患者不能进行核磁共振检查。 5.做盆腔部位检查时,需要膀胱充盈,请检查前不要解小便。 6.做腹部肝、胆、胰、脾、肾等检查时,请于检查前4小时禁食;并需要您检查过程中保持呼吸平稳,切忌咳嗽或进行吞咽动作。 7.头颅及神经系统检查时,不需要特殊准备。 8.核磁共振检查对饮食、药物没有特别要求。 9.完成一次磁共振检查需要半小时左右,检查过程中,您会听到机器发出的嗡嗡声,此时请尽量静卧,平衡呼吸,身体勿做任何移动,以免影响图像质量。 10.磁共振扫描过程中请身体(皮肤)不要直接触磁体内壁及各种导线,防止皮肤灼伤。 大家在做磁共振前一定要有思想准备,不要急躁,害怕,要听从医生的指导,耐心配合。 本文来源:深圳入职体检https://www.docsj.com/doc/1511195234.html,/0755/cl/t40

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

低场磁共振要考虑和比较以下六大要素。

怎样选一台好的低场磁共振机 南京医科大学附属南京脑科医院放射科蔡宗尧 目前世界上能生产低场MR设备的厂家主要有美国通用电气、西门子、日立、东芝以及我国的东大阿尔派、安科等。根据2001RSNA的报告,自1998年以来,1.5T以上的高场机的生产平均每年以29.9%的速度增长。0.3T以下的低场机的生产则平均每年以50.4%的速度增长,至2001年底全世界已投入临床应用的低场机达1100多台。我国的安装量已达200台以上(2000年底)。根据2001年RNSA的预测,由于低场机性能稳定、软件更新快、开放式磁体、基本无运行消耗、安装场地要求较低及价格相对较低等优势,更重要的是它能满足临床诊断的要求,故今后3-5年内,全世界对低场机将有1500-2000台的需求量,所以目前各大厂家在开发高场MR机的同时,投向低场机的资金与高场机已基本持平。由于不断将高场机的软件功能向低场机移植,根据我国的国情,可以说低场MR机在我国的市场必将远大于高场MR机。随着我国国力和经济实力的不断提升以及人民保健需求的提高,我国大部分县至少配置一台低场MR机是完全有可能的。 怎样选择一台品质好、配置优化、价格合理的低场MR机呢?根据10年来的探索和实践,我们认为至少要考虑和比较以下六大要素。 一. 品牌:我们从多年的引进大型设备的经验中认识到,要选名牌产品。品牌中的“名牌”是在市场经济条件下,经过几年甚至十几年的优胜劣汰的结果,是经过市场这个大熔炉长期熔炼出来的,为广大用户认可的产品,据我们所知的信息,美国通用电气、日立、西门子的低场机在国外产品中是名牌。以GE为例,1998-2001年底在中国市场推出Signa Profile 系列共70 多台,占同期销售份额的50 %。 二. 市场覆盖面的大小:要选择市场覆盖面大的产品。简单的说,某一厂家的产品在一个地域占有量越多,它的获利相对就越大,为了维护它的品牌优势,它的投入(包括产品开发、学术及技术支持、售后服务等)相对就多一些,用户受益也相对多一些。产品覆盖面广,还说明产品的成熟程度。 三. 生产国的综合国力的大小:要选择综合国力强的国家的产品。目前的国际经济正在经历全球经济一体化的转型过程,其中包括了医疗设备行业,各生产厂之间的合资、兼并、重组、关闭屡见不鲜。根据WTO 2001年年度报告称:今后五年世界经济一体化的进程将大大加快,一些综合力弱的厂家,在残酷的市场竞争中很可能被重组、合资、兼并甚至关闭,所以我们在选型时不能不考虑综合国力这一要素。 四. 销售及售后服务网络的分布:我们认为要选择在国内网络分布广的产品,其中特别要考虑工程师队伍及其质素。我们就有亲身体会:如果CT机坏了,凡属一般故障的,GE公司10年来都是随叫随到,多数在晚上进行修复(包括换球管),这种及时和高水平的服务,直接受益者是医院,是患者。 五. 性能价格比要尽量合理:绝对合理是不太可能的,但要争取尽可能合理。具体的说要品牌好、先进而合理的配置、完善的售后服务,加上相对低廉的价格。这可以从相近的兄弟医院引进的同型机(注意配置内容)比较得知,也可以同其他厂家的同档机(注意重要参数与配置内容)比较得知。注意要厂家提供该机型的升级换代计划。 六. 适合本院临床工作的需要:主要是指硬件、软件和附件的配置。不一定要求高求全,但要求新,也就是说我们要引进的必须是该厂同机型中最新的硬、软件配置。不要求全,例如我们医院骨科的要求不高,那么“关节运动成像”就不一定专门购置(如是标配,则另当别论)低场机的最大要求是不停电,温、湿度稳定,所以不间断电源(包括磁体供电)和专用空调必不可少。 七. 几个具体问题 1. 磁体必需是永磁型,开放度不仅要注意周围的开放度,更要注意上下磁体间的开放度,因为病人的压抑感主要来自上下方向。 2. 水成像、脂肪抑制、平面回波成像(EPI)、弥散成像(DWI)、血流成像(MRA)、Flair(T1、T2都有更好)、心脏电影、磁化传递(MTC)等等都是一台好低场机必不可少的功能,也是临床最需要的功能。

核磁共振成像医学检测

核磁共振---其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 CT成像与核磁共振区别 CT成像是在X射线的基础上运用计算机技术,使平面重叠的X像可以清晰一个平面一个平面的扫描.磁共振是原子核在强磁场中共振所得到的信号,然后经过图象重建得到的,它可以在人体的各个平面成像.说白了,它的成像和扫描部位质子的多少有关.他们的区别主要是原理,设备,其成像特点,检查技术,图象的分析与诊断,及他们在临床的应用. CT的基本原理一、CT成像过程:X线成像是利用人体对X线的选择性吸收原理,当X线透过人体后在荧光屏上或胶片上形成组织和器官的图像,CT的成像也与之相仿。 CT扫描的过程是由高度准直的X线束环绕人体某一检查部位作360度的横断面扫描的过程。检查床平移时,X线从不同方向照射病人,穿过人体的X线束因有部分光子被人体吸收而发生衰减,未被吸收的光子穿透人体再经后准直由探测器接收。探测器接受了穿过人体以后的强弱不同的X线,转换为自信号由数据采集系统(data acquisition system,DAS)进行采集。大量接收到模拟信号信息通过模数(A/D)转换器转换为数字信号输入电子计算机进行处理运算。经过初步处理的成为采集的原始数据(raw data),原始数据经过卷曲、滤过处理,其后称为滤过后的原始数据(6lteredrawdata)。由数模(D/A)转换器通过不同的灰阶在显示屏上显像从而获得该部位横断面的解剖结构图象,即CT横断面图象。 因此,CT检查得到的是反应人体组织结构分布的数字影象,从根本上克服了常规X线检查图像前后重叠的缺陷,使医学影像诊断学检查有了质的飞跃。 二、CT成像的基本原理 通常,探测器所接受到的射线信号的强弱,取决于该部位的人体截面内组织的密度。密度高的组织,例如骨骼吸收X线较多,探测器接收到的信号较弱;密度较低的组织,例如脂肪、空腔脏器等吸收X线较少,探测器获得的信号较强。这种不同组织对X线吸收值不同的性质可用组织的吸收系数μ来表示,所以探测器所接收到的信号强弱所反映的是人体组织不同的μ值。而CT正是利用X线穿透人体后的衰减特性作为其诊断疾病的依据。 X线穿透人体后的衰减遵守指数衰减规律I=I0e-μd。 式中:I为通过人体吸收后衰减的X线强度;I0为入射X线强度;μ为接收X线照射组织的线性吸收系数;d为受检部位人体组织的厚度。 通过电子计算机运算列出人体组织受检层面的吸收系数,并将之分布在合成图象的栅状阵列即矩阵的方格(阵元)内。矩阵上每个阵元相当于重建图象上的一个图象点,称为像素(pixel)。CT的成像过程就是求出每个像素的衰减系数的过程。如果像素越小、探测器数目越多,计算机所测出的衰减系数就越多、越精确,重建出的图象也就越清晰。目前,CT机的矩阵多为256×256,512×512,其乘积即为每个矩阵所包含的像素数 核磁共振成像 人脑纵切面的核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像、磁振造影(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的

核磁共振成像MRI

核磁共振成像MRI 名片:核磁共振成像也称磁共振成像,是利用核磁共振原理,通过外加梯度磁场检测所发射出的电磁波,据此可以绘制成物体内部的结构图像,在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用 概要 在磁场的作用下,一些具有磁性的原子能够产生不同的能级,如果外加一个能量(即射频磁场),且这个能量恰能等于相邻2个能级能量差,则原子吸收能量产生跃迁(即产生共振),从低能级跃迁到高能级,能级跃迁能量的数量级为射频磁场的范围。核磁共振可以简单的说为研究物质对射频磁场能量的吸收情况。 定义 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging ?,简称MRI?),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 物理原理 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把

磁共振检查前准备应注意哪些

磁共振检查前准备应注 意哪些 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

磁共振检查前准备应注意哪些 20世纪80年代初,作为医学新技术的MRI应用临床。MRI对人体没有电离辐射损伤;能获得原生三维断面成像而无需重建就可获得多方位的图像;软组织结构显示清晰,对、膀胱、直肠、子宫、阴道、关节、肌肉等检查优于CT;多序列成像、多种图像类型,提供更丰富的影像信息。该项检查技术被广泛应用于临床,是疾病诊断的一种重要检查手段,为临床的治疗和手术提供着很大帮助。为了规范磁共振检查工作的开展,那么,对于磁共振检查前的注意事项,国内相关专家参考文献并结合临床制定的MRI检查专家共识,供广大医务工作者及患者参考。 一、适应症: 磁共振检查适用于人体大部分解剖部位和器官疾病的检查,根据临床需要以及MRI在各解剖部位的应用特点进行选择。 二、禁忌症: ①体内装有心脏起搏器,除外起搏器为新型MRI兼容性产品; ②体内植入电子耳蜗、磁性金属药物灌注泵、神经刺激器等电子装置; ③眼眶内磁性金属异物; ④妊娠3个月内。 注:有下列情况者,需在做好风险评估、成像效果预估的前提下,权衡利弊后慎重考虑是否行MRI检查。 ①体内有弱磁性置入物(如心脏金属瓣膜、血管金属支架、血管夹、螺旋圈、滤器、封堵物等)时,一般建议在相关术后6~8周再进行检查,且最好采用以下场强设备; ②体内有金属弹片、金属人工关节、假肢、假体、固定钢板等时,视金属置入物距扫描区域(磁场中心)的距离,在确保人身安全的前提下慎重选择,且建议采用以下场强设备; ③体内有骨关节固定钢钉、骨螺丝、固定假牙、避孕环等时,考虑产生的金属伪影是否影响检查目标; ④可短时去除生命监护设备(磁性金属类、电子类)的危重患者; ⑤癫痫发作、神经刺激症、幽闭恐怖症患者; ⑥高热患者;

MRI检查注意事项

核磁共振检查病人须知及注意事项 1 检查者及陪检人员有下述情况者严禁进入核磁检查室检查或陪检:心脏起博器、胰岛素泵、气管插管、人工心脏瓣膜、血管内金属支架、动脉瘤夹(非顺磁性如钛合金除外)、血管术后金属支架、人工角膜、金属假肢、早期妊娠妇女。 2 病情危急需立即抢救,但不能自主配合、不能保持安静不动者不能进行检查,以免发生意外。 3 要向技术人员说明以下情况:有无手术史、有无任何金属或磁性物质植入包括金属节育环、有无假牙、电子耳、义眼等;有无药物过敏史。 4儿童、神志不清等不合作患者,需用镇静剂并有身体健康的家属陪同。危重病人请临床医生陪同,躁动、不能配合的病人请临床科室处理后再做检查。 5 检查者及陪检人员进入检查室前需去除下列物品:磁性金属物品如手机、磁卡、钥匙、手表、硬币、发卡、打火机、假牙、剪刀、别针、电子产品、存折、项链、耳环、戒指等;上述物品可寄存在衣物箱内或交家属保管。轮椅、平车、担架、监护仪、输液泵、氧气筒等仪器设备切勿带入。它们可能会被损坏及对磁共振设备造成破坏,并可能导致人身伤害。 6 检查当日请按约定时间到达科室,来院前请携带既往就医资料及影像检查资料如X光片、CT片、B超单、以前磁共振片等,有助于准确诊断、对照病情。 7 腹部检查者检查前一周不作胃肠钡餐检查,检查前禁食4小时。盆腔检查禁食4小时,同时检查前2小时留尿。 8 磁共振检查时间较长、噪声较大是正常现象,一般磁共振检查时间在20分钟左右,根据检查部位和种类不同而增加,要在医师指导下保持体位不动,耐心配合吸气、屏气等。检查中,如有恐惧、焦虑、心慌等不适症状不能耐受检查时,请及时呼叫医生。

磁共振检查

磁共振检查相信大家都不陌生,磁共振检查是我们生活中常见的体检项目,那么大家知道磁共振检查什么吗?今天小编就给大家全面的介绍一下磁共振检查,告诉大家核磁共振的原理和磁共振检查注意事项。 1、何谓磁共振 什么是磁共振呢?这是许多体检者都想知道的问题,其实核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁,是原子核与磁场发生的共振,所以称为核磁共振,因为核字涉嫌核辐射,所以业内将其改称为磁共振。 2、磁共振检查什么 磁共振可以检查出我们身体的哪些问题呢?我们做磁共振有什么意义吗?其实磁共振是一种功能强大的医学影像技术,特别是在软组织检查上具有优良的组织对比度和空间分辨力,它可以多角度多序列多参数成像,除肺、胃肠道显示欠佳外,可以检查全身任何部位。 3、磁共振检查有何特点 1)磁共振检查并没有像X线以及CT检查的那种辐射,所以做磁共振检查对于我们的身体是没有什么辐射危害。 2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。 3)无骨质伪影。 4)软组织对比度良好。 5)对病变显示更加敏感,可使病灶显示更早更清楚。 6)磁共振的DWI(扩散加权成像)序列,是唯一能够无创检测活体组织内水分子扩散运动的成像方法。

7)磁共振的PWI(灌注加权成像)序列,能够显示脑组织血流动力学信息。 8)磁共振的MRS(波谱分析)序列,是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。 4、磁共振(MRI)图像是怎样形成的 如果给人体施加一个外来的静磁场,再给予一个短暂的、与质子共振相同频率的旋转磁场(即射频脉冲),之后采集电磁波信号,就可以获得人体的磁共振信号。对磁共振信号的采集过程给予一个形象的比喻,可以把质子比喻成卫星,我们从发射电台发送信号,卫星获得信号,再重新发射出来,地面的收音机就可以收听到节目了。通过对接受到的磁共振信号进行空间编码和图像重建等处理,即产生MR图像。 5、磁共振检查有核辐射吗 磁共振是利用人体生物磁自旋原理及磁共振现象成像,虽然其最初的名称为核磁共振(NMRI),但完全不存在核辐射现象及放射性物质,磁共振检查非常安全,对人体是没有辐射危害。 6、磁共振检查前需要注意什么 1)受检者不能将任何铁磁性物质带入磁体间,检查前需更换检查服。 2)安装心脏起搏器、神经刺激器、血管夹、支架、人工心瓣膜者禁做MR检查(冠脉支架植入术3月后可慎做MRI复查,须出具完整的病历、支架材料及其它相关证明,并由本人签署同意书)。 3)准备怀孕或者已经怀孕者,需事先告诉医护人,由医务人员综合考虑检查之必要性及安全性。 4)如果体内有人工关节、骨科固定物、补片、铁屑或植入的药物泵等,需告知检查人员。

做核磁共振检查项目有哪些

做核磁共振检查项目有哪些 如今,社会上出现的”核磁共振热”持续的升温着。这对很多想要做核磁共振检查的广大朋友们只是盲目的崇拜,没有清晰的认识。更无从谈起治病一说。虽然核磁共振检查具有安全、无辐射、精确等优点,但是该设备也有好坏之分“场强”越高,效果最好。那么,做核磁共振检查项目有哪些? 1、检查心脏大血管的病变、肺内纵膈的病变。腹部盆腔脏器的检查;胆道系统,泌尿系统等疾病,疾病的诊断明显优于CT。对关节软组织病变;对骨髓,骨的无菌性坏死十分敏感,病变的发现早于X线和CT。 2、检查神经系统的病变,包括肿瘤,梗塞,出血,变性,先天畸形,感染等内容,几乎成为确诊的手段。特别是脊髓脊椎的病变如脊椎的肿瘤,萎缩,变性,外伤椎间盘病变等是首选的检查方法。 3、检查颅脑、脊髓等疾病是当今最有效的影像诊断方法。可早期发现肿瘤、脑梗塞、脑出血、脑脓肿、脑囊虫症及先天性脑血管畸形,还可确定脑积水的种类及原因。磁共振在显示脊髓先天异常、脊髓空洞症及硬化症、推管瘢痕等均有独到之处。 4、显示间盘脱出、退行性病变等也是非常清晰,间盘脱出压迫神经根也可显示得一清二楚。磁共振可勾划轮廓清晰的心脏各房、室间隔,心瓣膜及心肌的图像。因此,先天性心脏病及各种心肌病均是磁共振检查的适应性。 5、用于检查子宫、卵巢、膀胱及前列腺的肿瘤,并可对癌肿进行分期,对肝脏、胰腺等的肿瘤也可清楚的显示出来。 以上就是有关“做核磁共振检查项目有哪些“的相关介绍。检查前要向医生提供全部病史、检查资料及所有的X线片、CT片、以前的磁共振片等。做磁共振检查要有思想准备,不要急躁、害怕,要听从医师的指导,耐心配合。 本文来源:https://www.docsj.com/doc/1511195234.html,/cgz/201408/20140827239779.shtml

磁共振检查技术规范

磁共振检查技术规范 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

磁共振检查技术规范 第一节磁共振检查的准备 【检查前准备】 1、认真核对磁共振成像检查申请单,了解病情,明确检查目的和要求。对检查目 的要求不清的申请单,应与临床申请医生核准确认。 2、确认患者没有禁忌症,并嘱患者认真阅读检查注意事项,按要求准备。 3、进入检查室之前,应除去患者身上携带的一切金属物品、磁性物质及电子器 件。 4、告知患者所需检查的时间,扫描过程中平静呼吸,不得随意运动,若有不便可 通过话筒与工作人员联系。 5、婴幼儿、焦躁不安及幽闭恐惧症患者,根据情况给予适当的镇静剂或麻醉药 物。一旦发生幽闭恐惧症应立即停止检查,让患者脱离磁共振检查室。 6、急症、危重症患者,必须做磁共振检查时,应有临床医师陪同。 【器械准备】 1、磁共振机,根据检查部位的需要选用相应的专用线圈或特殊的线圈。 2、磁共振对比剂,在必要时使用。 【禁忌症】 各部位检查禁忌症基本相同,因此禁忌症不在个别部位的扫描规范中叙述。 1、装有心电起搏器者。 2、使用带金属的各种用具而不能去除者。 3、术后体内留有金属夹子者,检查部位的临近体内有不能去除的金属植入物。

4、早期妊娠(3个月内)应避免磁共振扫描。 第二节颅脑磁共振检查 一、颅脑磁共振检查技术 【适应症】 1、颅脑外伤(尤其适用CT检查阴性者)。 2、脑血管疾病,脑梗塞、脑出血。 3、颅内占位性病变,良恶性肿瘤。 4、颅内压增高、脑积水、脑萎缩等。 5、颅内感染。 6、脑白质病。 7、颅骨的骨源性疾病。 【操作方法及程序】 1、平扫 (1)检查体位:患者仰卧在检查床上,取头先进,头置于线圈内,人体长轴与床面长轴一直,双手置于身体两侧或胸前。头颅正中矢状面尽可能与线圈纵轴保持一致,并垂直于床面。 (2)成像中心:眉间线位于线圈横轴中心,移动床面位置,使十字定位灯的纵横交点对准线圈纵、横轴中点,即以线圈中心为采集中心,锁定位置,并送至磁场中心。 (3)扫描方法: 1)定位成像:采用快速成像序列,同时做冠状位、矢状位、轴位三方向定位图。在 定位片上确定扫描基线、扫描方法和扫描范围。

MRI检查知情同意书

M R I检查知情同意书集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

医院医学影像 MRI检查知情同意书 患者姓名:性别:年龄: ID:联系电话: MRI检查是在一高磁场强度的环境中进行的,存在一定的安全隐患。 MRI检查潜在风险: □各类金属物体若进入了磁体间,如铁制的车、平车、担架、轮椅、氧气瓶、消毒灯、非抗磁性高压注射器、手机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属首饰等,均会吸入磁体造成严重的设备损害,甚至危及人身安全。 □扫描过程中被检查者皮肤若直接触碰磁体内壁及各种导线,有可能会导致灼伤. 、 □MRI检查时,由于射频脉冲的作用,噪声大,个别病人可能出现恐惧感,无法配合检查,导致检查失败。同时,检查时会让人体体温上升,高热患者慎做MRI检查,尤其高热小儿。 □婴儿检查前半小时不可过多喂奶,防止检查时溢乳导致窒息发生。 □装有电子置入物(如心脏起搏器)因射频场的干扰而发生动能紊乱甚至失灵;体内置入物(如支架)受磁场作用位置发生移位。 □除上述情况,在检查过程中有可能发生其它不能预料的意外情况,特别是对于重症患者、继往有心脑血管疾病的患者。 注意事项: 进入磁共振扫描室的所有人员,均需取下身上所携带的金属物品: □手机□磁卡□手表□硬币□钥匙□打火机□金属皮带 □金属项链□金属耳环□其他 若有MRI检查禁忌症者,禁做此项检查: □体内有金属植入物□铁磁性异物及心脏起搏器等微电脑控制维持生命的器具者□精神异常者□高热□幽闭症患者□危重病人呼吸循环不稳定者□其他 患者知情选择: □MRI检查是仪器对人体须检查部位间隔一定长度分层逐层扫描,获取组织器官信息,因而较小的病变可能没有采集到,因而有漏诊、误诊的可能; 护士已告知患者将要进行的MRI检查可能发生的并发症的风险: 患者签名:签名日期:年月日 如果患者无法签署知情同意书,请其授权的亲属在此签名: 患者授权亲属签名:与患者关系:签名日期:年月日 责任护士签名:签名日期:年月日

相关文档