文档视界 最新最全的文档下载
当前位置:文档视界 › 用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长
用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长

〔引课:〕

在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种:

在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢?

*****************************

迈克尔逊干涉仪

***************************** ***注意***

本实验只利用迈克尔逊干涉仪测量等倾干涉图像

〔正课:〕

实验目的与要求

迈克尔逊干涉仪的构造

迈克尔逊干涉仪的原理

迈克尔逊干涉仪的使用

实验原理

1.迈克尔逊干涉仪的构造

等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理

(1) 光路图

图30—2 迈克尔逊干涉仪光路图

光源S发出的光到达分光板

1

G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着

1

M前进,光束(2)经过

2

G后向着

2

M前进,这两束光分别在

1

M和2

M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算

1M 和2M ˊ平行时(1M ⊥

2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间

为空气,折射率n =1,故光程差 θδcos 2d =。

并且有:

θδcos 2d ==

??

?

?

?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…)

对光程差δ作进一步的分析:

图30—4 非定域等倾干涉

当d 一定时,δ之取决于入射角θ。

例如:在O 点处,θ=0,δ=2d 为最大值,中心处干涉条纹的级次k 最大,随着θ角的增大,干涉条纹的级次k 逐渐减小。

对于具有相同θ角的各点,干涉条纹相同,故称这样的干涉为等倾干涉,干涉条纹又称等倾角线。因此,等倾干涉条纹必然是以O 点为圆心的明暗相间的同心圆环。

当d 增大时,要保持某一干涉条纹的级次k 不变,必须使θcos 减小,即增大θ角,从而使得k 级条纹从中心向外移动,在屏E 上会看到干涉圆环一个个从中心向外“吐出”的现象,并且圆环条纹逐渐变密,变细。 当d 减小时,在屏E 上看到干涉圆环一个个从中心“吞入”的现象,并且圆环条纹逐渐变疏,变粗。

此,移动平

面镜1

M ,就会在观察屏E 上看到干涉圆环吞吐的现象,当

1

M 移动λ

/2的距离,即d 每改变

λ

/2的距离,就会在观察屏上看到有一个圆环条纹从中心“吞入”或“吐出”,也就是说,每当“吞入”或“吐出”一个圆环条纹,1M 就移动了半个波长,所以根据干涉圆环的吞吐就可以测量光源的波长,这也就是干涉仪测量长度或长度变化的理论依据。只要数出圆环“吞入”或“吐出”的数目N ,并且记录下1M 移动的距离Δd ,就可以计算出光源的波长,即:

Δd =N ·2λ ? λ=N

d

?2

1. 打开激光器,粗略调节迈克尔逊干涉仪与激光器大致处于同一水平高度,并使其大致垂直,让激光束通过分光板、补偿板(注:最好射到中间位置)垂直入射到平面镜2M 上.

2. 将平面镜1M 和2M 背后的倾度粗调螺钉置于中间位置,再调节干涉仪的水平调节螺母,使两平面镜反射的光点都处在激光器发射孔附近;

3. 用遮光罩遮住1M ,调节2M 背后的倾度粗调螺钉,使其反射的光点正好射回激光器的发射孔中

4. 把遮光罩换止2M ,调节1M 背后的倾度调节螺钉,使1M 反射的三个光点中间的一个(最亮)射回激光器的发射孔,即1M ⊥2M ;

5. 将扩束透镜放置在激光器与分光板之间的适当位置——

让透射光照射到分光板上,在观察屏E 的背面就可以观察到等倾干涉圆环条纹,这时的条纹可能不够圆或者中心偏移,再调节2M 的倾度微调螺丝,使条纹变圆、居中;

6. 转动大轮使1M 前后移动来改变d ,观察等倾圆环条纹的变化规律并记录,与大学物理中所学的理论进行比较;

7. 增大d ,使干涉圆环略细,转动小轮使中央亮斑最大,记下主尺、大轮、小轮的读数1d ,继续转动小轮,同时记下干涉环“吞入”或“吐出”的数目

N ,一般取N =50,每隔 50环记一次主尺、大轮、小轮的读数i d ,测9次; 8. 在利用等倾干涉条纹测定He-Ne 激光波长的基础上,转动手轮,使环形条纹粗而疏时即减小1M 和2M ′之间的距离,调节2M 的倾度微调螺丝, 让

1M 与2M ′有一个很小夹角,继续转动手轮使弯曲条纹往圆心方向移动,

在观察屏上就会出现等厚干涉条纹,再改变1M 和2M ′之间的距离,观察等厚干涉条纹的变化规律并与大学物理中的理论进行比较说明。

1 切勿用眼睛直视激光;

2 切勿用手或别的东西触摸各种镜的光学表面;

3 粗调螺钉事先放到中间位置,调节不可太紧,也勿旋出;

4 测量时手轮只能向一个方向转动,以免引起空回误差;

5 计数要准且读数应在中央亮斑最大时进行;

6 实验时切勿震动实验桌。

1当调节迈克尔逊干涉仪

1

M⊥2M时,也可以同时调节1M和2

M背后的倾度调节螺钉,先让使1M反射的三个光点中间的

一个(最亮)与2

M的反射光重合;再通过调节底角螺钉,让重合光点射入激光孔。

2

如果在观察屏上看不到干涉圆环,可将扩束透镜拿开,在观

察屏上观察,

1

M反射的三个光点中间的一个(最亮)与2

M的反射光点是否重合,如不重合,继续调节1M和2M背后

双棱镜干涉测钠光波长

北京航空航天大学基础物理实验 ------研究性实验 实验题目双棱镜干涉测钠光波长 一、摘要 法国科学家菲涅耳(Augustin J.Fresnel)在1826年进行的双棱镜实验证明了光的干涉现象的存在,它不借助光的衍射而形成分波面干涉,用毫米级的测量得到纳米级的精度,其物理思想、实验方法与测量技巧至今仍然值得我们学习。 二、实验原理 如果两列频率相同的光波沿着几乎相同的方向传播,并且这两列光波的位相差不随时间而变化,那么在两列光波相交的区域内,光强的分布不是均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉。 菲涅尔镜双棱镜可以看作是由两块底面相接、棱角很小的直角棱镜合成。若置单色光源S于双棱镜的正前方,则从S射来的光束通过双棱镜的折射后,变成两束相互重叠的光,这两束光放佛是从光源的两个虚像S1 和S2是两个相干光源,所以若在两

束光想重叠的区域内放置一屏,即可观察到明暗相间的干涉条纹。 菲涅耳利用如图1所示装置,获得了双光束的干涉现象.图中双棱镜B 是一个分割波前的分束器,它的外形结构如图2所示.将一块平玻璃板的上表面加工成两楔形板,端面与棱脊垂直,楔角较小(一般小于1°). 当狭缝S 发出的光波投射到双棱镜B 上时,借助棱镜界面的两次折射,其波前便分割成两部分,形成沿不同方向传播的两束相干柱波.通过双棱镜观察这两束光,就好像它们是由虚光源1S 和2S 发出的一样,故在两束光相互交叠区域内产生干涉.如果狭缝的宽度较小且双棱镜的棱脊和光源狭缝平行,便可在光屏Q 上观察到平行于狭缝的等间距干涉条纹。 双棱镜的干涉条纹图 设d 代表两虚光源1S 和2S 间的距离,D 为虚光源所在的平面(近似地在光源狭缝S 的平面内)至观察屏Q 的距离,且D d <<,任意两条相邻的亮(或暗)条纹间的距离为x ?,则实验所用光波波长λ可由下式表示:(根据形成明、暗条纹的条件,当光 程差为半波长的偶数倍时产生明条纹,当光程差为半波长的奇数倍时产生暗条纹) (1) 上式表明,只要测出d 、D 和x ?,就可算出光波波长。 三、实验仪器 双棱镜、可调狭缝、凸透镜、观察屏、光具座、测微目镜、钠光灯、白屏。 1、测微目镜简介 测微目镜(又名测微头)一般作为光学精密计量仪器的附件,也可以单独使用,主要用于测量微小长度。如图3()a 所示,测微目镜主要由目镜、分划板、读数鼓轮组 x D d ?=λ

浅析如何选取激光功率计和能量计

浅析如何选取激光功率计和能量计 如何选取激光功率 激光功率和能量计主要用来测量光源的输出。无论光发射是来源于弱光源(如荧光),还是来源于高能量的脉冲激光器,功率和能量计都是实验室、生产部门或是工作现场等多种应用环境中必不可少的工具。 虽然功率计和能量计是分别提供的,但随着能够适用大量不同类型的光学传感器的通用型仪表盘或显示装置的发展,它们也被合起来称作单独的一类仪器——功率和能量计,或PEM。仪器所采用的光学传感器的类型,决定了其能测量光功率还是光能量,通常单位分别瓦特(W)或焦耳(J)。具体来讲,功率计能够测量连续波(CW)或者重复脉冲光源,其所使用的传感器通常是热电堆或光电二极管。能量计则通常用于测量脉冲激光,即单脉冲或者重复脉冲光源,其所使用的传感器包括热释电、热电堆,或者带有专门为测量脉冲光源而设计的电路的光电二极管。 系统配置 一些制造商将功率或能量计分为具有控制和示值读数功能的测量部分(或仪表盘)和传感器部分(也称为探测器或探头),两者结合在一起就组成一套“测量系统”。另一些厂商将这两者统称为测量仪。无论哪种分类方式,传感器都存储有校准信息,仪表盘则测量传感器的输出电流,并参考校准表来输出数据。 在某些配置中,仪表盘会作为探测器与用户之间的接口,通过RS-232或者USB连接方式直接向电脑传输测量数据,在这种情况下,显示装置就不再是必需的了。测量数据可能包括功率、差值、总和、线性、对数值和几个通道同时衰减的曲线。大部分PEM仪表盘是数字式的,但是对于功率只有小幅波动的应用而言,模拟式测试仪就足以胜任了。 传感器的选择比较复杂。目前市场上应用的三种主要传感器类型有:光电二极管、热传感器和热释电传感器。光电二极管传感器由光电二极管和ND)滤光片组成,以确保入射到探测器上的功率能够保证传感器线性工作,其中光电二极管通常选用硅(Si)、锗(Ge)或铟砷化镓等材料,每种光电二极管具有不同的峰值波长和响应范围。每个光电二极管在不同的波长处具有不同的响应度。响应度的单位是A/W,代表了传感器将入射光转换为电流的效率。具有快速响应时间的传感器对波长敏感,因此最适用于测量低功率激光。 热传感器通过将入射光转换成热能来测量功率或能量。热传感器在186nm~10.6μm的波长范围内具有平坦的光谱响应,因此其适用于多波长或者非单色光的测量。光电二极管也可以测量紫外(UV)到红外(IR)波段的波长,但是其在不同波长处具有不同的响应度,因此必须将激光波长输入测量仪以获得正确的读数。在1800 nm或更长的波长处,热探测器通常是唯一的选择。热传感器可以承受高功率激光,但是如果功率变化范围较大的话,则需要几秒钟才能达到平衡。由于不像光电二极管那样灵敏,因此热传感器不适合用于低功率测量。 热释电传感器通过将光脉冲能量转换成电压信号来测量脉冲能量。热释电传感器能响应较宽的波长范围,但是其响应曲线不如热传感器那么平坦。热释电传感器只能测量脉冲光源,并有最小带宽要求以使传感器能够“看到”脉冲。 目前市场上的许多功率和能量计都兼容这三类传感器(见图1)。如果将通用型仪表盘和功率传感器一起使用,这套装置就是功率计;如果将通用型仪表盘和能量传感器一起使用,这套装置就是能量计。 图 1:Thorlabs公司为自由空间和光纤应用设计的PM100D功率计,可以兼容超过25种不同的功率和能量传感器。根据所选取的传感器,其可测量的光功率范围为100pW~250W,可测量的能量范围为3μJ~15J。当与新型超紧凑的S150C系列光纤传感器一起使用时,PM100D

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

实验二 用双棱镜干涉测钠光波长(05)

实验二用双棱镜干涉测钠光波长 [实验目的] 1、观察双棱镜产生的双光束干涉现象,进一步理解产生干涉的条件; 2、学会用双棱镜测定光波波长。 [实验仪器] 双棱镜,可调狭缝,会聚透镜(f=20cm,Φ=35mm两片),测微目镜(JX8),光具座(JZ-2),滑块(5块)、滑块支架(5个)、白屏,钠光灯(Gp20Na)。 [实验原理] 如果两列频率相同的光波沿着几乎相同的方向传播,并且这两列光波的位相差不随时间而变化,那么在两列光波相交的区域内,光强的分布不是均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉。 菲涅耳利用图(一)所示装置,获得了双光束的干涉现象。图中双棱镜AB是一个分割波前的分束器,它的外形结构如图(二)所示,将一块平玻璃板的上表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10)。从单色光源M 发出的光波经透镜L会聚于狭缝S, 使S成为具有较大亮度的线状光源。 当狭缝S发出的光波投射到双棱镜 AB上时,经折射后,其波前便分割 成两部分,形成沿不同方向传播的 两束相干柱波。通过双棱镜观察这 两束光,就好像它们是由虚光源S1 和S2发出的一样,故在两束光相互 交叠区域P1P2内产生干涉。如果狭缝的宽度较小且双棱镜的棱脊和光源狭缝平行,便可在白屏P上观察到平行于狭缝的等间距干涉条纹。

设d '代表两虚光源S 1和S 2间的距离,d 为虚光源所在的平面(近似地在光源狭缝S 的平面内)至观察屏P 的距离,且d '<<d ,干涉条纹宽度为x ?,则实验所用光波波长λ可由下式表示: x d d ?= ' λ…………………………① 上式表明,只要测出d '、d 和x ?,就可算出光波波长λ。这是一种光波波长的绝 对测量方法,通过使用简单的米尺和测微目镜,进行毫米量级的长度测量,便可推算出微米量级的光波波长。 由于干涉条纹宽度x ?很小,必须使用测微目镜进行测量。两虚光源间的距离d ',可用一已知焦距为f '的会聚透镜L , 置于双棱镜与测微目镜之间,如图(三),由透镜 两次成像法求得。只要使测目镜到狭缝的距离d >4f ,,,前后移动透镜,就可以在L , 的两个不同位置上从测微目镜中看到两光源S 1和S 2,其中之一组为放大的实像,另一组为缩小的实像。如果分别测得二放大像的间距d 1和二缩小像的间距d 2,则根据下式: 21'd d d =…………………………② 即可求得两虚光源之间的距离d , 。 [实验内容] 1、 调节共轴 (1) 将单色光源M 、会聚透镜L 、狭缝S 、双棱镜AB 与测微目镜P ,按图 (一)所示次序放置在光具座上,用目视粗略地调整它们中心等高、共轴,并使双棱镜的底面与系统的光轴垂直,棱脊和狭缝的取向大体平行。 (2) 点亮光源M ,通过透镜照亮狭缝S ,用手执白屏在双棱镜后面检查: 经双棱镜折射后的光束,有否叠加区P 1P 2(应更亮些),叠加区能否进入测微目镜,当白屏移动时叠加区是否逐渐向左、右或上下偏移根据观测到的现象,作出判断,再进行必要的调节(共轴)。 2、 调节干涉条纹 (1) 减小狭缝宽度(以提高光源的空间相干性),一般情况下(在近处)可 从测微目镜观察到不太清晰的干涉条纹。若远一点观察不到干涉条纹,

用双缝干涉实验测波长

用双缝干涉实验测光的波长教学设计 一、设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 二、教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 三、重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 第 1 页共6 页

四、教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 光源滤光片单缝双缝遮光筒屏 图—1 双缝干涉仪 2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm、长约1m的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 图—2 白光的双缝干涉图样 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 第 2 页共6 页 图—3 单色光的双缝干涉图样

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

用双棱镜干涉测光波波长 (2)

用双棱镜干涉测光波波长 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【仪器和用具】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉, 菲涅耳利用图1所示的装置,获得了双光束的干涉现象,图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较 小(一般小于10 ).从单色光源发出的光经透镜L 会聚于狭缝S ,使成S 为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源1S 和2S 发出的一样,满足相干光源条件,因此在两束光的交叠区域 21P P 内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹.

图1双棱镜干涉实验光路 图2 双棱镜结构 设两虚光源1S 和2S 之间的距离为d ,虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为D ,且D d <<,干涉条纹间距为x ?,则实验所用光源的波长λ为 x D d ?= λ (1) 因此,只要测出d 、D 和x ?,就可用(1)式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源0S ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源0S ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区21P P (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移? 根据观测到的现象,作出判断,进行必要的调节使之共轴. 2.调节干涉条纹 (1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜A B ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹. (2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,1S 和2S 间距也将减小,这对d 的测量不利.) 3.测量与计算 (1)用测微目镜测量干涉条纹的间距如,为了提高测量精度,可测出n 条(10~20条)干涉条纹的间距x ,除以n ,即得x ?.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数,重复测量几次,求出x ?. (2)用光具座支架中心间距测量狭缝至观察屏的距离 D.由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免

用双缝干涉测量光的波长(含答案)

实验十五用双缝干涉测量光的波长 一、实验目的 1.理解双缝干涉的原理,能安装和调试仪器. 2.观察入射光分别为白光和单色光时双缝干涉的图样. 3.掌握利用公式Δx=l d λ测波长的方法. 二、实验原理 单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间的距离Δx与双缝间的距离d、双缝到屏的距离l、单色光的波长λ之间满足λ=d·Δx/l. 三、实验器材 双缝干涉仪,即:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺. 附:测量头的构造及使用 如图1甲所示,测量头由分划板、目镜、手轮等构成,转动手轮,分划板会向左右移动,测量时,应使分划板的中心刻度对齐条纹的中心,如图乙,记下此时手轮上的读数.然后转动测量头,使分划板中心刻线与另一条纹的中心对齐,再次记下手轮上的刻度.两次读数之差就表示这两个亮条纹间的距离. 图1 实际测量时,要测出n条亮条纹(暗条纹)的宽度,设为a,那么Δx= a n-1 . 四、实验步骤 1.安装仪器 (1)将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图2所示. 图2 (2)接好光源,打开开关,使白炽灯正常发光.调节各部件的高度,使光源灯丝发出的光能沿 轴线到达光屏.

(3)安装单缝和双缝,中心位于遮光筒的轴线上,使双缝和单缝相互平行. 2.观察与记录 (1)调整单缝与双缝间距为几厘米时,观察白光的干涉条纹. (2)在单缝和光源间放上滤光片,观察单色光的干涉条纹. (3)调节测量头,使分划板中心刻度线对齐第1条亮条纹的中心,记下手轮上的读数a1; 转动手轮,使分划板向一侧移动,当分划板中心刻度线与第n条相邻的亮条纹中心对齐时,记下手轮上的刻度数a2,则相邻两条纹间的距离Δx=\f(|a1-a2|,n-1). (4)换用不同的滤光片,测量其他色光的波长. 3.数据处理 用刻度尺测量出双缝到光屏间的距离l,由公式λ=错误!Δx计算波长.重复测量、计算,求出波长的平均值. 五、误差分析 测定单色光的波长,其误差主要由测量引起,条纹间距Δx测量不准,或双缝到屏的距离测不准都会引起误差,但都属于偶然误差,可采用多次测量取平均值的方法来减小误差. 六、注意事项 1.调节双缝干涉仪时,要注意调整光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮. 2.放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上. 3.调节测量头时,应使分划板中心刻线和条纹的中心对齐,记清此时手轮上的读数,转动手轮, 使分划板中心刻线和另一条纹的中心对齐,记下此时手轮上的读数,两次读数之差就表示这两条纹间的距离. 4.不要直接测Δx,要测多个亮条纹的间距再计算得Δx,这样可以减小误差. 5.白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层. 记忆口诀 亮光源、滤光片,单缝双缝成一线; 遮光筒、测量头,中间有屏把像留; 单缝双缝平行放,共轴调整不能忘; 分划线、亮条纹,对齐平行测得准; n条亮纹读尺数,相除可得邻间距; 缝距筒长记分明,波长公式要记清. 例1在“用双缝干涉测光的波长”实验中:

激光能量计产品设备说明

激光能量计产品说明 一、概述 激光系统在军事领域的应用广泛,大量装备的以激光测距机和激光测照器为主,用于战场光电侦察和制导。其中激光测距机可作为单兵系统、车载、舰载、机载设备存在,激光测照器在单兵及机载光电吊舱中普遍装备,应用于激光精确打击军事行动的激光半主动制导。 随着激光系统在军事装备中的广泛应用,仅以陆航的需求为例,其未来的对激光能量计需求在1-2千套之间,需求巨大,但是从目前国内的研究产品现状来看,在技术指标上不能满足该类型军事装备的保障需求,产品的技术水平相对落后,目前国内科研院所及部队装备的大多为国外的产品,存在价格高、种类多、使用维护复杂,且专业性强,对于操作者要求较高。 本系统研制的激光能量计的设计满足国军标对军用激光系统测试的技术要求,主要功能可用于对军用激光测距机、激光照射器的主要技术参数指标测试,可满足军方对于该系统的维护和战时保障任务,适用于全军各兵种多数通用激光光电设备。 该产品设计主要针对激光测距机和激光照射器大口径宽光束输出的特点,采用了与国外同类产品相同的大口径能量探测的技术原理及智能仪器设计,自主研发,通过大量的测试及技术验证表明,技术水平达到同类国外产品的水平,使用操作简单,易于维护,可完全替代进口设备。 该产品根据用户不同实用需求,采取两种结构模式:

1、一体式设计如下图示 图1:红光准直 图2:激光测试 如图1所示,激光参数测试仪在测试过程中,通过红光指示表示激光参数测试仪探测器和激光系统的光学中心位置以达到测试光路准直调试的目的。 如图2示光路调试完成,打开探测器面板,通过侧面触摸屏完成激光参数测试仪设置,开启激光系统,激光参数测试仪自动完成参数测试。 2、分离式设计如下图示

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

用迈克尔逊干涉仪测水的折射率

物理实验设计性实验 实验题目:用迈克尔逊干涉仪测水的折射率班级: 实验日期:年月日

用迈克尔逊干涉仪测量液体的折射率 实验课题及任务 《用迈克尔逊干涉仪测量液体的折射率》实验课题任务是:根据液体的折射率比空气大,当一个光路中加有液体时,其光程差'l 会发生改变,根据这一的光学现象和给定的仪器,设计出实验方案,测定水的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量液体的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶用最小二乘法求出水的折射率n。 ⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 改装过迈克尔逊干涉仪、专用水槽及配件、激光器。 学时分配 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。

原始数据记录:实验台号:

用迈克尔逊干涉仪测水的折射率 实验题目: 用迈克尔逊干涉仪测水的折射率 总体设计方案思路或说明: 本实验介绍了用迈克逊干涉仪测量液体折射率的方法,原理简单。在干涉仪导轨上平放一方形玻璃容器,内装待测液体,动镜铅垂地浸没在液体中。通过测出动镜在液体内的移动量及其相应的干涉条纹变化数,就能计算液体的折射率,有较高的测量精度。本实验分析了干涉仪上分光板的反射光通过空气、玻璃、液体,由反射镜反射后出现的多个反射光点,只有通过对这些反射光点的调节,才能得出干涉条纹并符合计算公式的要求。 实验目的: 1、了解改装过的迈克尔逊干涉仪的原理,结构及调整方法。 2 、学会用改装过的迈克尔逊干涉仪测量水的折射率。 实验仪器: 迈克尔逊干涉仪、专用水槽及配件、激光器。 实验原理: 1、仪器介绍 图中1M 和2M 为两平面反射镜,1M 可在精密导轨上前后移动,而2M 是固定的。分光板1G 是一块平行平面板,板的第二面(近补偿板2G )涂以半反射膜,它和反射镜1M 图1 成45°角。2G 是一块补尝板,其厚度及折 射率1G 完全相同,且与1G 完全相同,它的作用是使光束(2)和光束(1)一样以相同的入射状态,分别经过厚度和折射率相同的玻璃板三次。从而1G 和 2P 对两束光的折射影响抵消,白光实验时,光路(1)分光镜色散的影响可消除。单色光实验时,条纹形

双棱镜干涉测光波波长

/d U u d x D d ?=?=,λ,UD x u d x D d ?=?=/λ222/22)()()()()(/v u u u d u x u D u u v u d x D +++?+=?λλ双棱镜干涉测光波波长 [预习思考题] 1、公式 中各量的物理意义是什么?实验中需测哪些物理量? 答:二式中各量的物理意义:λ是待测光波长;d 是狭缝的两个虚像之间的距离;D 为狭缝到观察屏的距离;ΔX 为干涉条纹间距;U 为物距(狭缝到透镜的距离);υ为像距(透镜到测微目镜的距离。目镜视场中有d 的像); d /为虚光源间距d 的像。 实验中需要测量的量有:D 、ΔX 、U 、υ、d 。 2、导出λ的不确定度传播式。 解:对上式取对数,求偏导,作方均根处理后即可得到: 3、导轨上的光学器件都等高共轴后,仍看不到干涉条纹,可能的原因主要有哪两个? 答:① 狭缝过宽;② 双棱镜棱脊未与狭缝平行。 4、使用测微目镜时应注意什么? 答:① 消除目的物与叉丝之间的视差(二者处于同一平面); ② 消除空回误差(鼓轮应沿一个方向转动,中途不能反转); ③ 叉丝的移动范围必须控制在毫米标度线所示的区域内(视场中的

,d D λ,x D d ?=λ0~8mm 以内),以防损坏读数机构。 [实验后思考题] 1、为什么双棱镜的折射角α必须很小? 答:双棱镜的折射角α如过大,形成的虚光源的像就大而散,导致干涉 条纹不清晰;另外,干涉条纹间距ΔX= 若折射角α增大,虚光源间距d 就随之增大, ΔX 就会变小,ΔX 太小则无法分辨,故双棱镜折射角α一般为0.5°~1°。 2、根据实际情况,说明狭缝宽度与干涉效果的关系。 答:狭缝过宽,则干涉条纹不清晰;狭缝过窄,又会因光通量太少使视场过暗,干涉条纹亮处不亮。 3、移动双棱镜,增大或缩小双棱镜与狭缝的间距、干涉条纹的疏密将如何变化?为什么? 答:当狭缝和测微目镜都固定后,若增大双棱镜与狭缝的距离,干涉条 纹将变密,反之变稀。根据式 λ和D 不变,当双棱镜移向测微目镜时,d 将变大,所以ΔX 变小。

用双缝干涉测光的波长

十八 用双缝干涉测光的波长 (一)目的 了解光波产生稳定的干涉现象的条件;观察双缝干涉图样;测定单色光的波长。 (二)原理 据双缝干涉条纹间距λd L x =?得,波长x L d ??=λ。已知双缝间距d ,再测出双缝到屏的距离L 和条纹间距Δx ,就可以求得光波的波长。 (三)器材 实验装置采用双缝干涉仪,它由各部分光学元件在光具座上组成,如图实18-1所示,各部分元件包括光源、滤光片、单缝、双缝、遮光筒、光屏。 (四)步骤 1.将光源和遮光筒安装在光具座上,调整光源的位置,使光源发出的光能平行地进入遮光筒并照亮光屏. 2.放置单缝和双缝,使缝相互平行,调整各部件的间距,观察白光的双缝干涉图样. 3.在光源和单缝间放置滤光片,使单一颜色的光通过后观察单色光的双缝干涉图样. 4.用米尺测出双缝到光屏的距离L,用测量头测出相邻的两条亮(或暗)条纹间的距离Δx. 5.利用表达式x L d ??= λ,求单色光的波长. 6.换用不同颜色的滤光片,观察干涉图样的异同,并求出相应的波长. (五)注意事项 1.放置单缝和双缝时,必须使缝平行,并且双缝和单缝间的距离约为5~10cm. 2.要保证光源、滤光片、单缝、双缝、遮光筒和光屏的中心在同一条轴线上。 3.测量头的中心刻线要对应着亮(或暗)条纹的中心. 4.为减小实验误差,先测出n 条亮(或暗)条纹中心间的距离a,则相邻两条亮(或暗)条纹间的距离1 -=?n a x . (六)例题 例1.(1)如图实18-2所示,在“用双缝干涉测光的波长”实验中,光具座上放 光源 滤光片 单缝 双缝 遮光筒 屏 图实18-1 图实18-2

《用迈克尔逊干涉仪测量玻璃折射率》

评分:大学物理实验设计性实验实验报告 实验题目:用迈克尔逊干涉仪测量玻璃的折射率 班级:电信06-1 姓名:林清伟学号:21 指导教师:方运良 茂名学院技术物理系大学物理实验室 实验日期:2007年11月29 日

《用迈克尔逊干涉仪测玻璃片折射率》实验提要 实验课题及任务 《用迈克尔逊干涉仪测玻璃片厚度》实验课题任务是:根据玻璃的折射率比空气大,当玻璃片加到一个光路中时,必产生一光程差l ?,这个光程差会造成中央条纹会发生位移的现象,根据这一特定的光学现象和给定的仪器,设计出实验方案,测定玻璃的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测玻璃片的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按撰写科学论文的要求写出完整的实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 测量5组数据,测量玻璃的折射率n 。 ⑷ 应该用什么方法处理数据,说明原因。 ⑸ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 有关提示 若用白光作光源,在一般情况下,不出现干涉条纹。进一步分析还可看出,在2M 、1'M 两面相交时,交线上0=d ,但是由于1、2两束光在半反射膜面上的反射情况不同,引起不同的附加光程差,故各种波长的光在交线附近可能有不同的光程差。因此,用白光作光源时,在2M 、1'M ,两面的交线附近的中央条纹可能是白色明条纹,也可能是暗条纹。在它的两旁还大致对称的有几条彩色的

用迈克尔逊干涉仪测杨氏模量

大学物理实验设计性实验 实 验 报 告 实验题目: 用迈克尔逊干涉仪测杨氏模量 茂名学院 物理系 大学物理实验室 实验日期:200 年 月 日 实验提要 班 级: 姓 名: 学号: 指导教师: 方运良

实验课题及任务 《用迈克尔逊干涉仪测量金属丝的杨氏模量》实验课题任务是:利用迈克尔逊干涉仪能精密测量微小变量的特点,测量出钢丝在拉力作用下的微小伸长量,用特制的测力计测量拉力大小。设计实验方案,测定钢丝的杨氏模量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量金属丝的杨氏模量》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶用最小二乘法求出杨氏模量。 ⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 迈克尔逊干涉仪、测力计、激光器。 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。 参考文献 (1)金正宇一个经典力学实验测量方法的改进——霍尔传感器测杨氏模量 [J] 实验室研究与探索,2000 (2)张帮利用迈克耳孙干涉原理测杨氏模量 [J] 大学物理实验2007 (3)陈水波,乐雄军测量杨氏模量的智能光电系统【J】物理实验,2001 原始数据 实验日期:12月16日

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

13.3实验:用双缝干涉实验测光的波长教案

用双缝干涉实验测光的波长 ㈠设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 ㈡教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 ㈢重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 ㈣教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 图—1 双缝干涉仪

2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm 、长约1m 的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm ,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 单色光的双缝干涉图样:明暗相间、等距分布。 3. 猜测: 相邻的两条明(暗)条纹的间距△x 与哪些因素有关? 图—3 单色光的双缝干涉图样 图—2 白光的双缝干涉图样 S 1S 2图—4 实验示意图

相关文档
相关文档 最新文档