文档视界 最新最全的文档下载
当前位置:文档视界 › 养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施
养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

酸碱度(即pH值) 对鱼的影响

池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。

鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。但在pH值6~9时,仍属于安全范围。不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。

鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。

pH值对鱼类繁殖也有影响。pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。若pH值在6.4以下或9.4以上,则不能孵出鱼苗。若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。若pH 值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。

由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。

水的硬度对养鱼的影响

硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响?

水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。

因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占15%。

硬水又依加热之后是否可以发生矿物质沉淀,而分为“暂时硬水”和“永

久硬水”两种。其中的部分金属离子可因加热而析出,故称为暂时硬水,主要是指那些含有酸式碳酸盐(例如,碳酸氢钙、碳酸氢镁、碳酸氢锰…等);所谓永久硬水,是指含有硫酸盐、氯化物、硝酸盐(例如硫酸锰、硝酸镁、氯化钙…等)的水,不因加热而析出,故称为永久硬水。可见永久硬水或暂时硬水主要是针对酸根阴离子而言的。

软水和硬水的判断,通常必须使用化学分析方法才能决定,无法用肉眼直接判断。由于硬度离子的碳酸盐都是沉淀的,所以在道统化学上的定量分析中,只有使用碳酸盐法才能使所有的硬度离子都被沉淀出来。硬度也因此通常以碳酸盐表示,又因钙硬度占总硬度中绝大部分,因此在国际上特别以碳酸钙(CaCO3)的量(ppm)来表示硬度。但使用碳酸钙(CaCO3)的量来表示硬度,在道统化学上的定量分析中,其结果可能会有一些操作上的误差,如果能再经过进一步的焙烧处理,让碳酸钙(CaCO3)变成氧化钙(CaO),就可以更准确获得分析结果,例如,德国就是利用氧化钙(CaO)的量(°dH),来描述硬度

GH是指水体中所有硬度离子︰即钙、镁、铁、锰、铜离子等的浓度,主要考量的是金属阳离子;与之对应的考量酸根离子中主要是“暂时硬水”的酸式碳酸根(HCO3-)的浓度值,即称为KH值。

硬度对水草的影响表现下︰

GH︰硬度离子中的钙及镁离子是水草的必要养分(次要营养元素),铁、锰、铜等离子也是微量营养元素,由此看来,硬度对水草养分的获得,应该具有正面的助益;但水体中的各种养分如果存在比例不均衡,会发生相互拮抗作用,已知钙有阻止水草对水分之吸收而有利于养分吸收之作用,

适与钾之作用相反,故钙与钾必须要有适当比例,否则钙与钾之间必会发生拮抗作用,让水草只能吸收钙或钾,不能吸收钾或钙,对水草的生长一定有极不良的后遗症。硬度对水草的影响,主要是建立在养分相互之间的拮抗作用,尤其是钙与钾之间的拮抗作用之上。水草无法生活在GH=0的水中,也不可以生活在硬度极高的水中,所以GH是水草育成的基本条件,一般以GH介于软水(5~8°dH)至适度硬水(9~12°dH)较为适当。

KH︰作为碳酸根或重碳酸根(HCO3-)的浓度值,不是水草育成的条件本身对水草生长无太大关係,但它会影响水体的pH值,以及当水草缺乏CO2来源时,供作光合作用所需要的无机碳源,对水草的育成有密切的关係,因此,水草可以生活在KH=0的水中(但必须输入CO2及预防pH值过低),也可以生活在KH=25°KH以上的水中(但必须预防pH值过高),不过一般以4-10°KH最适当,因为在这范围之内,水体的pH值较为稳定,同时水体也能涵容适当的无机碳源供水草进行光合作用之用

综上所述我们可人为地将水的硬度分成︰强软水︰德国硬度0~4°dH之水,相当于碳酸盐硬度约0~89ppm之水;软水︰德国硬度5~8°dH之水,相当于碳酸盐硬度约90~159ppm之水;适度硬水︰德国硬度9~12°dH之水,相当于碳酸盐硬度约160~229ppm之水;中硬水︰德国硬度13~18°dH之水,相当于碳酸盐硬度约230~339ppm之水;硬水︰德国硬度19~30°dH之水,相当于碳酸盐硬度约340~534ppm之水;强硬水(very hard water)︰德国硬度30°dH以上之水,相当于碳酸盐硬度535ppm以上之水。最适当,因为在这范围之内,水体的pH值较为稳定,同时水体也能涵容适当的无机碳源供水草进行光合作用之用

养殖水体中氨氮对鱼的危害和解决技术措施

养殖水体中的游离氮和离子铵被合称为氨氮,其来源主要是饲料、肥料、水生物排泄以及注入的其它水体。氨氮对养殖鱼有明显的中毒致死的危害。我们大多数养殖鱼类对氨氮都十分敏感,如氨氮浓度为0.099~0.455mg/L就会对草鱼生长产生抑制,而水质国标规定氨氮小于0.5mg/L,氨氮在国标规定水平以下就可能对鱼造成危害了。

科技工作者经研究指出,氨氮中毒主要危害主要为:一是氨氮增高抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力;二是氨氮具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡;三是引起鳃表皮细胞损伤而使鱼的免疫力降低。

水体氨氮增高会引发鱼类氨氮急性中毒或氨氮慢性中毒现象。

鱼类氨氮急性中毒的症状:

1.鱼群出现挣扎、游窜现象,并时而出现下沉、侧卧、痉挛等症状。

2.呼吸急促,鱼口时而大张不能速度闭合。

3.鳃盖部分张开,鳃丝呈紫黑色,有时出现流血现象。

4.鳍条舒展,基部出血。

5.体色变浅,体表粘液增多。

急性中毒时能能造成鱼类大批死亡。

鱼类氨氮慢性中毒的症状:

1.鱼摄食量下降、时间短,或摄食时一会便散开了,在四周漂游喝料

沫;

2.遇到阴雨天,上层鱼,如鲢鱼浮头,长时间浮在水面上,底栖鱼,如鲤鱼吃食逐渐减少。

溶氧下降,富营养化,PH值、温度升高,都会引起氨氮增加,加重水体对鱼的毒性。如大量使用高蛋白饲料的精养塘,本来水体中氮含量就很高,受环境因素影响造成浮游植物大面积死亡,水体中的氨氮浓度将会突然升高。

氨氮中毒需要综合防治,主要有:

1.提高饲料质量,降低饲料系数、减少残饵量减少养殖鱼的氮排泄量。

2.严格防控生活、工业下游的“富氮”水体侵入养殖塘,适当种植浮萍,凤眼莲和水葫芦等水生植物,控制和降低富营养化程度。

3.改善水质,增加底层溶氧合理使用增氧机,加强上下对流;经常清淤、换水、减少水体中浮游生物和有机物数量都增加水体溶氧;使用化学增氧剂,精养塘选用在水中分解缓慢的过氧化钙和过硫酸铵,对改善水质尤其是底层水质效果更加良好。水体溶氧尤其是塘底溶氧充足,可使水体有毒的氨氮被消除,保持水质的pH值稳定。

4.合理施肥。精养塘应少施效果慢、耗氧大的有机肥,高温季节要多施磷肥。

5.使用水质改良剂。精养塘氨氮中毒后风险高、损失大,最好能定期使用水质改良剂,特别是在高温季节。

6.氨氮中毒的救治。先可用盐酸或醋酸调节水体pH值,pH值低于7.0时可解除氨氮毒性,后使用沸石粉、麦饭石、膨润土、活性炭等都具有吸

附作用的矿物质、减少或去除水体中的氨氮含量(每亩200~300kg/1.5米水深),进行底层水体置换,抽去底层老水加注新水。

预防优于救治,养殖人员要密切观察水质、浮游植物、鱼类活动的变化,发现不良苗头及时处置,就能切实控制和减少氨氮中毒的风险。

在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4+、NH2-和NO3-形式存在的氮才能被植物所利用。水体中其它形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。

一、水体氮的来源

鱼池中施入大量畜禽粪肥,分解产生无机氮;注入含有大量氮化合物的生活和工业棍合水;水生生物和鱼类的代谢产物中含有氮。

池塘中氮主要来源于肥料和饲料。进入水体中的氮一般以氨的形式存在。这些氮来源于鱼鳃排泄物和细菌的分解作用。据研究,饲料中的氮有60%~70%被排泄到水体中,因此水产养殖生态中总氮浓度与投饲率及饲料蛋白含量有直接关系,在精养池中经常会出现对鱼类有害的“富氮”。

二、氨氮中毒的机理

水体氨氮增加会抑制鱼类自身氨的排泄,使血液和组织中氨的浓度升高,降低血液载氧能力,血液C02浓度升高。

NH3不带电,具有较高的脂溶性,很容易透过细胞膜直接引起鱼类中毒,使鱼群出现呼吸困难,分泌物增多并发生衰竭死亡。NH3会引起鳃表

皮细胞损伤而使鱼的免疫力降低。研究表明:鳜鱼血清碱性磷酸酶(AKP)活性和分子氨浓度呈抛物线变化关系,鲫鱼血清溶菌酶(LSZ).活性随分子氨浓度递增而下降。保持鲫鱼AKP和LSZ活力的NH3临界值为0.70毫克/升(72小时)、0.56毫克/升(96小时),而保持鳜鱼AKP活力的NH3临界值为0.143毫克/升(96小时)。

三、水体中“富氮”对鱼的危害

水体中对鱼有危害作用的主要物质是氨氮和亚硝酸盐,我国水质标准规定氨氮小于0.5毫克/升,亚硝酸盐小于0.2毫克/升。

1.水体氨氮对鱼类毒性

氨氮由NH4+和NH3两部分组成,其中NH3对鱼类有毒性,NH4+对鱼类无毒性。两者在氨氮中所占百分比受pH值、温度、盐度等因素决定。pH值、温度、盐度升高,都会引起氨氮中NH3比例增加,加重水体对负的毒性。

NH3对鲢、鳙鱼苗24小时半致死浓度分别是1.106毫克/升和0.559毫克/升,随着鱼体的生长,氨的致死浓度也逐渐增大。对草鱼生长有抑制作用的NH:3浓度为0.099—0.455毫克/升,草鱼种最大允许NH3浓度为0.054—0.099毫克/升。杂交罗非鱼的最大允许NH3浓度为

0.035—0.171毫克/升。NH3浓度超过0.66毫克/升时就会对鲤鱼种产生毒性作用。一般而言,同一鱼类的鱼种比成鱼对氨气耐受力弱。不同鱼类对氨氮的耐受力也不同,麦穗鱼耐受力最差,胡子鲶相对较强,因此经常排放“氨水”的河段中以鲶、鳅科等无鳞鱼为优势鱼群。

2.氨氮急性中毒的症状

(1)鱼群出现挣扎、游窜现象,并时而出现下沉、侧卧、痉挛等症状。

(2)呼吸急促,口时而大张。

(3)鳃盖部分张开,鳃丝呈紫黑色,有时出现流血现象。

(4)鳍条舒展,基部出血。

(5)体色变浅,体表粘液增多。

四、水体中氨氮的防治与解决

1.降低饲料系数

饲料是水体氮的主要来源,通过提高饲料质量,降低饲料系数来减少鱼类氮排泄量是防治水体产生“富氮”的主要措施。准确测定鱼的需要量和饲料中可利用氨基酸的含量;以可消化氨基酸含量为基础配制符合

鱼类需要的平衡日粮;应用代谢调节剂如酶制剂,有机酸制剂、肉碱等提高氨基酸和磷的利用率;减少饲料中抗营养因子的不利影响来提高饲料

的转化率、减少氮的排泄率。另外采用科学的投喂标准可减少残饵量,这些都可以降低水体氮的含量。

2.以磷带氮

水体中氮、磷比例严重失调,可引起大量氮不能被浮游植物利用而形成“富氮”,并对鱼产生危害。由于精养池塘中大量使用高蛋白饲料,使水体中氮含量很高,施用磷肥可使水体中氮、磷比例降至较为适宜的水平,从而使浮游生物数量能够增长近1倍,易消化的藻类也明显增长。但是当浮游植物死亡之后,水体中的氨浓度将会突然升高,因为水中的氨除来自鱼类外,细菌分解死亡的浮游植物也能释放氮,因此浮游植物并不能真正将水体氮去掉。

3.种植水生植物改良水体

在养殖水体中可适当种植浮萍、凤眼莲和水葫芦等水生植物,而且当这些植物收获时被吸收的氮也同时离开水体。

4.增加水体中的溶氧。

池水溶氧尤其是池底溶氧充足,可使水体有毒的氨氮、亚硝酸盐含量下降,硫化氢被消除,水质的pH值稳定。

5.使用药剂

降氨宁有良好的降解氨氮的作用,对水体氨氮浓度急剧加大有明显的抑制作用,在平时使用EM原露或光合细菌对保持优良水质有着十分显著的作用。

亚硝酸盐对鱼儿的危害

水体中的残饵和鱼类排泄物等有机物,本身是无毒的。有机物被异养性细菌氧化分解后就会产生氨氮;氨氮再被自养性细菌(亚硝化菌)氧化分解变成亚硝酸盐。亚硝酸盐继续被另一类自养性细菌(硝化菌)氧化分解成硝酸盐。硝酸盐对鱼类是无毒的。

反应过程如下:

有机物(无毒)→异养性细菌氨氮(有毒)→自养性细菌(亚硝化菌)亚硝酸盐(有毒)→自养性细菌(硝化菌)→硝酸盐(无毒)

亚硝酸对鱼的毒性:

氨对鱼的毒性会随着鱼龄及尺寸的增加而减少,而亚硝酸的毒性是随着鱼的尺寸的增加而增加,亚硝酸有毒是因为它将血红素氧化成变态血红素,此变态血红素无法运送氧。血红素中含有2价铁,可结合氧分子,当亚硝酸将2价铁氧化成3价铁之后,血红素就失去携带氧气的功能,成为变态血红素。一般称为"褐血病"。

亚硝酸鱼儿的症状:

亚硝酸盐通过鱼儿的体表渗透和吸收进入血液,与血液中的携氧蛋白质结合而使之失去携带氧气的功能,从而表现为缺氧症状。即使水体中的溶解氧高,鱼儿也表现出缺氧昏迷状态,如摄食量下降、呼吸困难、游动缓慢、体力衰退、鳃部受损变黑,出现“浮头”、“偷死”、“冒底”等现象。除此以外.鱼儿长时间生活在亚硝酸盐偏高的水体中,其活力差,自身免疫力下降.容易感染暴发疾病。各种鱼类中毒症状小同。病鱼的皮肤粘膜呈黄白色,甚至蓝紫色,粘膜增多.充血,有腹水,呼吸困难呈昏迷状态,抽搐,血液凝固.呈巧克力或酱油色,呈棕褐色似酱油状,凝固不良。肝、脾肾呈紫色,全身各赃器的血管瘀血。

预防的措施:1、定期定量的换水稀释水中亚硝酸盐 2、不要过度的养鱼并控制食饵的投放 3、增强过滤系统已求快速的把亚硝酸盐转换成硝酸盐4、水草植物的适度种植吸收。

水中的二氧化碳和硫化氢的产生及对鱼类的危害

在冬季结冰以后,水中的二氧化碳主要来源于有机物的氧化分解和水生动物的呼吸。水中的有机物大都是枯死的植物和水生动物尸体,它们在腐败分解时放出大量的二氧化碳。水中二氧化碳含量很大时对鱼类是有害的。

因为鱼类的生存是靠吸进氧气,通过血液中血红蛋白与氧结合输送到全身进行生命活动。可是由于水中二氧化

碳的增加,鱼体血液中的二氧化碳中毒死亡。一般认为:对于前我们养殖的几种主要鱼类直接有害的二氧化碳浓度是60毫克/升以上,超过200毫克/升鱼类便会死亡。

水中的硫化氢主要是由于一种还原细菌的作用而产生的。当水中含有丰富的硫酸盐和有机物时,还原细菌能将硫酸盐还原和将有机物(蛋白质)分解而产生大量的硫化氢。特别在水体缺氧的情况下,这种情况更易发生。

有的水泡子冬天打开冰眼后能闻到一股臭鸡蛋味,就是硫化氢气体的味道。

硫化氢是一种有毒气体,对鱼类有直接毒害作用。同时由于它的迅速氧化,剧烈地消耗水中的氧气。1毫升硫化氢氧化时需从水中吸收1.4毫升的氧,因此,在发生硫化氢的水体中,溶解氧迅速地减少.当水中硫化氢浓度达到0.6毫克/升时,就能引起鱼类死亡.这一含量是鱼类的危险指标。

溶氧量对鱼儿的有哪些影响呢?

需要指出的是,并不是水中溶氧量越高越好,当池水中溶氧量过饱和度达150%以上,溶氧量达14.4ppm以上时,易引起鱼类气泡病。此情况在常温常压下我想它不易发生,常压下过多的溶氧会自动从水面逃逸。|||水

中溶氧量低,鱼儿食欲下降,甚至拒食,即使食入饲料,也会造成消化吸收率低下、生长速度减缓、饲料利用率降低的状况。|||鱼类在溶氧3.0ppm 时的饲料利用率,要比4.0ppm时减少一倍。鱼类在水中溶氧量达到4.5ppm 以上时,鱼的食欲增强极为明显,达到5ppm以上时,饲料利用率达到最佳数值。有人研究表明:当水中溶氧量从7.6ppm下降到3.1ppm时,饲料利用率降低5.6倍、生长速度降低9倍至10倍。|||鱼单位体重的耗氧量随鱼体增大而减少,单个鱼的耗氧量则随鱼体的增大而增加。随水温的增高,鱼类新陈代谢旺盛,鱼的耗氧量也高。鱼的采食量越大,耗氧量也越高。为使鱼迅速生长,保证水中高溶氧是极其重要的。|||热带鱼要求水中溶解氧含量7ppm以上,如果水中溶解氧降到5ppm时,热带鱼就会“浮头”,这时如不采取措施,热带鱼就有被窒息死亡的危险。

水质指标在水产养殖中检测意义

水质指标在水产养殖中 检测意义 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

水质检测指标 每个养殖户都知道,pH、融氧、氨氮、亚硝酸盐等指标,养虾的还需要关注总碱度。可是说归说,往往水质有问题不会是只有一个指标有问题,养殖户也没办法真的判断出是因为具体哪些因素导致,因此用药也只能单纯的根据表象来用,用药失误导致的严重后果也只能由自己来承担。因此,整理了水质的十一大指标,只有了解这些指标及会造成的后果,才能准确的根据功效来调水,避免半知不解造成的严重后果。 pH 淡水,海水pH值的日正常变化范围为1~2,若超出此范围,表明此水体有异常情况。通常pH值低于,鱼类死亡率可达7%~20%,低于4%以下,全部死亡;pH值高于,死亡率可达20%~89%,pH高于时,可引起全部死亡。 症状: 1.鱼类碱中毒:体色明显发白,狂游乱窜;体表大量粘液甚至可拉成丝;鳃盖腐蚀损伤、鳃部大量分泌凝结物;水体存在许多死藻和濒死的藻细胞。对虾易发生黑腮病,继而演变为烂腮病、黄腮病和红腮病,致使呼吸机能发生障碍,窒息死亡。 值低于时:降低载氧能力,引起鱼组织内缺氧、造成缺氧症状,尽管水体中溶氧量正常,鱼也有浮头现象,pH值过低新陈代谢强度降低,减少摄食量,生长缓慢,也会引起鱼鳃组织凝血性坏死,粘液增多,腹部充血发炎等。 溶解氧 连续24小时中,16小时以上必须大于5mg/L,其余任何时候不得低于3mg/L,对于鲑科鱼类栖息水域冰封期其余任何时候不得低于4mg/L。溶氧高于12mg/L,表明水中氧已过量,此时鱼虾易得气泡病。 症状: 水体中的溶解氧的高低对鱼类的生存和发育都有直接的影响,当溶氧低于1mg/L时,鱼就会浮头,如果不采取增氧措施就会使鱼窒息死亡,同时也给致病菌创造了有利条件而降低鱼的抗病能力引起鱼病;足够的溶氧可抑制生成有毒物质的化学反应,转化或降低有毒物质(如氨氮、亚硝酸盐、硫化氢)的含量,同时还可以提高饵料转化率对养殖具有重要的意义。 水体溶氧不足的成因: 1.养殖密度过大; 2.养殖水体过肥; 3.水体细菌大量分解有机物,导致氧耗; 4.水体文档升高,溶氧降低; 5.水中的还原性物质如硫化氢、氨、亚硝酸盐等较多时,其氧化作用也会造成溶氧降低。 氨氮 我国渔业水质标准规定氨氮浓度应小于L,氨氮含量超过毫克/升(mg/l)时,鱼类会出现氨氮中毒症状。目前专家普遍认为,养殖中氨氮的含量应严格控制在毫克/升以下。当氨氮浓度一定时,能否引起鱼类中毒死亡,还受池水pH值、水温高低的影响。 氨氮在水中以游离氨和离子氨形式存在,分子氨对鱼类是极毒的,可使鱼类产生毒血症。 分子氨和离子铵在水中可以相互转化,它们的数量取决于养殖水体的pH和水温。 pH越小,水温越低,水体总铵中分子氨的比例也越小,其毒性越低。 pH越大,水温越高,分子氨的比例越大,其毒性也就大大增加。 另外一个影响氨氮含量的因素,就是底泥。若底泥过厚,清塘不彻底,高温季节夜晚,水温较高时,底泥当中的有毒气体就会被释放出来,在这个过程中,氧气的消耗量会加倍,于是造成池水缺氧,氨氮含量也超标,鱼类大量浮头甚至泛塘。 因此,养鱼先养水,调节好水质是保证鱼类健康成长的前提。 氨氮中毒的特点:

水产养殖亚硝酸盐降解实用大全 (2)

水产养殖降亚硝酸盐实用方法大全 刘秋生珠海市碧洋生物科技有限公司 众所周知,水产养殖的水环境污染和水质富营养化问题越来越严重,亚硝酸盐含量超标是集约化高密度水产养殖常遇到的问题,亚硝酸盐可影响鱼鳃中氧的传递,引起鱼类大量死亡,养殖应高度重视。现把各种处理方法的优劣及其原理整理汇总,供业内人士参考。 饲料残饵、肥料和鱼类排泄物等分解产生氨氮,氨氮由游离氨(NH3)和铵离子(NH4+)组成,游离氨对水生生物有毒,铵离子基本无毒,两者并存且可以相互的转化:NH3+H2O ←→ NH4++OH-,这一平衡受pH影响,pH升高时,平衡向左移,游离氨成倍增加。正常情况下NH4+会被藻类吸收利用,高密度养殖的中后期,特别这时藻类又老化的情况下,往往产生的NH4+会超出藻类吸收利用,部分NH4+通过硝化作用转化亚硝酸盐和硝酸盐,硝酸盐、亚硝酸在反消化细菌的作用下还原转化为NO、N2等,见下图更直观。 进入大气 ↑ NO、N2 硝化作用↓ 残饵、粪便NH4+NH2OH NOH NO NO2- NO3- ↑

↑反硝化作用 ↑亚硝化作用 池塘物质转化路径图 硝化作用是有两个关键的共生菌群相互作用来实现的,分别是亚硝化细菌及氨氧化细菌,利用体内的氨单加氧酶和羟胺氧化酶将氨氮转化为亚硝酸盐,氨作为其唯一的氮源;硝化细菌即亚硝酸盐氧化细菌,利用亚硝酸氧化还原酶将亚硝酸盐氧化成硝酸盐,亚硝酸盐作为其唯一的氮源。值得一提的是,亚硝酸氧化还原酶是一个多重功能的酶,既可催化亚硝酸盐的氧化,又可催化硝酸盐的还原,不同的外界环境诱导其不同的功能,比如在缺氧的条件下它可将硝酸盐还原。 反硝化作用又称脱氮作用或硝酸盐呼吸作用,即硝酸盐或亚硝酸盐还原成气态氮化物(主要是N2,少量是N2O),主要包括四个步骤:NO3-→NO2-→NO→N2O→N2,分别利用了硝酸还原酶、亚硝酸还原酶、一氧化氮还原酶、一氧化二氮还原酶。 硝化过程是耗氧的,底层溶氧量非常重要,底泥硝化作用强度随底层溶解氧浓度增加而显着增强。硝化细菌比亚硝化细菌对水体pH 敏感,硝化细菌进行硝化作用的最适pH范围在左右,pH偏高时亚硝化细菌能够进行亚硝化过程,而硝化过程受阻,易造成亚硝酸盐积累。 大多属于异养细菌,反对温度不敏感,-4℃~65℃都可以进行,最佳温度为30℃~60℃,10℃~30℃范围内温度影响很小。 碳源种类对硝酸还原酶活性没有明显影响,对氧化亚氮还原酶活性有影响。当C/N比值过高时,碳源相对“过剩”,就要消耗部分

水产养殖—池塘养殖中氨氮的危害及其控制方法

水产养殖—池塘养殖中氨氮的危害及其控制方法 相关专题:水产养殖 时间:2012-03-13 15:25 来源:阿里巴巴农业频道 【阿里巴巴农业】 在水产养殖过程中,我们经常碰到池塘中氨氮过高的问题,在高密度精养池塘中这个问题更加严重,给养殖造成了一定的危害。下面,我们就池塘中氨氮的形成、氨氮的危害、氨氮的消除途径以及氨氮的控制方法一一加以阐述。 一、池塘中氨氮的形成 池塘中的氨氮主要来源于三种途径,即水生动物的排泄物、施加的肥料和被微生物菌分解的饲料、粪便及动植物尸体。鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向水中排出体内的氨氮,以免发生体内氨中毒。水生动物的粪便及动植物尸体中含有大量蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进?步分解成氨氮。 二、氨氮对水生动物的危害 1.氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离子氨,对水生生物有毒,极易溶于水。另一种是铵(NH4+),又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液pH随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。 2. 氨氮对水生动物的危害氨氮对水生动物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢;组织损伤,降低氧在组织问的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。急性氨氮中毒危害为:水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 三、氨氮的消除途径 1.硝化和脱氮铵(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫

水体亚硝酸盐超标怎么办

水体亚硝酸盐超标怎么办? 亚硝酸盐是广泛存在于水体的一种物质,是水体氮循环的产物之一。养殖水体中利用目前的水质分析盒一般不得检出,能检出的浓度对鱼虾都会产生影响。 亚硝酸盐要在水体中完全不存在是不可能的,只是在养殖过程中要严格控制其危害浓度。近几年,亚硝酸盐中毒一直是养殖过程中碰到的比较棘手的问题,当前还没有能降解亚硝酸盐的特效药,但实践中,可以选择各种措施来缓解和降低亚硝酸盐带来的危害。 一、亚硝酸盐对水产养殖的影响 亚硝酸盐能促使血液中的血红蛋白转化为高铁血红蛋白,高铁血红蛋白不能与氧结合,造成血液输送氧气能力的下降。高铁血红蛋白使血液呈现褐色,称之为“褐血病”。 水体中低浓度的亚硝酸盐就能使鱼虾中毒。亚硝酸盐中毒后,血液的携带氧的能力减弱,即使含氧丰富的水体,鱼类也容易形成类似缺氧的症状。处于应激状态的鱼类,易交叉感染细菌性块状烂鳃病,不久出现大批死亡。 亚硝酸盐中毒分为两种: 1、慢性中毒:症状不明显,一般肉眼很难看出,但严重影响鱼类的生长和生活。中毒较深的摄食量减少,活动能力减弱,鱼体消瘦,体表无光泽,这为池塘的整体症状,只要细心观察,同样可以发现,见人回避反应缓慢。只要水体转好,该症状会逐步消失,但如果不及时调节水质,就会严重影响成活率,特别是恶劣天气或病毒侵害时,会造成极大损失。 2、急性中毒:一般发生在清晨,肉眼观察似缺氧浮头,且往往伴随缺氧症状同时发生,有时难以区分,但仍然还是可以区别的,缺氧浮头,鱼大多可以集群,但亚硝酸盐中毒就不同,鱼在整个池塘中不均匀分布,到处都是,即使注水解救,在短时间内也不会出现游向水口的情况,太阳出来后,症状也不会很快消失,甚至随着时间的推移会越来越严重,晴天中午都不会解除,只有在下午有点缓解,第二天更严重,甚至造成大批死亡,其死亡率可达90%以上,损失十分严重。 二、预防及解救 预防措施:

养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

酸碱度(即pH值) 对鱼的影响 池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。 鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。但在pH 值6~9时,仍属于安全范围。不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。 鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。如果pH 值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。 pH值对鱼类繁殖也有影响。pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。若pH值在6.4以下或9.4以上,则不能孵出鱼苗。若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。 由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对

池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH 值正常。 水的硬度对养鱼的影响 硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响? 水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。 因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占15%。 硬水又依加热之后是否可以发生矿物质沉淀,而分为“暂时硬水”和“永久硬水”两种。其中的部分金属离子可因加热而析出,故称为暂时硬水,主要是指那些含有酸式碳酸盐(例如,碳酸氢钙、碳酸氢镁、碳酸氢锰…等);所谓永久

论工厂化水产养殖水质调控技术的研究进展

论工厂化水产养殖水质调控技术的研究进展 时间:2010-07-10 11:39来源:未知作者:admin 点击: 66次 摘要:随着我国工厂化水产养殖规模的不断扩大,养殖水调控系统受到了普遍的重视,本文综述了养殖水质调控技术的发展现状,并对各个组成单元的应用情况和存在的问题作了详细的阐述,并对未来这项技术的发展方向进行了展望。关键词:工厂化水产养殖,水质调 摘要:随着我国工厂化水产养殖规模的不断扩大,养殖水调控系统受到了普遍的重视,本文综述了养殖水质调控技术的发展现状,并对各个组成单元的应用情况和存在的问题作了详细的阐述,并对未来这项技术的发展方向进行了展望。 关键词:工厂化水产养殖,水质调控,研究进展 水产养殖业是我国渔业的重要组成部分,也是渔业发展的主要增长点。我国的渔业发展重心由“捕捞为主”向“养殖为主”的转移,促使水产养殖业发生了巨大变化。2001 年中国水产养殖产量达到 2726 万t,比1978 年增长 16 倍,在世界渔业总产量中,养殖的产量占了20%,而我国水产养殖产量约占世界养殖产量的80%[1]。同时,由于水产养殖的不断发展,原来粗放型的养殖模式已经越来越不适应生产的要求。在养殖过程中,因残留饵料、养殖生物的粪便及残体等的腐败,造成养殖水体恶化。这些有机污染物含量高的水未加处理就随便排放,导致水体富营养化,诱发有害的水华或赤潮,损害养殖生产,甚至使整个生态环境遭到恶化。 1. 工厂化水产养殖系统在国内外的发展现状 工厂化水产养殖系统的研究始于二十世纪七十年代初期,是水产养殖业向现代化、企业化、规模化方向发展过程中产生的一种新的养殖方式,实现高密度、高产量和高效率的渔业生产[2]。因其集约化和水质相对容易控制的特点,在国内外得到了广泛的应用。美国采用工厂化养殖系统来养殖生物现已逐步形成和发展了一套较为完整的技术和设备[3]。丹麦的工业化循环流水式养鱼系统和地下室循环过滤养鱼系统都是高水平的,设备已出口挪威,以色列等国。日本采用循环流水工业化养鱼系统也较早,主要养鲤鱼、鳗鲡等,前苏联,美国,德国,法国、加拿大、瑞典也都先后设计生产了各种类型的工厂化循环水养鱼系统,用于养殖海、淡水名优鱼类,我国工业化养鱼起步于二十世纪70 年代,是受世界工业化养鱼潮流的影响而逐步发展起来的,而自行设计生产的工业化养鱼系统以80 年代末建立的中原油田养鱼工厂较为著名[4]。刘伟[5]等利用流化床生物滤器循环水养鱼系统进行了培育鲤仔鱼至乌仔的育苗实验。结果表明:鱼苗在10—15万尾/m2的放养密度下,鲤仔鱼在15d内达到了乌仔规格,成活率达到87%。 2. 工厂化水产养殖系统中的污染物 工厂化水产养殖系统中的污染物主要是未被摄食的残饵、养殖生物的排泄物和分泌物、病原体及其他杂质。最终以悬浮的颗粒物、溶解有机物、氨氮的形式存在,为了使这些污染物的浓度达到养殖生物正常生长繁殖所要求的安全浓度之下,应具备不同的污染物处理单元,以维持整个养殖系统对水质、溶氧、温度及其他水化学参数的需要。 3. 目前工厂化水产养殖系统中的主要水处理单元与设备 根据养殖系统的特点和养殖生物对水质的要求,一般情况需要设的处理环节有:(1)去除悬浮颗粒物(粒径>100um);(2)去除微颗粒(粒径<30um)[6];(3)增氧;(4)杀菌消毒;(5)生物法除氨氮;(6)水质调控。按照一定的工艺流程将这些环节组合,来净化养殖用水,现将各个处理环节所涉及到的有关设备及工艺分述如下: 3.1 固液分离去除悬浮颗粒物 在循环水养殖过程中,鱼类的粪便、及其所食饵料的20-60%最终以固体废弃物的形式排入水中,其中,悬浮性固体颗粒物占50% 左右[7],是养殖水体污染物的主要来源。按照悬浮颗粒物的特性(密度、颗粒的大小) , 又可分为机械过滤和重力分离两种技术[8]。

水体中亚硝酸盐的来源与去除

Hans Journal of Food and Nutrition Science 食品与营养科学, 2017, 6(1), 37-42 Published Online February 2017 in Hans. https://www.docsj.com/doc/118401942.html,/journal/hjfns https://https://www.docsj.com/doc/118401942.html,/10.12677/hjfns.2017.61006 文章引用: 王树庆, 范维江, 张红平, 赵鑫, 柏永亭. 水体中亚硝酸盐的来源与去除[J]. 食品与营养科学, 2017, 6(1): Origin and Removal of Nitrite in Water Shuqing Wang 1,2*, Weijiang Fan 1, Hongping Zhang 2, Xin Zhao 2, Yongting Bo 2 1Shandong Institute of Commerce and Technology, Jinan Shandong 2 Shandong Tianfu Jinda Biotechnology Co. Ltd., Jinan Shandong Received: Feb. 2nd , 2017; accepted: Feb. 18th , 2017; published: Feb. 22nd , 2017 Abstract Nitrite is an intermediate product of the nitrogen cycle in nature, which exists widely in water and has attracted more and more attention because of its strong biological toxicity. Origin, influencing factors and removal technology are summarized in details in this paper. Some practical signific- ances of solving nitrite in water are also proposed. Keywords Water, Nitrite, Origin, Removal 水体中亚硝酸盐的来源与去除 王树庆1,2*,范维江1,张红平2,赵 鑫2,柏永亭2 1 山东商业职业技术学院,山东 济南 2 山东天福晋大生物科技有限公司,山东 济南 收稿日期:2017年2月2日;录用日期:2017年2月18日;发布日期:2017年2月22日 摘 要 亚硝酸盐是自然界中氮循环的一个中间产物,广泛存在于水体中,其生物毒性越来越受到人们的关注。本文阐述了水体中亚硝酸盐的来源、影响因素以及去除技术,并指出了解决水体中亚硝酸盐的现实意义。 关键词 水体,亚硝酸盐,来源,去除 * 通讯作者。

详解水产养殖中的亚硝酸盐和蓝藻

详解水产养殖中的亚硝酸盐和蓝藻 1. 亚硝酸盐 亚硝酸盐在土池小棚和淡水的小池中经常会引起危机。亚硝酸盐为什么会高?原因非常简单:水体里的氮已经超过这个水的净化能力,微生物已经在厌氧代谢了。 1.1. 亚硝酸盐高的预防措施 (1)尽可能保持水体有一个良好的藻相,无机氮能够同化为藻的叶绿素 或者藻蛋白质。 (2)尽可能降低底泥、水体的有机、无机氮,减少水体净化的负担,减 少水体进入厌氧代谢的几率和程度。方法: ①有条件就多换水,多排污。 ②合理投料,根据水质、气候等条件适当投料。 ③如果底泥变黑,泼洒底质改良剂。 ④水体过浓,泼洒水质生态调节剂。 ⑤早6点,晚9点每亩直截了当的撒过碳酸钠400克,每亩也就是花3块钱左右,改底、增加溶解氧的效果明了确切。 ⑥亚硝酸盐高,施加好氧反硝化微生物制剂。 1.2. 亚硝酸盐高的治理措施 (1)打开所有增氧机、大换水,到问题控制为止。

(2)淡水养殖户可以每亩400克过碳酸钠+海盐3公斤混合后撒,每3 小时一次,到问题控制为止。 (3)控制之后按预防措施处理。 2. 蓝藻 在水产养殖中,经常会出现蓝藻这种令人烦恼的现象,处理不当的话搞不好容易出现大量死亡,所以我们应该把蓝藻的毒害搞明白,尽量在处理过程中能够安全。 2.1. 养殖中常见的蓝藻种类 水产养殖中常见的蓝藻主要是淡水的微囊藻、颤藻等。 淡水常见的微囊藻、颤藻主要在:水体磷比较高、水温高、pH高的时候成为优势藻。 蓝藻对我们水产养殖的危害是什么?其主要的危害在环节在那里? 这一点我们一定要搞清楚才能够避重取轻避免大的伤害。 蓝藻在未死亡的时候,对水体的危害是;遮挡阳光影响了其他藻的光合作用,导致蓝藻在水体中成为优势藻相,导致水体缺氧。这时候蓝藻是不满意大量释放蓝藻毒素,伤害水中的水生物的,而是通过缺氧、抢夺碳等等间接影响整个水体藻多样化或影响大型水生物的消化系统。在蓝藻死亡的时候,蓝藻胞体破裂将释放毒素污染水体,使水生物产生中毒现象。 从以上我们看到;蓝藻真正的危害是在蓝藻死亡的阶段而不是蓝藻生长过程。 2.2. 蓝藻的处理误区

氨氮对养鱼的危害、预防、解决方案

解读水中杀手“氨” 养鱼要先养水,而养水的核心是培养硝化菌来分解水中的毒素。水中毒素一般是指氨和亚硝酸盐,它们都属于剧毒,可以造成鱼的慢性中毒或者急性死亡。这两种毒素被称为水中的第一杀手,只需要极少量就会造成鱼的暴毙。鱼是病从鳃入,氨和亚硝酸盐的慢性中毒会破坏鱼体组织的免疫系统,降低抵抗力。 第一节“氨” 一、氨的产生途径: 1、鱼的呼吸:鱼通过腮部可以直接将体内产生的氨排出体外。 2、鱼的尿液:鱼的尿液中含有氨。 3、有机物被异营菌分解后的代谢产物:鱼的粪便、残饵、死鱼等有机物被异营菌分解后,其代谢产物为氨,这是氨的主要来源。 二、氨的危害: 氨对鱼类的毒害反映非常强,在很低的浓度下即可使许多鱼类产生中毒症状,甚至死亡。氨对鱼类的毒害情形根据浓度和鱼类的不同会有所差异,大致情况如下: 在较低浓度下: 鱼类可以忍受一段时间,但长此以往会慢性中毒。氨会干预鱼类渗透调节系统,破坏鱼鳃的粘膜层,减低血红素携带氧气能力。鱼类慢性中毒症状表现有:常在水面喘气,鳃转为紫色或暗红,比较容易瞌睡,食欲不振,老停留在缸底不活动,鱼鳍或体表出现异常血丝等。 在低浓度下: 氨会和其他疾病一同加速鱼类死亡。 在略高浓度下: 会直接破会鱼类皮肤和肠道粘膜,造成体表和内部器官出血,同时伤害大脑和中枢神经系统,鱼类会因急性中毒迅速死亡。 三、氨的中毒机理: 毒素通过鱼的呼吸作用,由鳃进入血液,会使其丧失输氧能力,出现组织缺氧,窒息而死。 四、氨中毒的症状: 鱼出现窜游现象,并时而出现下沉、侧卧、痉挛等症状。 呼吸急促,大口挣扎,死前眼球突出。 鳃盖部分张开,鳃丝呈紫红色或紫黑色。 鱼鳍舒展,根基出血,体色变浅,体表粘液增多。 打开腹腔,血液不凝,血色发暗,紫而不红,肝脾肾的颜色呈紫色。 五、氨的存在形式: 水中的氨有两种不同的形式:一种是分子形态存在的“氨”(NH3);另一种是以离子形态存在的“铵”(NH4+)。氨有剧毒,铵无毒。一般氨测试所测的是氨和铵的总浓度,有时候测试出总浓度非常高,但鱼却很健康,这是因为水中铵的比例大,而有毒的氨(NH3)的百分比很小的原因。 氨与铵在水中是根据PH来互相转化的,PH越高,水中所含有毒的氨(NH3)的百分比也越高。例如在酸性水中,有毒的氨(NH3)基本不存在;PH=7时有毒氨的含量只占总氨含量的1%;PH=9时有毒氨的含量占总氨含量的25%,所以氨的毒性会因PH升高而增加。 水体中有毒氨(NH3)在总氨氮中的比例(%):

水产养殖―池塘养殖中氨氮的危害及其控制方法

水产养殖—池塘养殖中氨氮的危害及其控制方法相关专题: 水产养殖 时间:2012-03-13 15:25 阿里巴巴农业频道 【阿里巴巴农业】 在水产养殖过程中,我们经常碰到池塘中氨氮过高的问题,在高密度精养池塘中这个问题更加严重,给养殖造成了一定的危害。下面,我们就池塘中氨氮的形成、氨氮的危害、氨氮的消除途径以及氨氮的控制方法一一加以阐述。 一、xxxx氨氮的形成 池塘中的氨氮主要来源于三种途径,即水生动物的排泄物、施加的肥料和被微生物菌分解的饲料、粪便及动植物尸体。鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向水中排出体内的氨氮,以免发生体内氨中毒。水生动物的粪便及动植物尸体中含有大量蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进?步分解成氨氮。 二、氨氮对水生动物的危害 1.氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离子氨,对水生生物有毒,极易溶于水。另一种是铵(NH4+),又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液pH随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。 2.氨氮对水生动物的危害有急性和慢性之分。慢性氨氮中毒危害为:

摄食降低,生长减慢;组织损伤,降低氧在组织问的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。急性氨氮中毒危害为: 水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 三、氨氮的消除途径 1.硝化和脱氮铵(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种过程称为硝酸还原,当形成的气态氮作为代谢物释放并从系统中流失时,就称之为脱氮作用。 2.藻类和植物的吸收因为藻类和水生植物能利用铵(NH4+)合成氨基酸,所以藻类对氨氮的吸收是池塘中氨氮去除的主要方法,冬天藻类的减少和死亡会使水中的氨氮含量明显上升。 3.挥发及底泥吸收在池塘中氨氮浓度高、高pH值、采取增氧措施、有风浪、搅动水流等情况下,都会有利于氨氮的挥发。底泥土壤中的阴离子可以结合铵离予(NH4+),在拉网或发生类似的引起底部搅动的操作时,池底沉积物会暂时悬浮在水中,铵离子(NH4+)就会被释放出来。 4.矿化及回到生物体内所谓矿化,即部分氨氮以有机物的形式存在于池底土壤中,这些有机物质分解后又回到水中,分解速度依赖于温度、pH、溶氧以及有机物质的数量和质量。进入水生动物体内即当水中氨氮浓度高时,氨(NH3而不是NH4+)能通过鳃进入水生生物体内。 四、氨氮的控制方法 1.清淤、干塘每年养殖结束后,进行清淤、干塘,曝晒池底,使用生石灰、强氯精、漂白粉等对池底彻底消毒,可去除氨氮,增强水体对pH的缓冲能力,保持水体微碱性。

水产养殖的亚硝酸盐

水产养殖的亚硝酸盐 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

水产养殖的亚硝酸盐 随着水产养殖水平的不断提高,养殖密度的不断加大以及养殖水环境的不断恶化,其中最突出的问题就是亚硝酸盐和氨氮等有毒物质的产生。 一亚硝酸盐的危害 亚硝酸盐能导致养殖动物中毒,中毒机理是血液携带氧气的能力减弱,有时水中含氧量并不低,但是,养殖动物还会出现“浮头”的症状。鱼类亚硝酸盐中毒后,一般可以呈现慢性中毒和急性中毒两种方式,慢性中毒会导致鱼类生长不明显,体表呈现不正常的色泽,活动力减弱,反应迟钝等。急性中毒和浮头很相似,都呈现缺氧症状,但是两者最大的区别是亚硝酸盐中毒在太阳出来后鱼还不下水,有时甚至整天都在水面活动,晴天也不例外。 二亚硝酸盐的产生过程 亚硝酸盐是氮元素在自然循环过程中的产物之一。一般在养殖水体中,氮元素主要有以下几种形态:有机氮和氨态氮(nh3-n).氨化作用即由氨化细菌或真菌的作用将有机氮分解成为氨与氨化物,氨态氮在硝化作用下转化为硝酸盐氮,亚硝态氮是其中不稳定的中间形式,对鱼类有很强的毒性,在溶氧充足时,亚硝酸盐可以发生硝化反应变成无毒的硝态氮,相反,在溶氧不足时则可以产生反硝化反应,转变成氨氮。 一般在养殖过程中的的6---9月,底力比较厚,施肥多的池塘投饲量(包括青饲料和颗粒饲料)大并且溶氧不不足时容易产生亚硝酸盐。 三亚硝酸盐的处理方法 由于亚硝酸盐的产生过程我们可以看出,要消除亚硝酸盐,我们必需从减少水体中多余的氮素和增加水体含氧量两个方面入手。

1减少水体中多余的氮肥素水体中浮游植物的生长需要摄食氮肥,鱼类排泄物含有的蛋白质也会分解出含氮物质,所以要减少水体中多余的氮素就要求养殖户要掌握少量多次、减少沉积施肥的原则。同时在投饲料量大的季节尽量减少氮肥施用量。 2增加水中溶氧量尽量保持养殖水体充足的溶剂氧,特别是在投饲料量大、开挖时间长趋于老化的池塘要及时加注新水,如果水源条件不好,则必须在相应季节根据池塘情况经常性开增氧机。把握增氧机使用原则。 3合理施肥在高温季节尽量避免向水体使用碳酸氢铵、尿素等无机氮肥和耗氧量高的有机肥,建议使用水产专用肥,专用肥不仅含有水体中有益藻类生长所需的各种营养成分,还添加了大量的生物活性菌,不仅能定向培育有益藻类,还能促进菌相和藻相的动态平衡,从而有效降低水体中氨氮、亚硝酸盐的含量。

成参养殖水质调控技术

成参养殖水质调控技术 水质是影响池塘养殖刺参生长发育的关键因素,直接决定了养殖成败,对水质进行科学调控,是减少刺参病害,提高养殖效益的有效措施。 1、科学换水 保持适当的水深和换水量,是改善水质最直接、最有效的办法。换水不仅可以增加水中溶解氧,降低代谢废物的浓度,还能调节池水盐度与pH,改善池水生物组成结构。在一定限度内,换水量越大,刺参生长越快,成活率越高。 (1)换水方法通常的换水方法是:3月份到6月中旬,池水不宜过深,以充分利用阳光照射,加快水温回升,增加底层溶解氧,促进浮游单胞藻和底栖硅藻的繁殖,一般日换水10~20%,保持水深1.2~1.5m;6月下旬到9月中旬,随水温的升高逐渐增加换水量并加深水位,日换水从20%逐渐升至50%以上。其中水温最高的7~8月份,刺参多数已进入夏眠阶段,水温一旦过高或底质情况太差,很容易造成大量死亡,所以这一时期在遵循水质好、温度低、盐度等因子相对稳定的前提下,能自然纳水的池塘要有潮就纳、有水就进,无自然纳水条件的池,每天也要机械提水,保持水质清新,水深始终维持在2m以上的最高水位,为刺参营造良好的夏眠环境。夏眠过后,随着水温的下降,可将日换水量渐减至20%以下,水位降至1.2~1.5m。冬季刺参摄食量小,代谢弱,对水质污染较轻,主要是维持池水的稳定,可少换水,或只进水不排水,保持2m以上的最高水位即可。 (2)换水时注意事项 ①要有拦污设施池塘注水口设置40~60目筛绢网,海边抽水口最好也设拦污网等设施,防止自然水域中的敌害生物、杂物及油类进入池塘。 ②换水前注意海区和池塘水质情况如发现自然海水受到污染、发生赤潮等情况,要暂停换水。大雨过后,从陆地入海的淡水常带有农药等有害物质,并且pH常会大幅下降,也不要急于进水,待海区水环境恢复正常后再纳水。如发现池内水质恶化、刺参发病等情况,要立即大换水。 ③防池水盐度骤降暴雨前应将池水加到最高水位,雨后立即将表层低盐度水排掉。因刺参属狭盐动物,短时间盐度降幅过大,易引起溃烂甚至死亡。为此,可在排水口处设内低外高两道闸门,平日排水两道闸门均提起,降雨时关闭内闸,开放外闸,使表层的低盐度水从内闸上部溢出。 ④注意换水时间夏季高温期,尽量在夜间或凌晨换水,以降低池塘水温。有条件的地方可向池内添加深井水降温。 2、保持优良水质 池水要有一定肥度,达到“肥”、“活”、“嫩”、“爽”的感观标准,水色以浅黄褐色或浅黄绿色为好。池内保持充足的浮游生物含量,可增加水中溶解氧,吸收有毒物质,提高池水的自净能力,维持养殖水体的生态平衡,有利于水环境的相对稳定,对优化养殖环境,改善水质条件具有十分重要的作用。有一定肥度的池水还可使刺参避免受强光直射,改善刺参的栖息环境。故在养殖过程中,要根据池塘水质变化情况及时追肥。追肥时机要根据天气情况来定,一般在晴天时候为宜。为保证水质,在养殖期间一般不提倡多施用化肥,提倡多使用有机肥水产品,如“汉宝生态肥”或“汉宝淝”来进行肥水,肥水效果好,且对水质无污染。 3、做好水质监测 每天都要观察池塘水质情况,定期对一些主要理化因子进行检测。保持池水盐度26~32‰,

最新养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

养殖水体中P H值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

酸碱度(即pH值) 对鱼的影响 池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。 鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。但在pH值6~9时,仍属于安全范围。不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。 鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。 pH值对鱼类繁殖也有影响。pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。若pH值在6.4以下或9.4以上,则不能孵出鱼苗。若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼

种还极易得“打粉病”。 由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。 水的硬度对养鱼的影响 硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响? 水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。例如,在烧开水时易产生锅垢,又如硬水用来洗涤衣服时,消耗肥皂会比较多等。 因此,硬度可以用来描述水的软硬程度,其定义是指能使肥皂沉淀之量。这是因为肥皂是硬脂酸的钠或钾盐,遇到水中的钙、镁离子,易生成不溶性的硬脂酸钙和硬脂酸镁,使肥皂失去洗涤衣服的作用。除了钙、镁离子外,肥皂还能被铁、锰、铜…离子所沉淀,所以在化学上定义︰凡是水体存在能被肥皂产生沉淀的矿物质离子,都称为「硬度离子」,这裡指金属阳离子而言,主要包括钙、镁、铁、锰、铜离子等,而象钠、钾离子都不属于。但在一般的自然水(包括自来水)中,除了钙、镁离子外,其馀硬度离子存量很少,它们的总含量可能不到3%,因此水的硬度可以说主要表现为钙和镁离子,又称为“钙硬度”或“镁硬度”两者之和,称为“总硬度”,简称“硬度”,这其中钙硬度平均约占85%,镁硬度约占

水产养殖指标参数

养殖用水化学因子含量参考范围 养殖水体的主要化学性质 养殖用水的诸多化学性质中,对鱼类关系最密切的是溶解气体与溶解于水中的无机盐和有机物质。 一、溶解气体 水中溶解有多种气体,它们的主要来源有两个方面,一是由空气中直接溶解入水体,二是由水中生物的生命活动以及底质或水中物质发生化学变化而在水体中产生,水中气体的溶解是因水体环境而出现差异,其差异如下。 与水体温度成反比,水温升高,气体的溶解降低。 与大气压成正比,气压增大,气体溶解度相应也增大。 与水中杂质浓度成反比,杂质多的水会降低气体的溶解度。 1、溶解氧;水中的溶解氧含量少而多变,淡水水体中溶解氧的饱和度仅为8—10mg/L ,不到空气中氧含量的1/20,海水溶解氧的含量更少。这表明水中鱼类的呼吸条件较差,不时都有面临缺氧窒息的威胁。由此可见,掌握水中溶解氧的动态规律对水产养殖的重要。 水中溶解氧的来源有两个;一是大气中的氧与水面接触溶解入水中,二是水生植物在项目 含量 备注 氨氮含量 ≤0.2mg/L 安全范围 >0.2mg/L 鱼类不摄食,严重时中 毒、死亡 亚硝酸盐 ≤0.1mg/L 安全范围 >0.1mg/L 鱼类不摄食,严重时中 毒、死亡 溶氧量 ≥5mg/L 安全范围 2~3mg/L 生长慢,饵料系数高 低于1~2mg/L 泛塘,甚至死亡 pH 值 7~8.5 安全范围

光合作时所释放的氧气,大气中溶入水中的氧不到植物光合作用所产氧量的1/10。 https://https://www.docsj.com/doc/118401942.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.22.tnDhd6&id=139413709 76(单击若不能跳转,请将连接复制到网址栏打开) 2、硫化氢;硫化氢是在缺氧条件下,由含硫有机物分解而形成的,或者是在富有硫酸盐的水中,由硫酸盐还原变成硫化物,然后再生成硫化氢。 硫化物和硫化氢对鱼类都是有毒的,硫化氢的毒性最强。一般硫化物在酸性条件下,大部分以硫化氢形式存在,当水中溶解氧增加时,硫化氢即被氧化而消失。硫化氢对鱼类的毒害作用就是与血红蛋白中的铁化合,使血红蛋白失去携氧的能力,造成鱼组织缺氧。因此,在养殖中要特别注意硫化氢的存在。 https://https://www.docsj.com/doc/118401942.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.16.tnDhd6&id=356489895 99(单击若不能跳转,请将连接复制到网址栏打开) 3、氨氮;氨氮在氧气不足时由有机物分解而产生,或者由于氧化合物被反消化细菌还原而生成。水生动物代谢的最终产物都是以氨的状态排出。氨氮对鱼类及其它水生生物是有毒的,即使浓度很低也会抑制鱼类的生长,必须密切注意。 https://https://www.docsj.com/doc/118401942.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.18.tnDhd6&id=145308076 01(单击若不能跳转,请将连接复制到网址栏打开) 4、亚硝酸盐;

亚硝酸盐含量高的处理方法

养殖中体中亚硝酸盐等含量过高形成的原因及处理办法 养殖水体中亚硝酸盐、氨氮、硫化氢、pH值、化学耗氧量等含量的高低将决定着养殖水质的好坏。在养殖过程中,养殖水体如果亚硝酸盐、氨氮、硫化氢、pH值等指标过高,将给养殖的水生动物带来很大的危害,现简单地介绍一下它们形成的原因、危害和处理方法。 一、形成原因 亚硝酸盐是氨转化为硝酸盐过程中的中间产物,在养殖水体中由于大量的投饵而留下的残饵、水体中水生动物的大量排泄物的累积和定期使用的消毒药剂,把有害的和有益的细菌通通杀灭,氧气的供应不足,造成大量积累的氮素硝化过程受阻,形成养殖时水中氨氮和亚硝酸氮含量高,但由于氨氮的转化速度较快,使得亚硝酸氮的问题最为突出。 硫化氢在缺氧条件下,由残饵或粪便中的含硫有机物经厌氧细菌分解而产生。硫化氢可与水体底泥中的金属盐结合形成金属硫化物,致使池底变黑。 二、造成危害 当水中的亚硝酸盐浓度积累到0.1毫克/升后,亚硝酸盐将对水体中养殖的鱼、虾产生危害。其作用机理主要是通过鱼虾的呼吸作用,由鳃丝进入血液,鱼、虾红细胞数量和血红蛋白数量逐渐减少,血液载氧能力逐渐减低,出现组织缺氧。此时鱼、虾摄食量降低,鳃组织出现病变,呼吸困难、躁动不安或反应迟钝,从而导致鱼虾缺氧,甚至窒息死亡。亚硝酸盐还可与仲胺类反应生成致癌性的亚硝酸胺类物质,pH值低时有利于亚硝酸胺形成。很多池塘出现鱼虾厌食现象,亚硝酸盐过高就是主要原因之一。 当养殖水体中的氨氮含量超过0.2毫克/升时。氨氮将对鱼、虾造成危害,其危害相似于亚硝酸盐。氨氮毒性与池水的pH值及水温有密切关系,一般情况,温度和pH值愈高,毒性愈强。 硫化氢有臭鸡蛋味,当养殖水体中硫化氢的浓度在0.1毫克/升以上时,对水体中的鱼、虾产生危害。硫化氢具强烈刺激、麻醉和影响鱼类呼吸的作用,对鱼、虾具有较强毒性。 水体pH值低可造成养殖鱼、虾血液中的pH值下降,削弱其血液载氧能力,尽管水中的溶解氧较高,还是会造成鱼、虾生理缺氧症,经常浮头,且生长受阻或患病。pH值过高则可能腐蚀鱼虾鳃部组织,使鱼虾等失去呼吸能力而大批死亡。另外,水中的pH值过高或过低,均会造成水中的微生物活动受到抑制,有机物不易分解。 三、处理方法 1.当亚硝酸盐、氨氮含量过高时,处理方法有:①开动增氧机或全池泼洒化学增氧剂,使池水有充足的溶氧,以促进亚硝酸盐向硝酸盐的转化,从而降低水体中亚硝酸盐的含量。 ②使用活性碳,每亩泼洒活性碳粉2~4千克有一定的效果,但成本也较高;或泼洒“亚硝酸盐降解灵”,通过离子交换作用,吸附或降解亚硝酸盐。③泼洒沸石,一般亩用沸石15~20千克。④在水体中泼洒芽孢杆菌、光合细菌、硝化细菌、放线菌等微生物制剂,通过微生物分解亚硝酸盐。⑤培植、种植少量的水生植物,以吸附氨氮等有毒物质。 2.当硫化氢含量过高时,处理方法为提高水体的溶解氧;严重的鱼池可每亩泼洒300~

池塘水环境生态调控方法

池塘水环境生态调控方法 在当今集约化高密度高投饵的水产养殖模式下,水质恶化、病害增多药残问题突出。养殖水体净化能力下降、缺氧和有毒代谢物增多等等,严重影响养殖水产品的健康生长。应此如何利用各种水质调控措施消除这些不利应素,为让我们的养殖业健康和可持续发展,维持池塘生态环境就显得由为重要。以下就池塘水体及生态环境调控的三种方法供参考。 1、物理调控法 冬天干塘清淤,提高池塘肥力延缓池塘老化。干塘后经过冬天严寒风吹日晒,能杀死寄生虫和病原体。最重要的是有更多的氧气氧化分解底泥,消除中间还原物的产生,对经后养殖时的水环境的调节有重要作用。 适当注换水保持水质清新,保障水源质量,做到春浅(50厘米)、夏满(平台坡面80厘米)、秋勤(勤换水)。从而使养殖水体的生态系统得到改善。当池塘失控恶化时换水是最快速有效的方法。加注新水后可以冲淡池中的有机物,平衡池塘生物量增加氧气。 使用机械增氧,让水上下对流增加和氧气的接触面,也就增加了水中的氧气。使用增氧机要做到三开、两不开、一随时。三开机晴天中午开机(2小时),阴天清晨开机(4小时),连续阴雨半夜开机(12时—8时),两不开机不论天气傍晚不开机、阴雨天中午不开机。缺氧浮头随时开。如傍晚浮头则开机后一直到明天清晨。(物理调控的好处是不给养殖环境带来污染,但是会增加生产消耗。) 2、化学调控法 化学调控就是利用化学特有的性质来改善养殖水环境的不利因素,第一个方法合理施肥,施肥可以增加池塘的生物量,更重要的是可以改变水质,使池水透明度适中增加浮游植物。而浮游植物在水中吸收二氧化碳和氨氮经光合作用产生氧气。施肥的方法是抓两头、带中间、重基肥、巧磷肥。抓两头就是春秋两季用有机肥,夏天用无机肥,重基肥就是清塘后的第一次肥料要施得重,施磷肥时PH值要在7.5—8.5,不能低也不能高,比如石灰清塘后要隔10天到15天再施,不然造成磷肥失效或肥力降低。施有机肥时要加微生物制剂发酵或生石灰消毒后再用。 第二个方法化学增氧,指在突发情况下,如断水停电池塘浮头时。要用化学增氧,市面上有过氧化钙、过氧碳酸氢钠全池泼洒。 第三使用生石灰,生石灰是目前国际公认的最好的水质改良剂,定期使用它可以调节PH值增加水体硬度,培植浮游生物沉降有机质改良水质,同时有一定的杀菌消毒作用。一般要求每个月用一次,每立方米用10—15克,使用生石灰要注意以下几点。新开挖的塘和清淤后的塘不能用生石灰,因为没有淤泥缓冲力比较弱一般不使用生石灰。生石灰在使用时要选择晴天上午现配现用,下午3点以后和下雨或天气闷热水温28度以上不能用。生石灰还不能和酸性的漂白粉同时使用,也不能和敌百虫一起用,因敌百虫遇钙会起化学反应变成敌敌畏,毒性增加危害养殖水产品。定期使用含氯杀菌消毒剂起到灭菌杀藻的作用(化学调控的优点是见效快。缺点是治标不治本,用量过大还对养殖环境造成污染,用得不好还会带来损失。) 3、生物调控法 就是利用生物来调整池塘生态系统的结构和功能,以达到改良水质的目的。

相关文档
相关文档 最新文档