文档视界 最新最全的文档下载
当前位置:文档视界 › CATIA参数化建模理念教程文件

CATIA参数化建模理念教程文件

CATIA参数化建模理念教程文件
CATIA参数化建模理念教程文件

C A T I A参数化建模理

CATIA参数化建模理念

1.CATIA参数化建模思路

1.1. 逆向建模

现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。

1.2. 骨架设计

在传统的三维设计包含两种设计模式:

①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。

②自上而下设计的设计理念为先总体规划,后细化设计。

大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。

1.3. 参数化模板设计

一、参数化设计基本原理

参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。

①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。

②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。

③公式(formulas)是用来定义一个参数如何由其他参数计算出的。

④零件设计表:设计表是 Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。

⑤配置(Configuration)是设计表中相关的参数组的一组值。

⑥超级副本(PowerCopy):超级副本是一组经过分组以用于不同上下文的特征(几何元素、公式、约束等),它提供了在粘贴时根据上下文重新指定特征的能力。超级副本可捕获设计者的设计意图和知识技能,因此可以提高重用性和效率。

⑦用户特征(UDF):在常规设计工作中,经常会有类似相同的设计,只是设计所用数据不一样;对于这种情况,可以用数据表控制数据源,在需要某数据时,指定相应数据;将以上重用数据表设计过程封装成 UDF,并发布相应数据,达到重用设计的效果。

二、参数化模板设计主要技术特征

参数化模板设计主要技术特征是:基于特征、全尺寸约束、尺寸驱动设计修改、全数据相关。

①基于特征:将某些具有代表性的平面几何定义为特征,并将其所有尺寸存为可调参数,进而形成实体,以此为基础进行更为复杂的几何形体的构造。

②全尺寸约束:将形状和尺寸联合起来考虑,通过约束来实现对几何形状的控制。造型必须以完整的尺寸参数为出发点(全约束),不能漏注尺寸(欠约束),不能多注尺寸(过约束)。

③尺寸驱动设计修改:通过编辑尺寸数值来驱动几何形状的改变。

④全数据相关:尺寸参数的修改导致其它相关模块的相关尺寸得以更新。

大坝各剖面的草图都可以用参数和公式表达出来,公式中包含参数,将公式与草图边线的约束相关联,达到参数通过公式驱动图形的目的。

我们将建好的大坝各部件的三维图保存为模板,模板是CATIA V5知识工程的一个功能。知识工程是将一些诸如经验公式、分析算法、优化计算、条件控制等智能知识打包到一个盒子中,只留出几个条件输入参数接口。设计人员在进行设计时,不需要关心盒子中到底有哪些内容,而只需要知道目标模型所属的类型及确定目标模型具体细节的关键几个输入参数即可。调用模型时,通过输入参数,调用打包在模型内部的一系列计算公式及判断条件,自动进行一系列的内部运算与调整,快速生成符合用户设想的几何模型。

1.4. 装配设计

装配设计(Assembly Design)即产品的高效管理和装配,它提供了在装配环境下可由用户控制关联关系的设计能力,通过使用自上向下和自底向上的方法管理装配层次,可真正实现装配设计和单个零件设计之间的并行工程。装配设计通过使用图形化的命令建立机械设计约束,可以直观方便的将零件放到指定位置。

1.5. 二维图制作

C ATIA的二维工程图是由三维模型向各方向的投影视图以及相关辅助视图组成的。其最大优势在于二维图能与三维设计模型相关联,即三维模型发生更改,二维图可即时更新,不必像其他CAD软件需要再重新绘制二维图。

2.重力坝参数化建模

2.1. CATIA选项设置

确认“知识选项卡(“工具” >“选项” >“常规” >“参数和测量”)中的“带值”和“带公式”复选框。如图1 。

图 1

确认“显示”选项卡(“工具” >“选项” >“零件基础结构” >“显示”)中的“外部参考”、“约束”、“约束”、“参数”、“关系”复选框。如图2所示

图 2

2.2. 参数和关系建立

①建立参数:点击“知识工程”工具栏上的“f(x)”命令会出现图3,选择参数的类型,比如:“长度”,再点击“新类型参数”新建一个长度参数,并赋值。

图 3

②建立关系:关系是参数与图形连接的桥梁,参数通过关系关联图形,以此来驱动图形。最常用的关系是公式,如图用上文建立的参数“长”通过公式来关联一条直线的长度。先在XY平面新建一个草图,画一条直线,用“约束”工具栏中的“约束”命令进行标注,如图4,,选定尺寸标注单击右键,在“长度对象”下拉找到“编辑公式”命令,如图5,单击后会弹出一个对话框,双击“’长’”即可将直线的长度与参数“长”关联,这样直线的长度将会等于参数“长”的值,如图6。

图 4 图5

图 6

2.3. 骨架设计

重力坝的骨架可由“左(右)坝肩A(B)两点”、“连接A、B两点的坝轴线和垂直于坝轴线”和“过A点的0+000.00桩所在的平面”这三部分组成。将这三部分作为骨架发布出去,以此作为整个工程的关键定位和布置依据。在CATIA环境下,如果设计变更牵扯到坝轴线位置的调整,无需重新定位控制点A、B,只需更改控制点A、B的坐标,或者直接移动坝轴线,就能完成对坝轴线的调整,实现设计变更,如图7。

图 7

2.4. 重力坝结构划分

现实中的重力坝是一个非常复杂的体型,如果不进行划分,一方面体现不出挡水坝、溢流坝和内部廊道等结构相互独立的特征。另一方面参数繁多,难以确定,体现不出参数化的特点和优势,所以在重力坝模型对象的设计中,首先要考虑如何把复杂的重力坝进行合理地拆分,使之形成多个简单的模型对象的组

合。当把重力坝完全抽象为若干个对象的集合时,我们也就完成了对重力坝实体对象的划分。

重力坝可简单的分为:挡水坝段和溢流坝段两部分,当然也包括廊道、排水管和帷幕等部件。

2.4.1.挡水坝段

①建立参数:

重力坝挡水坝段的特征参数有“坝段起始桩号”、“坝段长度”、“坝顶宽度”、“坝顶高程”、“上游折坡高程”、“上游坡比”、“下游折坡高程”、“下游坡比”、“坝底高程”,用“f(x)”命令建立这些参数并赋值。

②绘制草图:

以“过A点的0+000.00桩所在的平面”为基准平面,偏移一个平面,偏移长度为参数“坝段起始桩号”,在这个新平面上绘制出挡水坝段的典型剖面,并将上述参数与剖面进行关联,从而得到参数化的挡水坝段剖面,如图8。

图 8

草图中的V和H坐标轴是尺寸约束的参照基准,只有草图中的图像相对于V、H轴的所有位置关系都确定后,该图形才能完全约束(无过约束也不欠约束)。

“过约束”是指一个元素被多个同一尺寸标注,此时过约束的元素会显示“紫色”;“欠约束”是是指一个元素未被尺寸标注,此时欠约束的元素会显示“白色”,如图9。

图形完全约束后,其尺寸和位置关系才能协同变化,系统会直接将尺寸约束转化为系统参数。草图修改可通过编辑系统参数直接驱动几何形状的改变,为三维参数驱动提供基础。

图 9

剖面草图绘制完成后,将草图进行“凸台”得到一个坝段,凸台的长度用公式关联到参数“坝段长度”,如图10。现在可以通过更改那些特征参数即可驱动挡水坝段的图形。如将参数“坝段长度”的值改为50mm(本次设计中比例为1:1000),更改参数后的图形如图11。

图 10 图11

2.4.2. 溢流坝段

重力坝溢流坝段剖面图形由顶部曲线段、中间直线段和反弧段三部分组成。 溢流坝与挡水坝相比较,有其自身的结构特点,它的草图结构要比挡水坝复杂了很多。挡水坝典型剖面相对简单,可以运用草图工作台提供的绘图命令直接完成典型剖面草图的绘制。而溢流坝则不同,它的典型剖面中包含下游反弧段和堰顶下游堰面曲线—WES 幂曲线等复杂的曲线,特别是WES 幂曲线是不能通过草图工作台提供的绘图命令直接绘制的。为保证WES 幂曲线精准性,可以通过CATIA 中规则曲线进行绘制。

WES 曲线绘制

对WES 幂曲线方程进行分析。WES 幂曲线方程的表达式为:y kH x n d n 1-=。x ,y 表示草图中曲线的横纵坐标,而曲线的形状有参数k ,n 和d H 来控制。在这里设置三个用户参数:“d H 堰面曲线定型水头”、“WES 曲线系数:k ”和“WES 系数n ”分别代表系数:k ,n 和d H 。以后通过修改这三个用户参数,来实现对WES 曲线形状的控制。

新建“k ”、“n ”、“d H ”和“参考线长度”参数,在要绘制WES 曲线的平面上,绘制一条水平参考线,长度通过公式关联参数“参考线长度”;用“fog ”命令新建一个WES 曲线规则,规则中编辑如下公式,y=-1*(1/k)` *'Hd'**(1-n)*(参考线长度` /1mm*x)**`n` ,如图12。

公式中有两点需要注意:在CATIA 中要输入n x ,则要输成n x **;自变量x 的类型必须为实数,且CATIA 中规定x 的范围是从0到1变化,所以要画WES 曲线,必须在x 前面乘以一个系数,即参数“参考线的长度”。

fog规则建立完成后,将CATIA工作界面切换到“形状的创成外形设计”中,选用“线框”工具栏中的“平行曲线定义”命令绘制WES曲线,如图13,对话框中的“曲线”选择“参考直线”,支持面选择WES曲线所在平面,常量这一栏单击“法则曲线”按钮,弹出法则曲线定义对话框,选择法则曲线类型为“高级”,法则曲线元素选择新建的fog规则,绘制的WES曲线,如图14。溢流坝剖面的其它曲线可按照绘制挡水坝剖面曲线的方法逐一绘制,对绘制的溢流坝剖面草图进行“凸台”(方法见挡水坝段),得到实体溢流坝段,如图15。

图 12

图 13 图14

图 15

2.5. 模板设计

在上文中基于重力坝的挡水坝段和溢流坝段各自的特征参数建立了相关模型,而且可以通过更改特征参数实现图形的变换。当设计其它重力坝时,想要调用这两个图形,则需要用到模板设计。将这两个图形保存为模板,外部调用时,只需要在CATIA模板库中调用就行。下面介绍重力坝挡水坝段的模板设计,溢流坝段的模板设计可参照挡水坝段的模板设计。

挡水坝段的模板设计有三种途径可以做到,分别为“超级副本”、“用户特征”和“文档模板”。

①超级副本

打开上文建立的重力坝挡水坝段的CATIA文件,将工作界面切换到“产品知识模板(PKT: Product Knowledge Template)”,具体操作是点击“开始”>“知识工程模块”>“Product Knowledge Template”。进入产品知识模板界面后,点击“创建超级副本”命令,会出现一个对话框,对话框中有几个选项卡。“定义”选项卡中有“选定部件”和“部件输入”,两者是因果关系,部件输入为因,选定部件为果,选定部件是我们要选中作为模板的元素,可以直接在树上选中,部件输入是绘制模板图形的骨架元素,也就是基准元素,包括基准点、基准平面和基准直线。如图16,“参数”选项卡中显示了绘制模板所用的所有尺寸参数,在这里我们可

以将特征参数发布出去,作为可更改的参数,如图17。各选项卡设置完成后,点击确定,在树上便会增加一个超级副本。

图 16 图

17

②用户特征

用户特征的使用方法与超级副本相同,如图18

图 18

③文档模板

点击“创建文档模板”命令,会弹出一个对话框,对话框的“文档”选项卡中默认选中当前的CATIA文件,如图19,“输入”选项卡也可以选中骨架元素,如图20,“已发布的参数”选项卡是可以选择需要更改的特征参数,点击“编辑列表”命令,会弹出一个对话框,选中左边“要发布的参数”,将它移到右边“已发布的参数”中,如图21。

图 19

图 20

图 21

2.6. 重力坝装配设计

重力坝的各部件保存为模板后,在先前设计的骨架下逐一调用各个部件模板进行装配。本文以挡水坝段和溢流坝段装配为例。

①骨架元素建立

在CATIA中新建一个“Product”文件,在“装配设计”工作界面下,新建一个零件,并命名为“骨架元素”,在零件“骨架元素”中建立四个元素,即左(右)坝肩

A(B)两点”、“连接A、B两点的坝轴线和垂直于坝轴线”和“过A点的

0+000.00桩所在的平面,将左(右)坝肩A(B)两点和过A点的0+000.00桩所在的平面(始0+000.00)发布出去,如图22。

图 22

②挡水坝段和溢流坝段装配

坝段装配设计时需要调用上文中保存的部件模板,生成部件模板时有三种方式(超级副本、用户特征和文档模板),所以在调用模板时有相对应的三种方式。下面以超级副本的运用为例。

在装配设计文件中,将CATIA工作界面设为知识工程中的“Product Knowledge Template”,单击“从文档实例化”命令,会弹出一个“选择文件”对话框,在此我们选中上文建立的挡水坝段的模板,如图23,单击打开按钮,可弹出“插入对象”对话框。对话框中的“参考”是指建立的“挡水坝段”超级副本模板,“输入”是超级副本模板中的骨架元素,“选定”是与超级副本模板中骨架元素相对应的大坝骨架元素。“参数”是挡水坝段的可修改的特征参数,如图24。选定骨架元素和更改参数后,单击“确定”按钮,即可得到大坝挡水坝段。按照同样方法可生成大坝的其它坝段,如图25。

图 23 图24

图 25

③超级副本、用户特征和文档模板三者的异同点

超级副本: 能在一个product里的part里(product,part都可以双击选中)建立多个元素,可以并列也可以是子父级,且显示的是整个原零件,包含辅助的平面和草图。选定部件(要复制的模板)和输入部件(定位)之间存在因果关系,输入部件是选定部件的画图基准。要更改的参数是和其它参数在一起的。用户特征:能在一个product里的part里(product,part都可以双击选中)建立多个元素,可以并列也可以是子父级,且显示的只是成果,没有其它辅助平面或草图。选定部件(要复制的模板)和输入部件(定位)之间存在因果关系,输部件是选定部件的画图基准。要更改的参数是和其它参数在一起的。

文档模板:只能在product(双击选中)环境下导入,导入的是单独零件,并列的,不能是子父级的,且显示的是整个原零件,包含辅助的平面和草图。选定

部件只能是整个零件,输入部件可以随便选择。要更改的参数是和其它参数不在一起,可以通过参数选项卡来显示“用户参数”或者“重命名参数”。

2.7. 二维图制作

由CATIA三维图可生成多种二维视图,如:正视图、剖面图、剖视图、局部放大图,现在以上文建立的三维体创建正视图和剖面图。

打开上文建立的三维体文件,进入工程制图界面(“开始”>“机械设计”>“工程制图”),在视图选项卡上单击“正视图”命令,窗口上会有一个“在3D几何图形上选择参考平面”的提示,如图26,此时将工作界面切换到三维体界面,选择正视图投影的面,即可生成正视图,如图27。剖面图是基于正视图创建的,在视图选项卡上单击“偏移截面分割”命令,在需要剖切的正视图上画一条剖视线,如图28,双击左键可以结束剖视线的绘制。单击图纸即可生成剖面图,如图29。

图 26

图 27 图28

图 29

3.拱坝参数化建模

拱坝主要分为双曲拱坝和重力拱坝,以双曲拱坝为例,其主要结构为:基本拱圈体形、闸墩、表孔、中孔、底孔、廊道及其他细部结构。下面具体介绍拱坝基本体形的参数化建模。

3.1. 拱圈方程

基本体型主要以拱圈曲线设计为主,常用的拱圈曲线主要为抛物线方程曲线、对数螺旋线方程曲线等。在CATIA中通过方程曲线建立坝体控制高程得拱圈曲线,再利用多截面拟合的方式生成拱坝基本体形实体完成基本体形设计。

以抛物线拱圈方程为例,基本体形如图30。

图 30

抛物线方程如下:

左岸:

右岸: 上游面:

上游面: uli tg Ruli x α?=

uri tg Ruri x α?=

Ruli x Ouli Ruli y ?-+=2)(2

Ruri

x Ouri Ruri y ?-+=2)(2

下游面:

下游面: dli tg Rdli x α?=

dri tg Rdri x α?=

Rdli x Odli Rdli y ?-+=2)(2

Rdri

x Odri Rdri y ?-+=2)(2 式中: Rdi 和Rui 分别表示下游坝面和上游坝面的拱端曲率半径;

Odi 和Oui 分别表示下游坝面和上游坝面的拱端曲率中心坐标;

脚标中l 和r 分别表示左半拱和右半拱。

3.2. 新建拱坝基本体型特征参数。

特征参数主要包括拱圈平面的高程Z 、 Ruli 、Ouli 、Ruri 、Ouri 、Rdli 、Odli 、Rdri 、Odri 、Xuri (上游坝面右拱圈的水平长度)、Xdri 、Xuli 、Xdli ,拱圈行控制参数h 。在这里我们新建顶层拱圈的相关特征参数,如图31

图 31

由于拱坝每层拱圈大致相同,可定义为一个系列产品,而零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,

中衡使用catia对弹簧进行参数化【设计明细】

圆形截面圆柱压缩弹簧设计 特性线呈线性,刚性稳定,结构简单,制造方便,应用较广,在机械设备中多用作缓冲,减震,以及储能和控制运动等。 现以下图(图0)为例做一个弹簧。 图0 圆形截面圆柱压缩弹簧创建过程 1.创建螺旋线 (1)首先打开CATIA应用程序,然后在【开始Start】下拉菜单中从【形状shape】/【创成式曲面设计Generative Shape Design】打开曲面设计工作平台,如图1所示,系统弹出【零部件名称Part Name】对话框。

(2)在弹出的【零部件名称Part Name】对话框中输入弹簧的零件名称:spring,单击【确定OK】按钮。用户也可在树状目录上右键单击,在弹出的关联菜单中选【属性Properties】,然后在选项板上修改【零部件名称Part Name】为spring,如图2所示,单击【确定OK】按钮后,树状目录也被相应修改,如图3所示。 图1 图2 图3 (2)单击【参考元素Points】工具栏上的【点Point】工具按钮,系统弹出如图4所示的【点定义Point Definition】对话框。在对话框的【点的形式Point type】选择坐标,x坐标改为11.5mm,y,z坐标分别为0mm。单击确定。

图4 (3)再单击【曲线Curves】工具栏上的【螺旋线Helix】工具按钮,系统弹出如图5所示的【螺旋曲线定义Helix Curve Definition】对话框。在对话框的【起点Start Point】中选中【Point.1】,在对话框的【轴Axis】中选中【z轴Z Axis】在对话框的【螺距Pitch】中填4mm,在对话框的【高度Height】中填4mm.单击确定。所画螺旋线如图6所示。 图5

CATIA全参数化建模理念

CATIA参数化建模理念 1.CATIA参数化建模思路 1.1.逆向建模 现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。 1.2.骨架设计 在传统的三维设计包含两种设计模式: ①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。 ②自上而下设计的设计理念为先总体规划,后细化设计。 大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。 1.3.参数化模板设计 一、参数化设计基本原理 参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。 ①参数(Parameter)是作为特征定义的CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。 ②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则(rules)、检查(checks)和设计表(design tables)。 ③公式(formulas)是用来定义一个参数如何由其他参数计算出的。 ④零件设计表:设计表是Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。 ⑤配置(Configuration)是设计表中相关的参数组的一组值。

[整理]catia参数化设计.

参数化 一.斜齿圆柱齿轮的几何特征 斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。 二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系 三.catia画图思路 我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:

a.首先用formula输入齿轮各参数的关系; b.画出齿轮齿根圆柱坯子; c.通过输入的公式得出一个齿的齿廓; d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面); e.将新的齿廓旋转到特定角度; f.多截面拉伸成形一个轮齿; g.环形阵列这个轮齿 这样,斜齿圆柱齿轮就画完了。 四.catia绘图步骤 1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示: 2.输入齿轮的各项参数 斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数 齿数 Z 模数 m 压力角 a 齿顶圆半径 rk = r+m 分度圆半径 r = m*z/2 基圆半径 rb = r*cosa 齿根圆半径 rf = r-1.25*m

螺旋角 beta 齿厚 depth 进入线框和曲面建模模块(或part design零件设计模块)如图: 输入各参数及公式,如图所示:

CATIA非参数化设计详解

CATIA V5非参数化设计详解 徐伟雄(QQ:95356494 Email:Xuweixiong2001@https://www.docsj.com/doc/1011647530.html,) ?CATIA 简介 CATIA是法国Dassault System公司推出的CAD/CAE/CAM一体化软件,居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域。 ?CATIA V5非参数化设计 CATIA 作为一个强大设计平台,可以完成各种复杂的产品设计。其无与伦比的曲面设计能力和强大的知识工程及电子样机技术使其市场占有率一直居高不下,越来越多的企业选择CATIA作为其设计和制造工具。与同类产品相比,CATIA同时具备了全参数化设计和非参数化设计的能力,兼具了二者的共同优点。 CATIA的参数化设计能力,对于使用过CATIA和了解过CATIA的读者来说势必有非常清楚的认识和体会,此处不做赘述。CATIA的非参设计能力和处理方式也是非常适用和强大的。尤其是在汽车工程设计、复杂的产品的结构设计或外形修改时采用非参的设计方式会非常方便。同时非参方式在数据轻量化、模型交付、知识保护等方便也具备明显的优势。 本文主要针对CATIA V5,介绍一下对模型做非参数化处理时的几种方法。(注:文中所指参数模式和非参模式均是针对设计时几何元素之间的关联性而言) ●工具条切换 在零件设计过程中可以利用菜单命令或工具按钮随时切换参数方式和非参数的设计方式。切换工具按钮为(Create Datum)。鼠标左键单击该按钮,当其处于高亮状态时表示当前的设计方式是非参设计模式,再次单

非常详细的CATIA实例教程

第五章CATIA V5创成式工程绘图及交互式工程绘图

目录 1产品介绍 (6) 2图标功能介绍(基本概念、基本界面介绍) (6) 2.1视图(Views)图标 (6) 2.2绘图(Drawing)图标 (7) 2.3尺寸(Dimensioning)图标 (8) 2.4生成(Generation)图标 (9) 2.5注释(Annotations)图标 (9) 2.6装饰(Dress up)图标 (9) 2.7几何元素创立(Geometry creation)图标 (10) 2.8几何元素修改(Geometry modification)图标 (12) 3软件环境设定(Customizing Settings) (13) 3.1一般环境参数设定(General) (13) 3.2布置(Layout)设置 (15) 3.3生成(Generation)设置 (16) 3.4几何元素(Geometry)设置 (17) 3.5尺寸(Dimension)设置 (17) 3.6操纵器(Manipulators)设置 (18) 3.7注释(Annotation)设置 (19) 4功能详解 (20) 4.1投影视图创建功能(Project) (20) 4.1.1前视图(Front View)创建详解 (20) 4.1.2展开视图(Unfolded View)创建详解 (20) 4.1.3从三维模型生成视图(View From 3D)详解 (21) 4.1.4投影视图(Projection View)创建详解 (21) 4.1.5辅助视图(Auxiliary View)创建详解 (21) 4.1.6轴侧图(Isometric View)创建详解 (22) 4.2剖面及剖视图创建功能(Section) (22) 4.2.1阶梯剖视图(Offset Section View)创建详解 (22)

基于CATIA的零件的参数化设计

基于CATIA的零件的参数化设计 作者:ee (ee) 指导老师:ee 【摘要】:介绍了在CATIA环境下渐开线圆柱齿轮的参数化设计、运动仿真以及常见滚动轴承零件库的建立方法。着重描述了渐开线圆柱齿轮齿廓的绘制、深沟球轴承、圆锥滚子轴承的建模过程。设计人员通过改变有关参数或从库中直接调用零件,就可达到设计要求,缩短设计周期、减少重复工作、提高设计效率。 【关键词】:CATIA; 参数化设计;渐开线;圆柱齿轮;轴承;零件库

Parametric design of parts based on CATIA Author: ee (ee) Tutor: ee [Abstract]:In this paper, a method to complete the parametric design, simulation of involute cylindrical gear and establish the common rolling bearing parts library by CATIA is introduced. The drawing of tooth profile of involute cylindrical gear and the process of modeling of deep groove ball bearings, tapered roller bearing is emphatically described. By changing related parameters or call directly from the parts library, it can achieve the requirements of design, shorten the design cycle, reduce duplication of work and improve the efficiency of design. [Key word]: CATIA; parametric design; involute; cylindrical gear; bearing; parts library

最新catia参数化设计

c a t i a参数化设计

参数化 一.斜齿圆柱齿轮的几何特征 斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。 二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系 三.catia画图思路 我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:

a.首先用formula输入齿轮各参数的关系; b.画出齿轮齿根圆柱坯子; c.通过输入的公式得出一个齿的齿廓; d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面); e.将新的齿廓旋转到特定角度; f.多截面拉伸成形一个轮齿; g.环形阵列这个轮齿 这样,斜齿圆柱齿轮就画完了。 四.catia绘图步骤 1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示: 2.输入齿轮的各项参数 斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数

齿数 Z 模数 m 压力角 a 齿顶圆半径 rk = r+m 分度圆半径 r = m*z/2 基圆半径 rb = r*cosa 齿根圆半径 rf = r-1.25*m 螺旋角 beta 齿厚 depth 进入线框和曲面建模模块(或part design零件设计模块)如图:

catia齿轮参数化设计

目录 一齿轮参数与公式表格————————————————————————PAGE 3 二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32

十创建齿轮实体———————————————————————————PAGE 35 一齿轮参数与公式表格

16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致) 二参数与公式的设置 三新建零件 依次点击———— ———— 点击按钮 现在零件树看起来应该如下: 四.定义原始参数 点击按钮,如图下所示: 这样就可以创建齿轮参数: 1.选择参数单位(实数,整数,长度,角度…) 2.点击按钮 3.输入参数名称 4.设置初始值(只有这个参数为固定值时才用) 现在零件树看起来应该如下: (直齿轮)(斜齿轮)多了个参数:b分度圆螺旋角 五定义计算参数 大部分的几何参数都由z,m,a三个参数来决定的,而不需要给他们设置值,因为CATIA能计算出他们的值来。 因此代替设置初始值这个步骤的是,点击按钮

非常详细的CATIA实例教程

第五章 CATIA V5创成式工程绘图及交互式工程绘图

目录 1产品介绍 (5) 2图标功能介绍(基本概念、基本界面介绍) (5) 2.1视图(Views)图标 (5) 2.2绘图(Drawing)图标 (6) 2.3尺寸(Dimensioning)图标 (7) 2.4生成(Generation)图标 (8) 2.5注释(Annotations)图标 (8) 2.6装饰(Dress up)图标 (8) 2.7几何元素创立(Geometry creation)图标 (9) 2.8几何元素修改(Geometry modification)图标 (10) 3软件环境设定(Customizing Settings) (12) 3.1一般环境参数设定(General) (12) 3.2布置(Layout)设置 (14) 3.3生成(Generation)设置 (14) 3.4几何元素(Geometry)设置 (15) 3.5尺寸(Dimension)设置 (16) 3.6操纵器(Manipulators)设置 (17) 3.7注释(Annotation)设置 (18) 4功能详解 (19) 4.1投影视图创建功能(Project) (19) 4.1.1前视图(Front View)创建详解 (19) 4.1.2展开视图(Unfolded View)创建详解 (19) 4.1.3从三维模型生成视图(View From 3D)详解 (19) 4.1.4投影视图(Projection View)创建详解 (20) 4.1.5辅助视图(Auxiliary View)创建详解 (20) 4.1.6轴侧图(Isometric View)创建详解 (21) 4.2剖面及剖视图创建功能(Section) (21) 4.2.1阶梯剖视图(Offset Section View)创建详解 (21) 4.2.2转折剖视图(Aligned Section View)创建详解 (22) 4.2.3阶梯剖面图(Offset Section Cut)创建详解 (22) 4.2.4转折剖面图(Aligned Section Cut)创建详解 (22) 4.3局部放大视图功能(Details) (23) 4.3.1局部放大视图(Detail View)创建详解 (23) 4.3.2多边形局部放大视图(Detail View Profile)创建详解 (24)

CATIA实用参数化建模理念

CATIA参数化建模理念 现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。 在传统的三维设计包含两种设计模式: ①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。 ②自上而下设计的设计理念为先总体规划,后细化设计。 大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。 一、参数化设计基本原理 参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。 ①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。参数有值,能够用关系式(Relation)约束。 ②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。 ③公式(formulas)是用来定义一个参数如何由其他参数计算出的。 ④零件设计表:设计表是 Excel或文本表格,有一组参数。表格中的每列定义具体参数的一个可能的值。每行定义这组参数可能的配置。零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。 ⑤配置(Configuration)是设计表中相关的参数组的一组值。

基于CATIA定位销的参数化设计

本设计属于自身独立完成并顺利完成答辩,具有很高的可靠性,绝对不弄虚作假,设计内容真实可靠,内含设计说明书、图纸、动画演示等,需要图纸和设计详细电子档的加QQ:3103064563,旨在共同进步, 寻求共同提高!!!! 基于CATIA定位销的 参数化设计 毕业设计

论文题目基于CATIA定位销的参数化设计 姓名0000000 学号11530082 院系经济技术学院专业机械设计制造及其自动化指导教师000000 职称教授 中国·合肥 二o一五年六月

目录 摘要 (1) 第一章绪论 (2) 1.1课题研究背景及意义 (2) 1.2 CAD/CAM的介绍 (2) 1.3 CATIA简介 (3) 第二章参数化设计 (4) 2.1 参数化设计简介 (4) 2.2 参数化设计方法 (4) 2.3 参数化设计思路 (4) 2.4 定位销参数化建模及其实现方法 (4) 2.5 利用系统参数与尺寸约束驱动定位销零件图 (5) 第三章定位销参数化建模 (6) 3.1 技术条件 (6) 3.2 固定式定位销工程图及参数 (6) 3.3 固定式定位销参数化建模 (7) 第四章零件库的建立 (14) 4.1 功能模块介绍 (14) 4.2 定位销零件库的建立 (14) 4.3定位销零件库总览 (15) 第五章定位销的简单应用 (21)

5.1应用简介 (21) 5.2应用装配简介 (21) 5.2.1固定式定位销组合 (21) 5.2.2可换式定位销与定位衬套组合 (22) 5.2.3定位插销与定位衬套组合 (23) 结论 (24) 致谢 (25) 参考文献 (26)

相关文档
相关文档 最新文档