文档视界 最新最全的文档下载
当前位置:文档视界 › 液压缸设计

液压缸设计

液压缸设计
液压缸设计

第一章液压系统设计

1.1液压系统分析

1.1.1 液压缸动作过程

3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数

(1)合模力;

(2)最大液压压28Mp;

(3)主缸行程700㎜;

(4)主缸速度υ

快=38㎜/s、

υ

慢=4.85㎜/s。

1.1.2分析负载

(一)外负载压制过程中产生的最大压力,即合模力。

(二)惯性负载

设活塞杆的总质量m=100Kg,取△t=0.25s

(三)阻力负载

活塞杆竖直方向的自重

活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。

静摩擦阻力

动摩擦阻力

由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。

F/N v/mm s-1

537 491

981 38

4.85

0 l/mm 0 l/mm

-491 -981

由已知速度υ

快=38㎜/s、

υ

慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如

图***所示。

1.2确定执行元件主要参数

1.2.1 液压缸的计算

(一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。

鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。

由合模力和负载计算液压缸的面积。

将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

由此得液压缸两腔的实际有效面积

(二)确定液压缸壁厚

根据公式计算液压缸壁厚。

式中:δ=管壁厚 mm

P=最大压力 kg/cm2

D=液压缸径 mm

许用应力,[]=,n为安全系数,此处取n=5。

=抗拉强度最低值

设定油缸用料45#,抗拉强度600Mp,最大压力28MP,管径400mm,则最小壁厚

,此处取壁厚δ=60㎜。

(三) 液压缸及活塞杆长度的确定

(1)液压缸工作行程长度 =700mm。

(2)最小导向长度的确定

当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。

对一般的液压缸,最小导向长度H应满足以下要求:

式中:L——活塞杆的最大行程;

D——液压缸的径。

l,根据液压缸径D而定;

活塞的宽度B一般取B=(0.610)D;缸盖滑动支承面的长度

1

当D<80mm时,取;

当D>80mm时,取。

l和B都是不适宜的,必要时可在缸盖与活塞之间为保证最小导向长度H,若过分增大

1

增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即

滑台液压缸:

最小导向长度:

取 H=240mm

活塞宽度:B=0.6D=240mm

缸盖滑动支承面长度:㎜

隔套长度:。

液压缸缸体部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于径的2030倍。

液压缸:

缸体部长度,即活塞杆长度

(四)活塞杆稳定性校核

活塞杆受轴向负载,其值F超过某一临界值,就会失去稳定。活塞杆稳定性按下式进行校核。

式中:——安全系数,一般取2 4,此处取。

活塞杆长细比940/280=3.36

当活塞杆的长细比时,且时

式中:——安装长度,其值与安装方式有关;

——活塞杆横截面最小回转半径,;

——柔性系数;

——由液压缸支撑方式决定的末端系数;

E——活塞杆材料的弹性模量,对钢,可取

——活塞杆横截面惯性矩;

——活塞杆横截面积;

——由材料强度决定的实验值;

——系数。

以上各值参考章宏甲主编《液压与气压传动》第二版130页液压缸强度校核中表3-4、表3-5所取。

2.2 液压缸的结构设计

液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设计计算过程

1)缸体与缸盖的连接形式

缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。

本次设计中采用外半环连接,如下图所示:

缸体与缸盖外半环连接方式优点:

(1)结构较简单;

(2)加工装配方便。

缺点:

(1)外型尺寸大;

(2)缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构。

参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:

图2 活塞杆与活塞螺纹连接方式

特点:

结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

2)活塞杆导向部分的结构

(1)活塞杆导向部分的结构,包括活塞杆与端盖、导向套的结构,以及密封、防尘和锁紧装置等。导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构。后者导向套磨损后便于更换,所以应用较普遍。导向套的位置可安装在密封圈的侧,也可以装在外侧。机床和工程机械中一般采用装在侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边开,以提高密封性能。

参阅<<液压系统设计简明手册>>P16表2-9,在本次设计中,采用导向套导向的结构形式,其特点为:

导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料。

盖与杆的密封常采用Y形、V形密封装置。密封可靠适用于中高压液压缸。

防尘方式常用J形或三角形防尘装置活塞及活塞杆处密封圈的选用

活塞及活塞杆处的密封圈的选用,应根据密封的部位、使用的压力、温度、运动速度的围不同而选择不同类型的密封圈。

参阅<<液压系统设计简明手册>>P17表2-10,在本次设计中采用O形密封圈。

活塞杆的计算及校核

1.强度校核

由以上计算有:活塞杆直径d=0.3m。按公式进行校核。

式中:F——活塞杆上的作用力。

--活塞杆材料的许用应力,。

经过计算得=96.7mm,显然d=300mm﹥96.7mm。

2. 稳定性校核

活塞杆受轴向压缩时,其值F就会超过某一临界值F k,就会失去稳定性。活塞杆的稳定性按下式进行校核。

式中:——安全系数,一般取24。此处取4。

1.强度校核

由以上计算有:活塞杆直径d=0.3m 。按公式进行校核。

式中:F——活塞杆上的作用力。

--活塞杆材料的许用应力,

经过计算得=96.7mm,显然d=300mm﹥96.7mm。

2. 稳定性校核

活塞杆受轴向压缩时,其值F就会超过某一临界值F k,就会失去稳定性。活塞杆的稳定性按下式进行校核。

式中:——安全系数,一般取24。此处取4。

1.3确定液压系统方案

1.3.1设计液压系统方案

由于该热压成型机是固定式机械,且不存在外负载对系统做功的工况,由表***知,此热压机液压系统功率大,运动速度小,工作负载变化也小。

表***液压缸在不同工作阶段的压力、流量和功率值

工况

负载

F/N

回油腔压力

/Mp

进油腔压力

/Mp

输入流量输入功率

P/kW

计算式

启动981 0 0.508 ——

/加速537

0.7

0.811

恒速491 0.810 4.776 3.869

慢速

下0.7 20 0.612 12.2

/

保压0.7 26.460 0 0

/

返回10301 0.7 1.796 2.09 6.002

/

注:液压缸的机械效率取,

从表中可以看出,在此液压系统的工作循环,液压缸要求油源交替的提供低压大流量和

高压小流量的油液。

液压缸完成工作所需的时间围为:设活塞杆快速行进的长度为620mm,慢速行进的路程

为80mm,则有:

液压缸一个循环的工时间较长,可选用双联泵的方式进行供油。

1.3.2确定系统方案,拟定液压系统图

(一)设计液压系统方案

由于该液压机是固定式机械,存在负载制动过程,由表***知,此液压机属于中等功率、中高压系统,工作负载变化大,根据液压机设计规,液压系统宜采用容积调速的开环为宜。为解决系统卸荷后的活塞杆下滑,在回油路上设置单向阀和背压阀。

(二)选择基本回路

1.选择快速回路和换向回路

系统中采用容积调速回路,必须具有单独的油路直接通向液压缸两腔,以实现快速运动。在本系统中,快进、快退换向回路采用图***所示的形式。

2.选择速度换接回路

由工况图***********(图*****)中的q l曲线可知,当活塞杆从快进转为慢进时,

输入液压缸的流量由286.56L/min降至为36.6L/min,活塞杆的速度变化较大,可选用行程

阀来控制速度的换接,以减小液压冲击。当活塞杆由慢退改为快退时,回路过的流量很大——

进油路过125.4L/min,回油路过125.4×

(0.1257/0.0550)L/min=286.6L/min。为了保证液

压系统平稳起见,采用换向时间可调的电磁换向阀

换接回路。

3.选择调压和卸荷回路

油源中有溢流阀调定系统工作压力,因此调压

问题已在油源中解决,无须另外再设调压回路。而

且系统采用容积调速,故溢流阀常开,即使活塞杆

被卡住,系统压力也不会超过溢流阀的调定值,所

以溢流阀又起安全阀的作用。在此液压系统中使用了M型三位四通阀,当活塞杆停止时,液压泵可经此阀卸荷。因而不需要再设置卸荷回路。

4.保压回路

系统要在某一个设定的压力下维持工作一定的时间,因此,应该设有保压回路。在液压缸进口处安装一个单向阀,液压泵提供的流量通过单向阀进入液压缸,,当达到设定的工作压力后,压力继电器动作,使系统处于卸荷状态下,此时,液压缸的油液由于有单向阀的作用,因此不能够流动,液压缸的压力保持恒定。因此单向阀基能保压同时又能保证在液压泵出现故障时,液压缸中的油液不会被倒吸。

5.补压回路

保压过程维持一定的时间后,由于系统有泄漏,液压缸的压力有所损失,以至于影响工件的加工,为了能够保证系统绝对的达到所需要的压力,需要对系统进行补压。补压无需另设回路,即按照加压时的回路进行。

(三)将液压回路综合成液压系统

1. 将已确定的各种液压回路组合在一起,就可得到一图*****所示的液压系统原理图。如图****所示。在此基础上,对液压系统图进行完善。

(1)为了解决活塞杆在自重的作用下快速下滑时进油腔形成无油区,在液压缸上腔设置上位补偿油箱,当油液出现真空区时自动补上。

(2)活塞杆由快速到慢速转换时,应该有行程开关做保护,另外,当活塞杆接近工件及法兰时都应有相应的行程开关做保护。

(3)解决液压缸缓慢下行的问题。当活塞杆到达行程开关2S时,若要能够实现缓慢的下行,需在回油路增加一个能够使流量快速减小的阀,此阀为背压阀,图中已有。

(4)系统中采用的单向阀为液控单向阀,因此必须有控制回路来控制单向阀的双向通流。因此需要加一个定量控制泵。

(5)由于保压时液压缸的压力很大,而且液压缸进口处的单向阀锁定了液压缸,使液压缸不能返回,为此要加一回路,使液压缸能够平稳快速返回。同时维持上位油箱的油液循环利用,必须要对上位油箱进行自动补油。此处用液控单向阀控制上位油箱和液压缸,达到功能互补作用。

(6)由于是变量泵供油,下液压缸应该设置过载保护以及调压控制回路。

(7)系统中加滤油器。

2.改善后的液压系统图如图***所示。其

工作循环过程及动作如下:

(1)启动

电磁铁全部不得电,主泵输出油液通

过阀10、23中位卸载。

(2)主缸快速下行

电磁铁1YA、5YA 得电,阀4处于左

位,控制油经阀21使液控单向阀20开启。

进油路:泵1、2-阀10左位-阀13

-主缸上腔。

回油路:主缸下腔-阀20-阀10左

位-阀21中位-油箱。

主缸滑块在自重作用下迅速下降,泵1

虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,上位油箱15 的油液经充液阀16(液控单向阀) 进入主缸上腔。保证了上腔的液流。

(3)主缸慢速接近工件、加压

当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀21关闭,主缸下腔油液经背压阀19、阀10左位、阀15中位回油箱。同时8YA接通,泵1卸荷。这时,主缸上腔压力升高,阀16关闭,主缸在泵2供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵2的输出流量自动减小。

(4)保压

当主缸上腔压力达到预定值时,压力继电器12发信号,使2YA失电,阀10回中位,主缸上下腔封闭,单向阀13和充液阀16的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵2经阀10、23的中位卸载。

(5)补压

由于各种阀存在不同程度的泄漏,经过一定时间的保压过程,液压缸的压力有所损失。为了达到良好的压制效果,需要对液压缸进行补压,补压过程中油液的流向及各阀的状态同(3)。(6)泄压

保压结束,主缸回程,时间继电器发出信号,由于此时主缸上腔压力很高,因而暂不向液压缸输油。4YA接通,阀14处于右位,当压力减到一定值时,2YA、8YA得电,阀10处于右位。泵1、泵2同时供油,实现液压缸的快速回程。油液经过阀8回到油箱。当液压缸压力减小到一定值时,4YA失电,3YA得电,此时,液控单向阀10打开,液压缸油液经阀10回到上位油箱。以此补充上位油箱的油液。此过程能够实现快速回程。

(7)主缸原位停止

当主缸滑块上升至触动行程开关1S,2YA失电,阀10处于中位,液控单向阀13将主缸下腔封闭,主缸原位停止不动。泵1、2 输出油液经阀10、23中位卸载。(8)下缸顶出及退回。

(8)下缸顶出及退回

6YA得电,阀23处于上位。进油路:泵1、泵2-阀10中位-阀23上位-下缸左腔。回油路:下缸右腔-阀23上位-油箱。6Y失电,7Y得电,阀21处于下位,下缸活塞下行,退回。完成一个工作循环。

表********电磁铁工作情况表

第二章液压元件的选择2.1计算液压缸流量

由已知运动参数及计算知:活塞杆的最快运动速度υ

快=38㎜/s,无杆腔面积

通过液压缸的最论流量:

L/min

2. 2液压元件的选择

2.2.1确定液压泵规格和驱动电机功率

由已知条件液压机最大工作压力为28Mp,由最大压和液压主机类型,考虑到进出油路上阀和管道的压力损失为1MPa(含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为:

Mp

液压泵的最大流量应为:

式中为液压泵的提供的最大流量。

同时动作的各执行元件所需流量之和的最大值,

L

K-系统泄漏系数,一般取,此处取。

1.选择液压泵的规格

由于液压系统的工作压力高,负载压力大,属于大功率,大流量系统。所以选定量叶片泵和变量柱塞泵组成的双联泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:

(1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是2040Mp,最高可以达到100Mp。

(2)流量围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。

(3)改变柱塞的行程就能改变流量,容易制成各种变量型。

(4)柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。

根据以上算得的和在查阅相关手册《机械设计手册》成大先P20-195得:现选用斜盘式轴向柱塞泵。排量为225ml/r,额定压力35Mpa,额定转速1500r/min,

驱动功率191KW,容积效率92%

≥,重量88kg,容积效率达92%。

2.与液压泵匹配的电动机的选定

由前面得知,本液压系统最大功率出现在慢速加阶段,这时液压泵的供油压力值为

20Mpa,流量为36.6L/min。液压泵的总效率。柱塞泵为0.80~0.85,取

p

η-0.82。

则液压泵驱动电机功所需的功率为:

选择电动机 *******,其额定功率为18.5KW。

2.2.2阀类元件及辅助元件的选择

1. 对液压阀的基本要求:

(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。

(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大

2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格

选取阀类元件及其辅助元件的主要依据是根据该阀(元件)在系统工作时的最大工作压力和通过该阀的最大实际流量以及阀(元件)的动作方式、安装固定方式、压力损失数值、工作性能参数和工作寿命等条件来选择标准阀类(元件)。

序号元件名称额定流量

L/min 额定压力

MPa

额定压降

MPa

型号规格

1 2 3 4 5 6 7 8 9

10

11

12

13

液压站的设计

第一节液压站简介

液压站是由液压油箱、液压泵装置及液压控制装置三大部分组成。液压油箱装有空气滤清器、滤油器、液面指示器和清洗孔等。液压泵装置包括不同同类型的液压泵、驱动电机及其它们之间的联轴器等。液压控制装置是指组成液压系统的各阀类元件及其联接体。

机床液压站的结构型式有分散式和集中式两种类型。

(1)集中式

这种型式将机床按压系统的供油装置 , 控制调节装置独立于机床之外,单独设置一个液压站。这种结构的优点是安装维修方便,控制调节装置独立于机床之外,液压装置的振动、发热都与机床隔开;缺点是液压站增加了占地面积。

(2)分散式

这种型式将机床液压系统的供油装置、控制调节装置分散在机床的各处。例如利用机床床身或底座作为液压油箱存放液压油。把控制调节装置放任便于操作的地方。这种结构的优点是结构紧凑,泄漏油易回收,节省占地面积,但安装维修不方使。同时供油装置的振动、液压油的发热都将对机床的工作精度产生不良影响,故较少采用,一般非标设备不推荐使用。

第二节油箱设计

在开式传动的油路系统中,油箱是必不可少的,它的作用是,贮存油液,净化油液,使油液的温度保持在一定的围,以及减少吸油区油液中气泡的含量。因此,进行油箱设计时候,要考虑油箱的容积、油液在油箱中的冷却、油箱的装置和防噪音等问题。

一油箱有效容积的确

(一)油箱的有效容积

油箱应贮存液压装置所需要的液压油,液压油的贮存量与液压泵流量有直接关系,在一般情况下,油箱的有效容积可以用经验公式确定:

( 6.1)

式中,——油箱的有效容积(L);

Q ——油泵额定流量(L/min);

K ——系数;

查参考文献[1],P47,取K=7,油泵额定流量Q=41.76 L/min,代入公式6.1,计算得: =7×41.76=292.32 L

油箱有效容积确定后,还需要根据油温升高的允许植,进行油箱容积的验算。

(二)油箱容积的验算

液压系统的压力、容积和机械损失构成总的能量损失,这些能量损失转化为热量,使系统油温升高,由此产生一系列不良影响。为此,必须对系统进行发热计算,以便对系统温升加以控制。

液压系统发热的主要原因,是由于液压泵和执行元件的功率损失以及溢流阀的溢流损失所造成的,当液压油温度升高后,会引起油液粘度下降,从而导致液压元件性能的变化,寿命降低以及液压油老化。因此,液压油必须在油箱中得到冷却,以保证液压系统正常工作。

1 系统总的发热公率

系统总的发热公率H是估算得来的,查参考文献[1],P 46,得系统总的发热公率H 估算公式:

(6.2)

式中,N——液压泵输入功率( KW);

——执行元件的有效功率(KW);

若一个工作循环中有几种工况,则应求出其总平均有效功率,系统总的发热公率:H=N(1-η)(6.3)式中η——系统总效率。

由查参考文献[5],液压泵输入功率:

N=Nd×η1 (6.4)式中Nd——电动机功率(KW);

η1——联轴器传动效率。

查参考文献[5] P7,取η=0.99,代入公式6.4得:

N=0.99×7.5KW=7.425KW

所以,液压泵输入功率N=7.425KW。

将N=7.425KW代入公式6.3,得:

H= N(1-η)=7.425×(1-0.695)KW=2.265KW。

2 散热功率及温升

油路系统的散热,主要靠油箱表面散热,油箱的散热功率可以用下式进行估算: =KA (KW) (6.5)

式中, K——油箱的散热系数(KW/ ℃);

A——油箱散热面积();

——系统温升植(℃)。

其中,油箱的散热面积可以用下式估算

A=0.065 ()(6.6)

式中,——油箱的有效容积(L)。

液压系统的热平衡条件:

机器在长期连续工作下,应该保持系统的热平衡,其热平衡式为:

H-

=0,(6.7) H-KA =0,(6.8)

(6.9)

查参考文献[1],P40,取K=0.025 KW/ ℃,将K=0.025代入公式6.9,得: = =29.7℃

查参考文献[1]表3-32所给的允许值为:一般工作机械≤35℃,故系统温升验算合格。

二油箱的结构设计

(一)结构简介

长期以来,液压油箱的结构型式,基本上是由矩形板折边压形成四棱柱,再用封板堵住两侧而构成。端部封板及中间隔板由冲压成形,箱体是经四次压圆角,接头外焊接而成的。这种结构的液压油箱制造工艺较差,主要表现在箱体钢板下料时要求的精度较高;压形的反弹量因每次供货钢板的机械性能不同有所不同,导致箱体的圆角与衬板的半径吻合不良;不同机型上的液压油箱必须使用自己专用的一套压型模具。每套模具的体积大、造价高、利用率低。图6.1所示的液压油箱完全不用压形模,而是利用折边机折边成形。箱底面及端部,以及箱底面和侧面分别折成U形断面;再焊好加油口和中间隔板等附件后,扣合拼焊而成。这种结构的液压油箱具有以下优点:下料精度要求不高;对原材料机械性能适应力强;折边部位可随意调整,适合多品种小批量生产;不用模具,大大节省了费用,缩短了生产周期等等。这种结构的液压油箱,近年来被我们广泛应用在工程机械、建筑机械等行走机械上。

图6.1

(二)结构设计

通过对油箱的了解,压装机的油箱,是单件的生产,因此,采用拼焊的方法焊接而成。进行油箱结构设计时,首先考虑的是油箱的刚度,其次考虑便于换油和清洗油箱以及安装和拆卸油泵装置,当然,从企业的方面考虑,油箱的结构应该尽量简单,以利于密封和降低造价。

(1)油箱体油箱体由A3钢板焊接而成,取钢板厚度3~6mm,箱体大者取大值,本压装机的油箱板厚度为4mm。在油箱侧壁上安装油位指示器。在油箱与隔板垂直的一个壁上常常开清洗孔,以便于清洗油箱。

(2)油箱底部油箱底部采用倾斜的方式,用焊接方法与壁板焊接而成,采用这种结构,便于排油,底部最低处有排油口,排油口与基础面的距离为150mm,。

焊接结构油箱,油箱用A3钢板,其厚度等于侧壁钢板的厚度,为4mm。

(3)油箱隔板为了使吸油区和压油区分开,便于回油中杂质的沉淀,油箱中设置了隔板。隔板的安装方式主要有两种,第一种:回油区的油液按一定方向流动,既有利于回油中的杂质、气泡的分离,又有利于散热。第二种:回油经过隔板上方溢流至吸油区,或经过金属网进入吸油区,更有利于杂质和气泡的分离。在本压装机的设计中,采用隔板的方式,主要为了将沉淀的杂质分开。

隔板的位置在油箱的中间,将吸油区和回油区分开,隔板的高度,为最低油面的1/2。隔板的厚度等于油箱侧壁厚度。

(4)油箱盖油箱盖多用铸铁或钢板两种材料制造,现采用钢板,在油箱盖上钻下列通孔:回油管孔、通大气孔(孔口有空气滤清器)以及安装液压集成装置的安装孔。

(三)减少油箱噪音

防噪音问题是现代机械装备设计中必须考虑的问题之一。油路系统的噪音源,以泵站为首,因此,进行油箱设计时,从下列几方面减轻噪音:

(1)油箱与箱盖间增加防振橡皮垫:

(2)用地脚螺栓将油箱牢固固定在基础上;

(3)油泵排油口用橡胶软管与阀类元件相连接;

(4)回油管管接头振动噪音较大时,改变回油管直径或增设一条回油管,使每个回油管接头的通路减少。

第三节液压站的结构设计

一液压泵的安装方式

液压泵装置包括不同类型的液压泵.驱动电动机及其联轴器等。其安装方式分为上置式和非上置式两种。

(1) 上置式安装将液压泵和与之相联的油管放在液压油箱(如图6.2),这种结构型式紧凑、美观,同时电动机与液压泵的同轴度能保证,吸油条件好,漏油可直接回液压油箱,并节省地面积。但散热条件不好。

图6.2

(2)非上置式安装将液压泵和与电动机放在液压油箱旁,(如图6.3)所示,这种结构,振动较小,油箱的清洗比较容易,但占地面积较大,吸油管与泵连接要求严格,应用于较大型液压站。

图6.3

YZJ压装机的液压系统安放在压装机的结构架上面,要求结构紧凑,站地面积小,经过对比分析,采用上置式安装,通过螺栓将电机上的法兰与油箱和好的固定在一起,并且将泵放在油箱,泵浸在油液中,可以改善泵的吸油条件。

二液压泵与电动机的连接

将液压泵与电动机连接方式,采用联轴器,用来把电动机轴与泵轴联接在一起,机器运转时两轴不能分离;只有在机器停车并将联接拆开后,两轴才能分离(如图6.4)。

图6.4

(一)选择联轴器的类型

联轴器有刚性联轴器、挠性联釉器两大类,其中挠性联釉器又可以分为无弹性元件的挠性联釉器和有弹性元件的挠性联釉器两大类别。选择联釉器考虑以下几点:(1)所需传递的转矩大小和性质以及对缓冲减娠功能的要求。例如,对大功率的重载传动,可选用齿式联轴器;对严重冲击载荷或要求消除轴系扭转振动的传动,可选用轮胎式联袖器等具有高弹性的联轴器。

(2)联轴器的工作转速高低和引起的离心力大小。对于高速传动轴,应选用平衡精度高的联轴器,例如膜片联轴器等,而不宜选用存在偏心的滑块联轴器等。

液压泵与电机之间的联轴器,一般用简单弹性套柱销联轴器或弹性。其二者的共同特点

是传递扭矩围较大,转速较高,弹性好,能缓冲扭矩急剧变化引起的振动,能补偿轴位移。但在使用中应定期检查弹性圈。

(二)计算联轴器的计算转矩

由于机器起动时的动载荷和运转中可能出现的过载现象,所以应当按轴上的最大转矩作为计算转矩Tca,查参考文献[4] P343,计算转矩按下式计算;

TCa=KAT (6.10)

式中 T——公称转矩,单位为N?m;

KA——工作情况系数。

查参考文献[4] 表14-1,转矩变化小,原动机为电动机,得KA=1.3。KA=1.3代入公式6.10,计算得:

=9550 =49.74N?m。

TCa= KAT=1.3×49.74=64.66N?m。

(三)确定联轴器的型号

根据计算转矩Tca及所选的联轴器类型,按照

Tca≤[T]

的条件出联轴器标准中选定该联轴器型号。

查参考文献[4]表17-5,选择ML3型梅花形弹性联轴器,该型号联轴器公称扭矩为[T]=90N?m>Tca,许用转速[n]=6700r/min,满足要求。

(四)安装联轴器的技术要求

技术要求如下:

(1)半联轴器Ⅰ做主动件。

(2)联轴器与电动机轴配合时采用H7/H6配合,与泵轴则采用H8/H7的配合

(3)最轴度偏差不大于0.1mm,轴线倾角不大于40′

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压缸设计

液压缸设计指导书 机械工程学院 机设教研室

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供机械专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。最后人均一题,避免重复。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验算,以及各连接部分的强度计算。 4、导向、密封、防尘、排气和缓冲等装置的设计。 5、整理设计说明书。绘制工作图。 应该指出,不同类型和结构的油缸,其设计内容量是不同的,而且各参数之间需要综合考虑反复验算才能得出比较满意的结果。因此设计步骤不可能是固定不变的。 五、结构型式的确定

液压油缸设计

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

液压缸设计说明书范本

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为0N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。

减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改进液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,经过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化能够提高工作可靠性,实

液压缸设计规范

液压缸设计规范 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

液压缸的设计计算规范

目录:一、液压缸的基本参数 1、液压缸内径及活塞杆外径尺寸系列 2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式 1、液压缸类型 2、液压缸安装方式 三、液压缸的主要零件的结构、材料、及技术要求 1、缸体 2、缸盖(导向套) 3、缸体及联接形式 4、活塞头 5、活寒杆 6、活塞杆的密封和防尘 7、缓冲装置 8、排气装置 9、液压缸的安装联接部分(GB/T2878) 四、液压缸的设计计算 1、液压缸的设计计算部骤 2、液压缸性能参数计算 3、液压缸几何尺寸计算 4、液压缸结构参数计算

5、液压缸的联接计算 一、液压缸的基本参数 液压缸内径及活塞杆外径尺寸系列 8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110) 125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 液压缸的行程系列(GB2349-1980) 25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600 二、液压缸的类型和安装办法 液压缸的类型 对江东机械公司而言 液压缸的安装方式

液压缸组件设计说明书

晋中学院本科毕业设计 题目液压缸组件设计 院系机械学院 专业机械设计制造及其自动化姓名刘晓萍 学号0914112114 学习年限2009年9月至2013年6月指导教师李彩联职称讲师 申请学位工学学士学位 2013年05 月30 日

液压缸组件设计 学生姓名:刘晓萍指导教师:李彩联 摘要:在液压与气压传动系统中,会经常用到液压活塞缸的形式,它广泛地存在于各个领域中。通常活塞缸的组成部分是缸底、缸筒、活塞、活塞杆和端盖等主要部件。有时,在液压缸的连接处,比如缸体和缸盖法兰部分,缸盖与活塞部分,活塞与活塞杆部分等需要安装密封装置,以减少和防止外部灰尘或者内部油液的进出和泄露。缸体的运动过程中,由于惯性、速度、质量等原因,活塞在运动到行程终端时会与缸底发生碰撞,从而引起能量的损失和传动失衡,因此需要在缸体内部安装缓冲装置。此外,在必要时还需要在液压缸体的某些部位安装排气装置和防尘装置以使整个传动机构精度提高、效率提升。液压缸的设计需要根据已给数据和要求来进行,对液压缸的结构进行设计、选择、检验、制造等方面的考虑。 关键字:活塞;活塞杆;缸盖;缸体;

Design specification of the hydraulic cylinder assembly Author’s Name:Liu Xiaoping Tutor:Li Cailian ABSTRACT:The piston cylinder usually be used in the hydraulic and pneumatic drive system,the main part of the piston cylinder is bottom, cylinder, piston, piston rod and cover. To prevent the working medium to the outside of the cylinder or by a high-pressure chamber to the low pressure chamber leakage, a seal between the cylinder cover, piston and piston rod, piston rod with end caps, piston and cylinder device. The outside of the end cap is also equipped with dust-proof device. In order to prevent impact cylinder head, piston rapid movement to the stroke end cushioning device may also be provided in the end portion of the cylinder. The basic part of the cylinder by cylinder assembly, the piston assembly, the sealing member, and a buffer, the connection member. Further, according to the needs cylinder is also provided with the exhaust means and dustproof device. During the design of the hydraulic cylinder, in accordance with the requirements of the working pressure, velocity, working conditions, processing and disassembly repair sum considering the structure of the various parts of the cylinder. KEYWORDS:piston;piston rod;cylinder head;cylinder

液压缸的设计

目录 一、设计要求——————————————————————-1 题目—————————————————————————1 二、各零部件的设计及验算————————————————-5 1、缸筒设计———————————————————————5 2、法兰设计———————————————————————14 3、活塞设计———————————————————————19 4、活塞杆设计——————————————————————21

?一、设计一单活塞杆液压缸,工作台快进时采用差动联接,快进、快退速度为5m/min。当工作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压力为6.3MPa,工作行程L=100mm。 ?要求:(1)确定活塞和活塞杆直径。(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。 1、主要设计参数: ?(1)外载F=25×103N,背压P2=0.5MPa ?(2)工进、快退速度V1= 5m/min。 ?(3)泵的公称流量q=25L/min,公称压力为P1=6.3MPa ?(4)工作行程L=100mm ?(5)缸筒材料的自选(教材仅作参考) 2、设计提要 ①、液压油缸主要参数给定 在设计要求中已经提到的参数这里就不再赘述,下面只给出此次设计中液压油缸主要部件的其他参数: 缸内径:D=100mm; 缸外径: D=116mm; 1 壁厚: =8mm; 极限推力: F=25KN; max 活塞杆直径: d=70mm;

活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min 说明:液压缸的效率 油缸的效率η:本设计不考虑效率 ②、法兰安装方式 螺纹连接 ③、缓冲机构的选用 一般承压在10MP以上应当选用缓冲机构,本次设计中,工作压力为3.5MP,因此缓冲机构从略。 ④、密封装置选用 选用Y型密封圈. ⑤、工作介质的选用 因为工作在常温下,所以选用普通的是油型液压油即可。 ⑥、缸筒的加工要求 对于橡胶圈密封,缸筒内径D采用H9/f9级配合,表面粗糙度 R为 a 0.4; 热处理:调质,HB≥240; 缸筒内径D的圆度、圆柱度不大于直径公差的一半,使用活塞环密封时,不大于内径公差之1/3;

液压缸设计规范

液压缸设计规范 Revised as of 23 November 2020

液压缸的设计计算规范

目录:一、液压缸的基本参数 1、液压缸内径及活塞杆外径尺寸系列 2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式 1、液压缸类型 2、液压缸安装方式 三、液压缸的主要零件的结构、材料、及技术要求 1、缸体 2、缸盖(导向套) 3、缸体及联接形式 4、活塞头 5、活寒杆 6、活塞杆的密封和防尘 7、缓冲装置 8、排气装置 9、液压缸的安装联接部分(GB/T2878) 四、液压缸的设计计算 1、液压缸的设计计算部骤 2、液压缸性能参数计算 3、液压缸几何尺寸计算 4、液压缸结构参数计算

5、液压缸的联接计算 一、液压缸的基本参数 液压缸内径及活塞杆外径尺寸系列 8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110) 125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 液压缸的行程系列(GB2349-1980) 25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600 二、液压缸的类型和安装办法 液压缸的类型 对江东机械公司而言 液压缸的安装方式

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

液压油缸课程设计说明书

课程设计说明书(液压油缸的压力和速度控制)

目录 1、设计课题 (3) 1.1设计目的 (3) 1.2设计要求 (3) 1.3设计参数 (3) 1.4设计方案 (3) 2、设计方案 (4) 2.1工况分析 (4) 2.2拟定液压系统 (6) 3、机械部分计算 (9) 3.1液压缸的设计计算 (9) 3.2液压缸的校核计算 (12) 3.3液压缸结构设计 (15) 3.4选择液压元件 (17) 4 、系统的验算 (20) 4.1.压力损失的验算 (20) 4.2 系统温升的验算 (21) 5、电气部分设计 (23) 5.1控制系统基本组成 (23) 5.2PLC控制系统的流程图 (24)

1 设计课题 1.1设计目的 通过课程设计培养学生综合运用所学知识和技能、提高分析和解决实际问题能力的一个重要环节,专业课程设计是建立在专业基础课和专业方向课的基础上的,是学生根据所学课程进行的工程基本训练,课程设计的目的在于: 1、培养学生综合运用所学的基础理论和专业知识,独立进行机电控制系统(产品)的初步设计工作,并结合设计或试验研究课题进一步巩固和扩大知识领域。 2、培养学生搜集、阅读和综合分析参考资料,运用各种标准和工具书籍以及编写技术文件的能力,提高计算、绘图等基本技能。 3、培养学生掌握机电产品设计的一般程序和方法,进行工程师基本素质的训练。 4、树立正确的设计思想及严肃认真的工作作风。 1.2设计要求 执行元件:液压油缸; 传动方式:电液比例控制; 控制方式:PLC控制; 控制要求:速度控制; 控制精度:0.01 1.3设计参数 油缸工作行程——600 mm; 额定工作油压——6.5MPa; 移动负载质量——1000 kg; 负载移动阻力——5000 N; 移动速度控制——0.2m/s; 1.4设计方案 利用设计参数和控制要求设计出液压油缸,进而设计出液压系统,通过PLC 对液压油缸进行速度控制。

液压缸设计说明书

佳木斯大學 机械设计制造及其自动化专业(卓越工程师) 说明书 题目单杆活塞式液压缸的设计 学院机械工程学院 专业机械设计制造及其自动化(卓越工师)组员曾瑶瑶、王健跃、杨兰、沈宜斌 指导教师臧克江 完成日期2016年6月 佳木斯大学机械工程学院

目录 设计要求............................................................................................................................ II 第1章缸的设计. (1) 1.1 液压缸类型和结构型式的确定 (1) 1.1.1结构类型 (1) 1.1.2局部结构及选材初选 (1) 1.2液压缸主要尺寸的确定 (2) 1.2.1 液压缸筒的内径D的确定 (2) 1.2.2 活塞杆直径d的确定 (3) 1.2.3 缸筒长度l的确定(如图1-3) (3) 1.2.4 导向套的设计 (4) 1.3活塞及活塞杆处密封圈的选用 (4) 1.4缓冲装置设计计算 (5) 第2章强度和稳定性计算 (7) 2.1缸筒壁厚和外径计算 (7) 2.2缸底厚度计算 (7) 2.3 活塞杆强度计算 (7) 致谢 (8) 参考文献 (9)

设计要求 设计单杆活塞式液压缸;系统压力:10MPa;系统流量:100L/min;液压缸行程:450mm;速度:30mm/s;液压缸输出力:5000N;油口尺寸:M24*1.5,且两油口尽可能在缸筒的缸底侧;液压缸与外界联接方式缸底固定,活塞杆为耳环联接。

第1章缸的设计 1.1 液压缸类型和结构型式的确定 1.1.1结构类型 1、采用单作用单杆活塞缸; 2、液压缸的安装形式采用轴线固定类中的头部内法兰式安装在机器上。法兰设置在活塞杆端的缸头上,内侧面与机械安装面贴紧,这叫头部内法兰式。液压缸工作时,安装螺栓受力不大,主要靠安装支承面承受,所以法兰直径较小,结构较紧凑【1】。这种安装形式在固定安装形式中应用得最多。而且压力机的工作时的作用力是推力,则采用图1-1的安装形式。 图1-1安装形式 1.1.2局部结构及选材初选 1、缸筒的材料采用45号无缝钢管(如图1-2);

液压缸的设计_毕业论文设计-液压缸的设计

(此文档为word格式,下载后您可任意编辑修改!) 毕 业 设 计 液压缸的设计 姓名:_______________ 学号:_______________ 专业:_______________ 班级:_______________ 指导老师:_______________

2013 年11 月28 日

摘要 将液压缸提供的液压能重新转换成机械能的装置称为执行元件。执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。 关键字:液压缸、机械能、转矩、执行元件 Abstract Hydraulic cylinder will be able to provide the device called actuators. Work is a direct implementation of components, from the point of view of energy conversion; it is the role of the in the form of implementation of the three components can be divided into two categories: and the output of the of components

液压缸设计

液压缸设计 指导书 河南理工大学机械与动力工程学院 热能与动力工程系

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的液压缸设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名合格的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供热能专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容:主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒 内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验

液压缸设计规范

液压缸的设计计算规范

目录:一、液压缸的基本参数 1、液压缸内径及活塞杆外径尺寸系列 2、液压缸行程系列(GB2349-1980) 二、液压缸类型及安装方式 1、液压缸类型 2、液压缸安装方式 三、液压缸的主要零件的结构、材料、及技术要求 1、缸体 2、缸盖(导向套) 3、缸体及联接形式 4、活塞头 5、活寒杆 6、活塞杆的密封和防尘 7、缓冲装置 8、排气装置 9、液压缸的安装联接部分(GB/T2878) 四、液压缸的设计计算 1、液压缸的设计计算部骤 2、液压缸性能参数计算 3、液压缸几何尺寸计算 4、液压缸结构参数计算 5、液压缸的联接计算

一、液压缸的基本参数 1.1液压缸内径及活塞杆外径尺寸系列 1.1.1液压缸内径系列(GB/T2348-1993) 8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110) 125 (140) 160 (180) 200 220 (250) (280) 320 (360) 400 450 500 括号内为优先选取尺寸 1.1.2活塞杆外径尺寸系列(GB/T2348-1993) 4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 活塞杆连接螺纹型式按细牙,规格和长度查有关资料。 1.2液压缸的行程系列(GB2349-1980) 1.2.1第一系列 25 50 80 100 125 160 200 250 320 400 500 630 800 1000 1250 1600 2000 2500 3200 4000 1.2.1第二系列 40 63 90 110 140 180 220 280 360 450 550 700 900 1100 1400 1800 2200 2800 3600

液压油缸的一般设计步骤手册(精选.)

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

手动液压叉车设计说明书

手动液压叉车课程设计设计报告 课程:专业综合实践 班级:机自3093 学院:机械工程学院 指导老师:吴彦农 设计:王晓波王彬谷泓毅 日期: 2012.12.30

叉车设计摘要 叉车是物流系统中最常用的装卸、搬运设备。本文介绍了世界范围内叉车的市场,叉车发展趋势以及叉车的结构特点,了解液压起重机械设计的主要参数:根据液压起重机械的特点,设计液压手动叉车参数有:起重量、跨距、幅度起重高度、各机构的工作速度及起重机各机构的工作类型。叉车的主要参数首先由使用单位根据生产需要提出,具体数字应按国家标准或工厂标准来确定,同时也要考虑到制造厂的现实生产条件。因此,在确定参数时应当进行调查研究,充分协商和慎重确定。 现代叉车技术发展的主要趋势是充分考虑舒适性、安全可靠性和可维护性 ,产品专业化、系列多样化,大量应用新技术,完善操控系统,重视节能和环保 ,全面提升产品的性能和品质。 通过对国际国内叉车造型设计的现状分析运用工业设计的理论和方法,研究了叉车造型设计的要素及设计原则:造型要求简洁明快、线条流畅,以体现车身的力度感与坚实稳重的感;色彩.力求单纯,给人以轻松、愉悦的感觉,主色调以明度较高的黄色、橙色为宜;车身前后左右要求有宽大的玻璃,仪表具有良好的可读性。研究结果对叉车设计具有重要的实际指导意义。 关键词:叉车;载重;提升机构 第 1章绪论 1.1课题发展现状和前景展望 叉车是应用十分广泛的流动式装卸搬运机械,是物料搬运机械(国外称为工业车辆或地面运输车辆)的一种,是实现物流机械化作业,减轻工人搬运劳动强度,提高作业效率的主要工具。叉车又名铲车、万能装卸车或自动装卸车。它是由在无轨底盘上加装专用装卸工作装置构成的。叉车具有通用性强、机动灵活、活动范围大等特点,所以它广泛用于车站、港口码头、机场、仓库以及工矿企业等部门,用来实现机械化装卸、堆垛和短距离运输,是物流系统不可缺少的机械设备。而叉车中进行装卸作业的直接工作的装置是叉车起重系统,货物的卸放、堆垛最终都是由其完成的,所以它是叉车最重要的组成部分。在我国国民经济的发展中,各行各业对叉车的需求量逐年增加。据国家权威机构研究预测,在今后几年我国叉车年需求量将超过15万台。叉车产业市场潜力巨大,发展前景广阔。 1.2课题主要内容和要求 实验室提供液压千斤顶,螺旋千斤顶实物样品,要求参照其工作原理设计用于较重货物的装卸、移动的省

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

液压缸课程设计指导书.

液压缸课程设计指导书

机械工程与自动化学院 一、设计目的 液压缸是液压传动系统中实现往复运动和小于 360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构, 起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置, 建筑机械中的打桩机, 冶金机械中的压力机, 汽车工业中自卸式汽车和高空作业车, 智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动液压缸,即推力液压缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 为此,编写了这本“液压缸课程设计指导书” ,供机械专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。

4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。最后人均一题,避免重复。 四、设计依据和设计步骤 液压缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对液压缸则有不同的工作要求。因此在设计液压缸之前,首先应了解下列这些作为设计原始依据的主要内容。主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 液压缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时、工作行程、导向长度、缸筒内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验算,以及各连接部分的强度计算。 4、导向、密封、防尘、排气和缓冲等装置的设计。 5、整理设计说明书。绘制工作图。 应该指出,不同类型和结构的液压缸,其设计内容量是不同的,而且各参数之间需要综合考虑反复验算才能得出比较满意的结果。因此设计步骤不可能是固定不变的。

相关文档